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Abstract: We address the problem of approximate model minimization for MDPs
in which the state is partitioned into endogenous and (much larger) exogenous
components. An exogenous state variable is one whose dynamics are indepen-
dent of the agent’s actions. We formalize the mask-learning problem, in which
the agent must choose a subset of exogenous state variables to reason about when
planning; doing planning in such a reduced state space can often be significantly
more efficient than planning in the full model. We then explore the various value
functions at play within this setting, and describe conditions under which a pol-
icy for a reduced model will be optimal for the full MDP. The analysis leads us
to a tractable approximate algorithm that draws upon the notion of mutual in-
formation among exogenous state variables. We validate our approach in sim-
ulated robotic manipulation domains where a robot is placed in a busy environ-
ment, in which there are many other agents also interacting with the objects. Visit
http://tinyurl.com/chitnis-exogenous for a supplementary video.
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1 Introduction

Most aspects of the world are exogenous to us: they are not affected by our actions. However, though
they are exogenous, these processes (e.g., weather and traffic) will often play a major role in the way
we should choose to perform a task at hand. Despite being faced with such a daunting space of
processes that are out of our control, humans are extremely adept at quickly reasoning about which
aspects of this space they need to concern themselves with, for the particular task at hand.

Consider the setting of a household robot tasked with doing laundry inside a home. It should not get
bogged down by reasoning about the current weather or traffic situation, because these factors are
irrelevant to its task. If, instead, it were tasked with mowing the lawn, then good decision-making
would require it to reason about the time of day and weather (so it can finish the task by sunset, say).

In this work, we address the problem of approximately solving Markov decision processes (MDPs),
without too much loss in solution quality, by leveraging the structure of their exogenous processes.
We begin by formalizing the mask-learning problem. An autonomous agent is given a generative
model of an MDP that is partitioned into an endogenous state (i.e., that which can be affected by the
agent’s actions) and a much higher-dimensional exogenous state. The agent must choose a mask, a
subset of the exogenous state variables, that yields a policy not too much worse than a policy that
would be obtained by reasoning about the entire exogenous state.

After formalizing the mask-learning problem, we discuss how we can leverage exogeneity to quickly
learn transition models for only the relevant variables from data. Then, we explore the various value
functions of interest within the problem, and discuss the conditions under which a policy for a
particular mask will be optimal for the full MDP. Our analysis lends theoretical credence to the idea
that a good mask should contain not only the exogenous state variables that directly influence the
agent’s reward function, but also ones whose dynamics are correlated with theirs. This idea leads to
a tractable approximate algorithm for the mask-learning problem that leverages the structure of the
MDP, drawing upon the notion of mutual information among exogenous state variables.
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We experiment in simulated robotic manipulation domains where a robot is put in a busy environ-
ment, among many other agents that also interact with the objects. We show that 1) in small domains
where we can plan directly in the full MDP, the masks learned by our approximate algorithm yield
competitive returns; 2) our approach outperforms strategies that do not leverage the structure of the
MDP; and 3) our algorithm can scale up to planning problems with large exogenous state spaces.

2 Related Work

The notion of an exogenous event, one that is outside the agent’s control, was first introduced in
the context of planning problems by Boutilier et al. [1]. The work most similar to ours is that by
Dietterich et al. [2], who also consider the problem of model minimization in MDPs by removing
exogenous state variables. Their formulation of an MDP with exogenous state variables is similar to
ours, but the central assumption they make is that the reward decomposes additively into an endoge-
nous state component and an exogenous state component. Under this assumption, the value function
of the full MDP decomposes into two parts, and any policy that is optimal for the endogenous MDP
is also optimal for the full MDP. On the other hand, we do not make this reward decomposition
assumption, and so our value function does not decompose; instead, our work focuses on a different
set of questions: 1) what are the conditions under which an optimal policy in a given reduced model
is optimal in the full MDP? 2) can we build an algorithm that leverages exogeneity to efficiently
(approximately) discover such a reduced model?

Model minimization of factored Markov decision processes is often defined using the notion of
stochastic bisimulation [3, 4], which describes an equivalence relation among states based upon their
transition dynamics. Other prior work in state abstraction tries to remove irrelevant state variables in
order to form reduced models [5, 6]. Our approach differs from these techniques in two major ways:
1) we consider only reducing the exogenous portion of the state, allowing us to develop algorithms
which leverage the computational benefits enjoyed by the exogeneity assumption; 2) rather than
trying to build a reduced model that is faithful to the full MDP, we explicitly optimize a different
objective (Equation 1), which tries to find a reduced model yielding high rewards in the full MDP.
Recent work in model-free reinforcement learning has considered how to exploit exogenous events
for better sample complexity [7, 8], whereas we tackle the problem from a model-based perspective.

If we view the state as a vector of features, then another perspective on our approach is that it is a
technique for feature selection [9] applied to MDPs with exogenous state variables. This is closely
related to the typical subset selection problem in supervised learning [10, 11, 12, 13], in which a
learner must determine a subset of features that suffices for making predictions with little loss.

3 Problem Formulation

In this section, we introduce the notion of exogeneity in the context of a Markov decision process,
and use this idea to formalize the mask-learning problem.

3.1 Markov Decision Processes with Exogenous Variables

We will formalize our setting as a discrete Markov decision process (MDP) with special structure. An
MDP is a tuple (S,A, T,R, γ) where: S is the state space; A is the action space; T (st, at, st+1) =
P (st+1 | st, at) is the state transition distribution with st, st+1 ∈ S and at ∈ A; R(st, at) is the
reward function; and γ is the discount factor in (0, 1]. On each timestep, the agent chooses an action,
transitions to a new state sampled from T , and receives a reward as specified by R. The solution to
an MDP is a policy π, a mapping from states in S to actions in A, such that the expected discounted
sum of rewards over trajectories resulting from following π, which is E [

∑∞
t=0 γ

tR(st, π(st))], is
maximized. Here, the expectation is with respect to the stochasticity in the initial state and state
transitions. The value of a state s ∈ S under policy π is defined as the expected discounted sum of
rewards from following π, starting at state s: Vπ(s) = E [

∑∞
t=0 γ

tR(st, π(st)) | s0 = s]. The value
function for π is the mapping from S to R defined by Vπ(s),∀s ∈ S.

In this work, we assume that the agent is given a generative model of an MDP, in the sense of Kearns
et al. [14]. Concretely, the agent is given the following:

• Knowledge of S, A, and γ.
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• A black-box sampler of the transition model, which takes as input a state s ∈ S and action
a ∈ A, and returns a next state s′ ∼ T (s, a, s′).

• A black-box reward function, which takes as input a state s ∈ S and action a ∈ A, and returns
the reward R(s, a) for that state-action pair.

• A black-box sampler of an initial state s0 from some distribution P (s0).

We note that this assumption of having a generative model of an MDP lies somewhere in between
that of only receiving execution traces (as in the typical reinforcement learning setting, assuming no
ability to reset the environment) and that of having knowledge of the full analytical model. One can
also view this assumption as saying that a simulator is available. Generative models are a natural
way to specify a large MDP, as it is typically easier to produce samples from a transition model than
to write out the complete next-state distributions.

Figure 1: A Markov decision process with
exogenous state variables x1

t , x
2
t , . . . , x

m
t .

We assume that the state of our MDP decomposes into
an endogenous component and a (much larger) exoge-
nous component, and that the agent knows this parti-
tion. Thus, we write st = [nt xt], where nt is the en-
dogenous component of the state, whose transitions the
agent can affect through its actions, and xt is the ex-
ogenous component of the state. This assumption means
that P (xt+1 | xt, at) = P (xt+1 | xt), and therefore
P (st+1 | st, at) = P (nt+1 | nt, at, xt) · P (xt+1 | xt).

Though unaffected by the agent’s actions, the exogenous
state variables influence the agent through the rewards
and endogenous state transitions. Therefore, to plan, the
agent will need to reason about future values of the xt.

We will focus on the setting where the exogenous state xt is made up ofm (not necessarily indepen-
dent) state variables x1

t , x
2
t , . . . , x

m
t , withm large. The fact thatm is large precludes reasoning about

the entire exogenous state. We will define the mask-learning problem (Section 3.2) an optimization
problem for deciding which variables x1, x2, . . . , xm the agent should reason about.

To be able to unlink the effects of each exogenous state variable on the agent’s reward, we will need
to make an assumption on the form of the reward function R(st, at) = R(nt, xt, at). This assump-
tion is necessary for the agent to be able to reason about the effect of dropping a particular exogenous
state variable from consideration. Specifically, we assume thatR(nt, xt, at) =

∑m
i=1R

i(nt, x
i
t, at).

In words, this says that the reward function decomposes into a sum over the individual effects of each
exogenous state variable xi. Although this means that the computation of the agent’s reward cannot
include logic based on any combinations of xi, this assumption is not too restrictive: one could
always construct “super-variables” encompassing state variables coupled in the reward. Note that
despite this assumption, the value function might depend non-additively on the exogenous variables.

3.2 The Mask-Learning Problem

Our central problem of focus is that of finding a mask, a subset of the m exogenous state variables,
that is “good enough” for planning, in the sense that we do not lose too much by ignoring the others.
Before being able to formalize the problem, we must define precisely what it means to plan with only
a subset of the m exogenous variables. Suppose we have an MDP M as described in Section 3.1.
Let x =

[
x1 x2 . . . xm

]
, and x̃ ⊆ x be an arbitrary subset (a mask).

We define the reduced model M̃ corresponding to mask x̃ and MDP M as another MDP:

• A and γ are the same as in M .
• S is reduced by removing the dimensions corresponding to any xi /∈ x̃.
• P (s̃t+1 | s̃t, at) = P (nt+1 | nt, at, x̃t) · P (x̃t+1 | x̃t). Here, s̃t = [nt x̃t].1

• R(s̃t, at) = R(nt, x̃t, at) =
∑
xi∈x̃R

i(nt, x
i
t, at). Here, we are leveraging the assumption that

the reward function decomposes as discussed at the end of Section 3.1.

1The x̃ might, in actuality, not be Markov, since we are ignoring the variables x \ x̃. Nevertheless, this
expression is well-formed, and estimating it from data marginalizes out these ignored variables. If they were
not exogenous, such estimates would depend on the data-gathering policy (and thus could be very error-prone).
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Since the agent only has access to a generative model of the MDP M , planning in M̃ will require
estimating the reduced dynamics and reward models, T̂ (s̃t, at, s̃t+1) and R̂(s̃t, at).

Formally, the mask-learning problem is to determine:

x̃∗ = argmax
x̃⊆x

J(x̃) = argmax
x̃⊆x

E

[ ∞∑
t=0

γtR(nt, xt, π̃(nt, x̃t))

]
− λ · Cost(x̃), (1)

where π̃ is the policy (mapping reduced states to actions) that is obtained by planning in M̃ . In
words, we seek the mask x̃∗ that yields a policy maximizing the expected total reward accrued
in the actual environment (the complete MDP M ), minus a cost on x̃. Note that if λ = 0, then the
choice x̃ = x is always optimal, and so the λ serves as a regularization hyperparameter that balances
the expected reward with the complexity of the considered mask. Reasonable choices of Cost(x̃)
include |x̃| or the amount of time needed to produce the policy π̃ corresponding to x̃.

4 Leveraging Exogeneity

The agent has only a generative model of the MDP M (Section 3.1). In order to build a reduced MDP

M̃ , it must estimate T̂ (s̃t, at, s̃t+1) = P̂ (nt+1 | nt, at, x̃t) · P̂ (x̃t+1 | x̃t) and R̂(s̃t, at).

Recall that we are considering the setting where the space of exogenous variables is much larger
than the space of endogenous variables. At first glance, then, it seems challenging to estimate
P̂ (x̃t+1 | x̃t) using only the generative model for P (xt+1 | xt). However, this estimation problem
is in fact greatly simplified due to the exogeneity of the xi. To see why, consider the typical strategy
for estimating a transition model from data: generate trajectories starting from some initial state x0,
then fit a one-step prediction model to this data. Now, if the xi were endogenous, then we would need
to commit to some policy πrollout in order to generate these trajectories, and the reduced transition
model we learn would depend heavily on this πrollout. However, since the xi are exogenous, we can
roll out simulations conditioned only on the initial state x0, not on a policy, and use this data to
efficiently estimate the transition model P (x̃t+1 | x̃t) of the reduced MDP M̃ .2

Because we can efficiently estimate the reduced model dynamics of exogenous state variables, we
can not only tractably construct the reduced MDP, but also allow ourselves to explore algorithms that
depend heavily on estimating these variables’ dynamics, as we will do in Section 5.3.

5 Algorithms for Mask-Learning

In this section, we explore some value functions induced by the mask-learning problem, and use this
analysis to develop a tractable but effective approximate algorithm for finding good masks.

5.1 Preliminaries

Observe that the expectation in the objective J(x̃) (Equation 1) is the value Vπ̃(s0) of an initial state
under the policy π̃, corresponding to mask x̃. Because the full MDP M is very large, computing this
value (the expected discounted sum of rewards) exactly will not be possible. Instead, we can use
rollouts of π̃ to produce an estimate V̂π̃ , which in turns yields an estimate of the objective, Ĵ(x̃):

Procedure ESTIMATE-OBJECTIVE(M, x̃, nrollouts)
1 Construct estimated reduced MDP M̃ defined by mask x̃ and full MDP M .
2 Solve M̃ to get policy π̃.
3 for i = 1, 2, . . . , nrollouts do
4 Execute π̃ in the full MDP M , obtain total discounted returns ri.
5 Ĵ(x̃) = 1

nrollouts

∑
i ri − λ · Cost(x̃)

As discussed in Section 4, Line 1 is tractable due to the exogeneity of the x variables, which make
up most of the dimensionality of the state. With ESTIMATE-OBJECTIVE in hand, we can write down
some very simple strategies for solving the mask-learning problem:

2In high dimensions, we may still need a lot of data, unless the state factors nicely.
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• MASK-LEARNING-BRUTE-FORCE: Evaluate Ĵ(x̃) for every possible mask x̃ ⊆ x. Return the
highest-scoring mask.

• MASK-LEARNING-GREEDY: Start with an empty mask x̃. While Ĵ(x̃) increases, pick a variable
xi at random, add it into x̃, and re-evaluate Ĵ(x̃).

While optimal, MASK-LEARNING-BRUTE-FORCE is of course intractable for even medium-sized
values of m, as it will not be feasible to evaluate all 2m possible subsets of x. Unfortunately,
even MASK-LEARNING-GREEDY will likely be ineffective for medium and large MDPs, as it does
not leverage the structure of the MDP whatsoever. To develop a better algorithm, we will start by
exploring the connection between the value functions of the reduced MDP M̃ and the full MDP M .

5.2 Analyzing the Value Functions of Interest

It is illuminating to outline the various value functions at play within our problem. We have:

• V ∗(s): the value function under an optimal policy; unknown and difficult to compute exactly.
• Vπ̃(s): given a mask x̃, the value function under the policy π̃; unknown and difficult to compute

exactly. Note that V ∗(s) ≥ Vπ̃(s) ∀s ∈ S, by the definition of an optimal value function.
• V̂π̃(s): given a mask x̃, the empirical estimate of Vπ̃(s), which the agent can obtain by rolling

out π̃ in the environment many times, as was done in the ESTIMATE-OBJECTIVE procedure.
• Ṽπ̃(s̃): given a mask x̃, the value function of policy π̃ within the reduced MDP M̃ . Here, s̃ is the

reduced form of state s (i.e., the endogenous state n concatenated with x̃).

Intuitively, Ṽπ̃(s̃) corresponds to the expected reward that the agent believes it will receive by fol-
lowing π̃, which typically will not match Vπ̃(s), the actual expected reward. In general, we cannot
say anything about the ordering between Ṽπ̃(s̃) and Vπ̃(s). For instance, if the mask x̃ ignores some
negative effect in the environment, then the agent will expect to receive higher reward than it actu-
ally receives during its rollouts. On the other hand, if the mask x̃ ignores some positive effect in the
world, then the agent will expect to receive lower reward than it actually receives.

It is now natural to ask: under what conditions would an optimal policy π̃ for the reduced MDP M̃
also be optimal for the full MDP M? The following theorem describes sufficient conditions:

Theorem 1. Consider an MDP M as defined in Section 3.1, with exogenous state variables x =[
x1 x2 . . . xm

]
, and a mask x̃ ⊆ x. Let x̄ = x \ x̃ be the variables not included in the mask. If

the following conditions hold: (1) Ri(nt, xit, at) = 0 ∀xi ∈ x̄, (2) P (nt+1 | nt, at, xt) = P (nt+1 |
nt, at, x̃t), (3) P (x̃t+1, x̄t+1 | x̃t, x̄t) = P (x̃t+1 | x̃t) · P (x̄t+1 | x̄t); then Ṽπ̃(s̃) = Vπ̃(s) ∀s ∈ S.
If π̃ is optimal for the reduced MDP M̃ , then it must also be true that Ṽπ̃(s̃) = V ∗(s) ∀s ∈ S.

Proof: See Appendix A.

The conditions in Theorem 1 are very intuitive: (1) all exogenous variables not in the mask do not
influence the agent’s reward, (2) the endogenous state transitions do not depend on variables not in
the mask, and (3) the variables in the mask transition independently of the ones not in the mask. If
these conditions hold, and we use an optimal planner for the reduced model, then we will obtain a
policy that is optimal for the full MDP, not just the reduced one. Based on these conditions, it is clear
that our mask-learning algorithm should be informed by two things: 1) the agent’s reward function
and 2) the degree of correlation among the dynamics of the various state variables.

Hoeffding’s inequality [15] allows us to bound the difference between Vπ̃(s) and the empirical esti-
mate V̂π̃(s). For rewards in the range [0, Rmax], discount factor γ, number of rollouts n, and policy
π̃, we have that for any state s, |Vπ̃(s)−V̂π̃(s)| ≤ λwith probability at least 1−2e−2nλ2(1−γ)2/R2

max .
This justifies the use of V̂π̃(s) in place of Vπ̃(s), as was done in the ESTIMATE-OBJECTIVE proce-
dure. Next, we describe a tractable algorithm for mask-learning that draws on Theorem 1.

5.3 A Correlational Algorithm for Mask-Learning

Of course, it is very challenging to directly search for a low-cost mask x̃ that meets all the conditions
of Theorem 1, if one even exists. However, we can use that intuition to develop an approximate
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algorithm based upon greedy forward selection techniques for feature selection [9], which at each
iteration add a single variable that most improves some performance metric.

Algorithm MASK-LEARNING-CORRELATIONAL(M, τcorrel, τvariance, n1, n2)
1 x̃← ESTIMATE-REWARD-VARIABLES(M, τvariance, n1, n2) // Initial mask for MDP M.

2 while Ĵ(x̃) increases do // Iteratively add to initial mask.

3 xi = argmaxxj /∈x̃DKL(T̂s̃,xj ‖ T̂s̃ ⊗ T̂xj ) // Measure mutual informations.

4 if DKL(T̂s̃,xi ‖ T̂s̃ ⊗ T̂xi) < τcorrel then
break // All mutual informations below threshold, terminate.

5 x̃ = x̃ ∪ xi

6 Ĵ(x̃)←ESTIMATE-OBJECTIVE(M, x̃)
7 return x̃

Subroutine ESTIMATE-REWARD-VARIABLES(M, τvariance, n1, n2)
8 for each variable xi ∈ x do
9 for n1 random samples of endog. state, exog. variables x \ xi, action a do

10 Randomly sample n2 settings of variable xi, construct full states s1, s2, . . . , sn2
.

11 Compute σ2
j ← Var({R(s1, a), . . . , R(sn2 , a)}).

12 if 1
n1

∑n1

j=1 σ
2
j > τvariance then // Mean variance above threshold, accept.

13 emit xi

Algorithm description. In line with Condition (1) of Theorem 1, we begin by estimating the set of
exogenous state variables relevant to the agent’s reward function, which we can do by leveraging the
generative model of the MDP. As shown by the ESTIMATE-REWARD-VARIABLES subroutine, the
idea is to compute, for each variable xi, the average amount of variance in the reward across different
values of xi when the remainder of the state is held fixed, and threshold this at τvariance. We define
our initial mask to be this set. The efficiency-accuracy tradeoff of this subroutine can be controlled
by tuning the number of samples, n1 and n2. In practice, we can make a further improvement by
heuristically biasing the sampling to favor states that are more likely to be encountered by the agent
(such heuristics can be computed, for instance, by planning in a relaxed version of the problem).

Then, we employ an iterative procedure to approximately build toward Conditions (2) and (3): that
the variables not in the mask transition independently of those in the mask and the endogenous
state. To do so, we greedily add variables into the mask based upon the mutual information between
the empirical transition model of the reduced state and that of each remaining variable. Intuitively,
this quantitatively measures: “How much better would we be able to predict the dynamics of s̃ if s̃
included variable xi, versus if it didn’t?” This mutual information will be 0 if xi transitions indepen-
dently of all variables in s̃. To calculate the mutual information between s̃ and variable xi, we must
first learn the empirical transition models T̂s̃,xi , T̂s̃, and T̂xi from data. The exogeneity of most of
the state is critical here: not only does it make learning these models much more efficient, but also,
without exogeneity, we could not be sure whether two variables actually transition independently of
each other or we just happened to follow a data-gathering policy that led us to believe so.

6 Experiments

Our experiments are designed to answer the following questions: (1) In small domains, are the
masks learned by our algorithm competitive with the optimal masks? (2) Quantitatively, how well
do the learned masks perform in large, complicated domains? (3) Qualitatively, do the learned masks
properly reflect different goals given to the robot? (4) What are the limitations of our approach?

We experiment in simulated robotic manipulation domains in which a robot is placed in a busy en-
vironment with objects on tables, among many other agents that are also interacting with objects.
The robot is rewarded for navigating to a given goal object (which changes on each episode) and
penalized for crashing into other agents. The exogenous variables are the states of the other agents3,

3It is true that typically, the other agents will react to the robot’s actions, but it is well worth making the
exogeneity assumption in these complicated domains we are considering. This assumption is akin to how we
treat traffic patterns as exogenous to ourselves, even though technically we can slightly affect them.
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a binary-valued occupancy grid discretizing the environment, the object placements on tables, and
information specifying the goal. We plan using value iteration with a timeout of 60 seconds. Empir-
ical value estimates are computed as averages across 500 independent rollouts. Each result reports
an average across 50 independent trials. We regularize masks by setting Cost(x̃) = |x̃|; our initial
experimentation suggested that other mask choices, such as planning time, perform similarly.

6.1 In small domains, are our learned masks competitive with the optimal masks?

Finding the optimal mask x̃∗ is only possible
in small models. Therefore, to answer this
question we constructed a small gridworld rep-
resentation of our experimental domain, with
only ∼600 states and 5 exogenous variables,
in which we can plan exactly. We find x̃∗

using the MASK-LEARNING-BRUTE-FORCE
strategy given in Section 5.1. We compare the
optimal mask with both 1) Ours, the mask re-
turned by our algorithm in Section 5.3; and 2) Greedy, the mode mask chosen across 10 independent
trials of the MASK-LEARNING-GREEDY strategy given in Section 5.1.

Discussion. For higher values of λ especially, our algorithm performs on par with the optimal brute-
force strategy, which is only viable in small domains. The gap widens as λ decreases because as
the optimal mask gets larger, it becomes harder to find using a forward selection strategy such as
ours. In practical settings, one should typically set λ quite high so that smaller masks are preferred,
as these will yield the most compact reduced models. Meanwhile, the greedy strategy does not
perform well because it disregards the structure of the MDP and the conditions of Theorem 1. We
also observe that our algorithm takes significantly less time than the optimal brute-force strategy;
we should expect this gap to widen further in larger domains. Our algorithm’s stopping condition
is that the score function begins to decrease, and so it tends to terminate more quickly for higher
values of λ, as smaller masks become increasingly preferred.

6.2 Quantitatively, how well do the learned masks perform in large, complicated domains?

To answer this question, we consider two large domains: Factory, in which a robot must fulfill
manipulation tasks being issued in a stream; and Crowd, in which a robot must navigate to target
objects among a crowd of agents executing their own fixed stochastic policies. Even after discretiza-
tion, these domains have 1011 and 1080 states respectively; Factory has 22 exogenous variables and
Crowd has 124. In either domain, both planning exactly in the full MDP and searching for x̃∗ by
brute force are prohibitively expensive. All results use nrollouts = 500, τcorrel = 10−5, τvariance = 0,
n1 = 250, and n2 = 5. We compare our algorithm with the Greedy one described earlier, which
disregards the structure of the MDP. We also compare to only running our algorithm’s first phase,
which chooses the mask to be the estimated set of variables directly influencing the reward.

Algorithm Domain Average True Returns Time / Run (sec)

Greedy Factory 0 13.4

Ours (first phase) Factory 186 —

Ours (full) Factory 226 53.8

Greedy + heuristics Crowd 188 43.7

Ours (first phase) Crowd 260 —

Ours (full) Crowd 545 123.5

Discussion. In the Factory domain, the baseline greedy algorithm did not succeed even once at the
task. The reason is that in this domain, several exogenous variables directly influence the reward
function, but the greedy algorithm starts with an empty mask and only adds one variable at a time,
and so cannot detect the improvement arising from adding in several variables at once. To give the
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baseline a fair chance, we initialized it by hand to a better mask for the Crowd domain, which is
why it sees success there (Greedy + heuristics in the table). The results suggest that our algorithm,
explicitly framed around all conditions of Theorem 1, performs well. The graph of the example
execution in the Crowd domain shows that adding a 55th variable to the mask yields a decrease in
the estimated objective even though the average returns slightly increase, due to the regularizer |x̃|.

6.3 Qualitatively, do the learned masks properly reflect different goals given to the robot?

Please see the supplementary video for more qualitative results, examples, and explanations.

Figure 2: Left: Example of the full world. We control
the singular gold-and-purple robot in the environment;
the others follow fixed policies and are exogenous.
Medium, Right: Examples of reduced models learned
by the robot for Goals (1) and (2). The red squares
on the ground describe which locations, within a dis-
cretization of the environment, the robot has learned to
consider within its masked occupancy grid, while green
circles denote currently occupied locations. Because
all goals require manipulating objects on the tables, the
robot recognizes that it does not need to consider occu-
pancies in the lower-left quarter of the environment. For
Goal (1), in which the other agents cannot manipulate
the objects, the robot recognizes that it does not need
to consider the states of any other agents. For Goal (2),
the robot considers one of the other agents (here, hold-
ing the green object) within its reduced model, since
this helps it better predict the dynamics of the objects.

An important characteristic of our algorithm
is its ability to learn different masks based on
what the goal is; we illustrate this concept with
an example. Let us explore the masks resulting
from two different goals in the Crowd domain:
Goal (1) is for the robot to navigate to an ob-
ject that cannot be moved by any of the other
agents, and Goal (2) is for the robot to navigate
to an object that is manipulable by the other
agents. In either case, the variables that directly
affect the reward function are the object place-
ments on the tables (which tell the robot where
it must navigate to) and the occupancy grid
(which helps the robot avoid crashing). How-
ever, for Goal (2), there is another variable that
is important to consider: the states of any other
agents that can manipulate the objects. This
desideratum gets captured by the second phase
of our algorithm: reasoning about the states of
the other agents will allow the robot to better
predict the dynamics of the object placements,
enabling it to succeed at its task more efficiently
and earn higher rewards. See Figure 2 for a vi-
sualization of this concept in our experimental
domain, simulated using pybullet [16].

Discussion. In a real-world setting, all of the exogenous variables could potentially be relevant to
solving some problem, but typically only a small subset will be relevant to a particular problem.
Under this lens, our method gives a way of deriving option policies in lower-dimensional subspaces.

6.4 What are the limitations of our approach?

Our experimentation revealed some limitations of our approach that are valuable to discuss. If the
domains of the exogenous variables are large (or continuous), then it is expensive to compute the
necessary mutual information quantities. To remedy this issue, one could turn to techniques for
estimating mutual information, such as MINE [17]. Another limitation is that the algorithm as
presented greedily adds one variable to the mask at a time, after the initial mask is built. In some
settings, it can be useful to instead search over groups of variables to add in all at once, since these
may contain information for better predicting dynamics that is not present in any single variable.

7 Conclusion and Future Work

We have formalized and given a tractable algorithm for the mask-learning problem, in which an
agent must choose a subset of the exogenous state variables of an MDP to reason about when plan-
ning. An important avenue for future work is to remove the assumption that the agent knows the
partition of endogenous versus exogenous aspects of the state. An interesting fact to ponder is that
the agent can actually control this partition by choosing its actions appropriately. Thus, the agent
can commit to a particular choice of exogenous variables in the world, and plan under the constraint
of never influencing these variables. Another avenue for future work is to develop an incremental,
real-time version of the algorithm, necessary in settings where the agent’s task constantly changes.
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Appendix A: Proof of Theorem 1

Theorem 1. Consider an MDP M as defined in Section 3.1, with exogenous state variables x =[
x1 x2 . . . xm

]
, and a mask x̃ ⊆ x. Let x̄ = x \ x̃ be the variables not included in the mask. If

the following conditions hold: (1) Ri(nt, xit, at) = 0 ∀xi ∈ x̄, (2) P (nt+1 | nt, at, xt) = P (nt+1 |
nt, at, x̃t), (3) P (x̃t+1, x̄t+1 | x̃t, x̄t) = P (x̃t+1 | x̃t) · P (x̄t+1 | x̄t); then Ṽπ̃(s̃) = Vπ̃(s) ∀s ∈ S.
If π̃ is optimal for the reduced MDP M̃ , then it must also be true that Ṽπ̃(s̃) = V ∗(s) ∀s ∈ S.

Proof: Consider an arbitrary state s ∈ S , with corresponding reduced state s̃. We begin by showing
that under the stated conditions, Ṽπ̃(s̃) = Vπ̃(s). The recursive form of these value functions is:

Vπ̃(s) = R(s, π̃(s̃)) + γ
∑
s′

P (s′ | s, π̃(s̃)) · Vπ̃(s′),

Ṽπ̃(s̃) = R(s̃, π̃(s̃)) + γ
∑
s̃′

P (s̃′ | s̃, π̃(s̃)) · Ṽπ̃(s̃′).

Now, consider an iterative procedure for obtaining these value functions, which repeatedly applies
the above equations starting from V 0

π̃ (s) = Ṽ 0
π̃ (s̃) = 0 ∀s ∈ S. Let the value functions at iteration

k be denoted as V kπ̃ (s) and Ṽ kπ̃ (s̃). We will show by induction on k that V kπ̃ (s) = Ṽ kπ̃ (s̃) ∀k.

The base case is immediate. Suppose V kπ̃ (s) = Ṽ kπ̃ (s̃) ∀s ∈ S, for some value of k. We compute:

V k+1
π̃ (s) = R(s, π̃(s̃)) + γ

∑
s′

P (s′ | s, π̃(s̃)) · V kπ̃ (s′)

=

m∑
i=1

Ri(n, xi, π̃(s̃)) + γ
∑
s′

P (n′ | n, π̃(s̃), x) · P (x′ | x) · V kπ̃ (s′) Model assumptions.

=
∑
xi∈x̃

Ri(n, xi, π̃(s̃)) + γ
∑
s′

P (n′ | n, π̃(s̃), x) · P (x′ | x) · V kπ̃ (s′) Condition (1).

= R(s̃, π̃(s̃)) + γ
∑
s′

P (n′ | n, π̃(s̃), x) · P (x′ | x) · V kπ̃ (s′) Defn. of reduced R.

= R(s̃, π̃(s̃)) + γ
∑
s′

P (n′ | n, π̃(s̃), x̃) · P (x′ | x) · V kπ̃ (s′) Condition (2).

= R(s̃, π̃(s̃)) + γ
∑
n′,x̃′

∑
x̄′

P (n′ | n, π̃(s̃), x̃) · P (x̃′, x̄′ | x̃, x̄) · V kπ̃ (s′) Split up sum.

= R(s̃, π̃(s̃)) + γ
∑
n′,x̃′

∑
x̄′

P (n′ | n, π̃(s̃), x̃) · P (x̃′ | x̃) · P (x̄′ | x̄) · V kπ̃ (s′) Condition (3).

= R(s̃, π̃(s̃)) + γ
∑
n′,x̃′

∑
x̄′

P (n′ | n, π̃(s̃), x̃) · P (x̃′ | x̃) · P (x̄′ | x̄) · Ṽ kπ̃ (n′, x̃′) Inductive assumption.

= R(s̃, π̃(s̃)) + γ
∑
n′,x̃′

P (n′ | n, π̃(s̃), x̃) · P (x̃′ | x̃) · Ṽ kπ̃ (n′, x̃′) ·
��

����
∑
x̄′

P (x̄′ | x̄) Rearrange.

= R(s̃, π̃(s̃)) + γ
∑
s̃′

P (s̃′ | s̃, π̃(s̃)) · Ṽ kπ̃ (s̃′) Defn. of reduced T .

= Ṽ k+1
π̃ (s̃).

We have shown that V kπ̃ (s) = Ṽ kπ̃ (s̃) ∀k. By standard arguments (e.g., in [18]), this iterative proce-
dure converges to the true Vπ̃(s) and Ṽπ̃(s̃) respectively. Therefore, we have that Ṽπ̃(s̃) = Vπ̃(s).

Now, if π̃ is optimal for M̃ , then it is optimal for the full MDP M as well. This is because Condition
(1) assures us that the variables not considered in the mask do not affect the reward, implying that
π̃ optimizes the expected reward in not just M̃ , but also M . Therefore, under this assumption, we
have that Ṽπ̃(s̃) = Vπ̃(s) = V ∗(s) ∀s ∈ S.
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