
Sample-Based Methods for Factored
Task and Motion Planning

Caelan Reed Garrett
MIT CSAIL

Cambridge, MA 02139
caelan@csail.mit.edu

Tomás Lozano-Pérez
MIT CSAIL

Cambridge, MA 02139
tlp@csail.mit.edu

Leslie Pack Kaelbling
MIT CSAIL

Cambridge, MA 02139
lpk@csail.mit.edu

Abstract—There has been a great deal of progress in developing
probabilistically complete methods that move beyond motion
planning to multi-modal problems including various forms of
task planning. This paper presents a general-purpose formula-
tion of a large class of discrete-time planning problems, with
hybrid state and action spaces. The formulation characterizes
conditions on the submanifolds in which solutions lie, leading
to a characterization of robust feasibility that incorporates
dimensionality-reducing constraints. It then connects those condi-
tions to corresponding conditional samplers that are provided as
part of a domain specification. We present domain-independent
sample-based planning algorithms and show that they are both
probabilistically complete and computationally efficient on a set
of challenging benchmark problems.

I. INTRODUCTION

Many important robotic domains of interest require planning
in a very high-dimensional space that includes not just the
robot configuration, but also the “configuration” of the external
world state, including a variety of quantities such as object
poses, reaction states of chemical or biological processes, or
intentions of other agents. There has been a great deal of
progress in developing probabilistically complete sampling-
based methods that move beyond motion planning to multi-
modal problems including various forms of task planning.
These new methods each require a new formulation, definition
of robust feasibility, sampling methods, and search algorithm.
This paper presents a general-purpose formulation of a large
class of discrete-time planning problems, with continuous or
hybrid state and action spaces.

The primary theoretical contribution of this paper is a
formulation of factored transition systems that exposes the
topology of their solution space, particularly in the presence of
dimensionality-reducing constraints. The key insight is that, in
some cases, the intersection of solution constraint manifolds is
itself a manifold that can be identified using only the individual
constraint manifolds. By understanding the topology of the
solution space, we can define a robust feasibility property that
characterizes a large class of problems for which sampling-
based planning methods can be successful.

The primary algorithmic contribution is the construction
of two sample-based planning algorithms that exploit the
factored, compositional structure of the solution space to
draw samples from a space in which solutions have positive
measure. These algorithms search in a combined space that in-

Fig. 1. Left: experiment 1. Right: experiment 3.

cludes the discrete structure (which high-level operations, such
as “pick” or “place” happen in which order) and parameters
(particular continuous parameters of the actions) of a solution.
Theoretically, these algorithms are probabilistically complete
when given sufficient samplers. Practically, they can solve
complex instances of task-and-motion planning problems.

II. RELATED WORK

Planning problems in which the goal is not just to move
the robot without collision but also to operate on the objects
in the world have been addressed from the earliest days of
motion planning to this day, for example [28, 27, 40, 2, 1, 33,
35, 36, 38, 17, 3, 23, 15, 10]. In recent years, there have been
a number of approaches to integrating discrete task planning
and continuous motion planning [5, 32, 21, 12, 13, 31, 7, 37],
aimed at increasing the capabilities of autonomous robots.

Hauser et al. [18] introduced a framework and algorithm for
probabilistically complete multi-modal motion planning. Vega-
Brown et al. [39] extended these ideas to optimal planning with
differential constraints.

Lagriffoul et al. [25, 26] interleave the search for a discrete
action sequence and the geometric parameters and focus on
limiting the amount of geometric backtracking. They generate
a set of approximate linear constraints imposed by a plan
skeleton under consideration, e.g., from grasp and placement
choices, and use linear programming to compute a valid
assignment or determine that one does not exist. Lozano-
Pérez and Kaelbling [29] take a similar approach but lever-
age constraint satisfaction problem (CSP) solvers to identify

satisfactory geometric parameters from discretized domains.
Srivastava et al. [34] integrate task and motion planning

by designing an interface allowing an off-the-shelf motion
planner to share geometric information with an off-the-shelf
task planner. Their approach first plans at the task-level and
then attempts to produce motion plans satisfying the discrete
actions. If an induced motion planning problem is infeasible,
the task-level planning repeats with new action preconditions
identifying the source of the infeasibility.

The FFRob algorithm of Garrett et al. [14, 16] is related
to the INCREMENTAL algorithm discussed in this paper; it
also involves sampling a fixed set of object poses and robot
configurations and then planning with them. An iterative
version of FFRob is probabilistically complete and exponen-
tially convergent [16]. However, the approach in FFRob is
specialized to a particular class of pick-and-place problems
and does not use the planning to guide the sampling.

Dantam et al. [6] formulate task and motion planning as a
satisfiability modulo theories (SMT) problem. They use an
incremental constraint solver to add motion constraints to
the task-level logical formula when a candidate task plan is
found. Upon failure, they iteratively increase the plan depth
and motion planning timeouts resulting in a probabilistically
complete algorithm for fixed placements and grasps.

III. FACTORED TRANSITION SYSTEM

We begin by defining a general class of models for con-
trollable discrete-time continuous-space dynamical systems. It
is possible to address many continuous-time problems in this
framework, as long as they can be solved with a finite sequence
of continuous control inputs. A discrete-time transition system
S = 〈X ,U , T 〉 is defined by a set of states (state-space) X ,
set of controls (control-space) U , and a transition relation
T ⊆ X × U × X . A problem P = 〈x0, X∗,S〉 is an initial
state x0 ⊆ X , a set of goal states X∗ ⊆ X , and a transition
system S . A plan for a problem P is finite sequence of k
control inputs (u1, ..., uk) and k states (x1, ..., xk) such that
(xi−1, ui, xi) ∈ T for i ∈ {1, ..., k} and xk ∈ X∗.

A. Factoring

We consider factored transition systems with state-spaces
X̄ = X1 × ... × Xm and control-spaces Ū = U1 × ... × Un
that are defined by m state variables x̄ = (x1, ..., xm) and n
control variables ū = (u1, ..., un). The transition relation is
a subset of the transition parameter space T ⊆ X̄ × Ū × X̄
Valid transitions are (x1, ..., xm, u1, ..., un, x

′
1, ..., x

′
m) ∈ T .

To simplify notation, we will generically refer to each xv ,
uv , or x′v in a transition as a parameter zp where p ∈ Θ =
{1, ..., 2m+ n} indexes the entire sequence of variables. For
a subset of parameter indices P = (p1, ..., pk), define z̄P =
(zp1 , ..., zpk) ∈ Z̄P to be the combined values and Z̄P =
Zp1 × ...×Zpk to be the combined domain of the parameters.

Many transition relations are hybrid, in that there is a
discrete choice between different types of operation, each of
which has a different continuous constraint on the relevant

parameters. For example, a pick-and-place problem has tran-
sitions corresponding to a robot moving its base, picking each
object, and placing each object. In order to expose the discrete
structure, we decompose the transition relation T =

⋃α
a=1 Ta

into the union of α smaller transition relations Ta.
A transition relation Ta often is the intersection of several

constraints on a subset of the transition parameters. A con-
straint is a pair C = 〈P,R〉 where P ⊆ Θ is a subset of
parameters and R ⊆ Z̄P is a relation on these parameters.
For instance, pick transitions involve constraints that the end-
effector initially is empty, the target object is placed stably,
the robot’s configuration forms a kinematic solution with
the placement, and the end-effector ultimately is holding the
object. A constraint decomposition is particularly useful when
|P | << |Θ|; i.e., each individual constraint has low arity. Let
Ĉ = {z̄ ∈ Z̄ | z̄P ∈ R} be the extended form of the constraint.

We represent each Ta as a conjunctive clause of β con-
straints Ca = {C1, ..., Cβ} where Ta =

⋂
C∈Ca Ĉ. Within a

clause, there are implicit domain constraints on each parameter
zp of the form C = 〈(p),Zp〉. The transition relation T is the
union of α conjunctive constraint clauses {C1, ..., Cα}.

Factoring the transition relation can expose constraints that
have a simple equality form. Equality constraints are important
because they transparently reduce the dimensionality of the
transition parameter space. A constant equality constraint C =
〈(p), {κ}〉 (denoted zp = κ) indicates that parameter p has
value κ. A pairwise equality constraint C = 〈(p, p′), {(z, z) |
z ∈ Zp ∩ Zp′}〉 (denoted zp = zp′) indicates that parameters
p, p′ have the same value.

For many high-dimensional systems, the transition relation
is sparse, meaning its transitions only alter a small number of
the state variables at a time. Sparse transition systems have
transition relations where each conjunctive clause contains
pairwise equality constraints xv = x′v for most variables v.
Intuitively, most actions do not change many state variables.

The initial state x̄0 and set of goal states X̄∗ can be specified
using conjunctive clauses C0 and C∗ defined solely on state
variables. Because x̄0 is a single state, its clause is composed
of just constant equality constraints.

B. Constraint Satisfaction

Planning can be thought of as a combined search over
discrete clauses and hybrid parameter values. For each action
there is a choice of a discrete operation type and of continuous
parameters. To select a type is to select a clause from the
transition relation; to select its parameters is to select the
x, u, x′ values. A finite sequence of clauses ~a = (a1, ..., ak) is
a plan skeleton [29]. For example, solutions to pick-and-place
problems are sequences of move, pick, move-while-holding,
and place clauses involving the same object.

The plan parameter space for a plan skeleton ~a =
(a1, ..., ak) is an alternating sequence of states and actions
(x̄0, ū1, x̄1, ..., ūk, x̄k) = z̄ ∈ X̄ × (Ū × X̄)k = Z̄ . Again, we
generically refer to each variable in the plan parameter space
as zp where now p ∈ Θ = {1, ...,m + k(m + n)}. When
applying the constraints for clause at, plan parameter xt−1 is

transition parameter x and likewise xt is x′. Solutions using
this skeleton must satisfy a single conjunctive clause of all
plan-wide constraints C~a = C0 ∩ Ca1 ∩ ... ∩ Cak ∩ C∗.

Given a plan skeleton, finding a set of valid parameter values
is a classical constraint satisfaction problem. The joint set
of constraints forms a constraint network, a bipartite graph
between constraints and parameters [8, 26]. An edge between
a constraint node Catb and state or control node xt−1v , utv , or xtv
is defined if and only if v ∈ P atb . Figure 2 displays a general
constraint network. Many transition systems in practice will
have constraint networks with many fewer edges because each
P atb contains only a small number of parameters.

x1
1

x1
m

x0
1

x0
m Ca1

�a1

xk�1
m

xk
1

xk
m

u1
1 u1

n uk
nuk

1

Cak

�ak

Ca1
1 Cak

1
xk�1

1

a1 ak

Ca1
CakC0 C⇤

C0
1

C0
�0

C⇤
�⇤

C⇤
1

Fig. 2. A constraint network for a generic plan skeleton ~a = (a1, ..., ak).

IV. EXAMPLE DOMAINS

We are interested in a general algorithmic framework that
can be applied in many domains. A domain D = {P, ...}
is loosely defined as a set of problems that share the same
constraint forms and variable forms. Consider the following
two domains and their representation as factored transition sys-
tems. We begin with a motion planning example to illustrate
the approach, and then describe a pick-and-place problem.

A. Motion Planning

Many motion planning problems may be defined by a
bounded configuration space Q ⊂ Rd and collision-free con-
figuration space Qfree ⊆ Q. A motion between configurations
q and q′ is valid if the straight-line trajectory between them is
collision free: CFree = {(q, q′) ∈ Q2 | ∀t ∈ [0, 1]. tx+ (1−
t)x′ ∈ Qfree}. Problems are given by an initial configuration
q0 ∈ Q and a goal configuration q∗ ∈ Q.

Motion planning can be modeled as a transition system
with state-space X̄ = Q and action-space Ū = ∅. The
transition relation has a single clause {CStep}. Clause CStep =
{〈(q, q′),CFree〉} is a single collision-free constraint. The
transition relation does not exhibit any useful factoring. The
initial clause is C0 = {x̄ = q0} and the goal clause is
C∗ = {x̄ = q∗}. Figure 3 displays the constraint network
for a plan skeleton of length k. Because the transition relation
has a single clause, all solutions have this form. Dark gray
parameters, such as the initial and final configurations, are
constrained by constant equality. Free parameters are yellow.

q0 q1 qk�1 q⇤CFree CFree

Fig. 3. Motion planning plan skeleton of length k.

B. Pick-and-Place Planning

A pick-and-place domain is defined by a single robot with
configuration space Q ⊂ Rd, a finite set of moveable objects
O, a set of stable placement poses S tableo ⊂ SE(3) for
each object o ∈ O, and a set of Graspo ⊂ SE(3) relative
grasp poses for each object o ∈ O. The robot has a single
manipulator that is able to rigidly attach itself to a single
object at a time. The robot can execute trajectories τ specified
by a sequence of configurations that respect joint limits and
avoid fixed obstacles. We will assume that each trajectory also
encodes the grasp of the object that the robot may be holding.

This domain can be modeled as a transition system with
state-space X̄ = Q×SE(3)|O|×({None}∪O). States are x̄ =
(q, p1, ..., p|O|, h). Let h ∈ O indicate that the robot is holding
object h and h = None indicate that the robot’s gripper is
empty. When h = o, the pose po of object o is relative to
the end-effector. Otherwise, po is relative to the environment.
Controls are trajectories τ . The transition relation has 1+3|O|
clauses {CMove} ∪ {CoMoveH , CoPick, CoPlace | o ∈ O} because
pick, move-while-holding, and place depend on o.

• CMove = {〈(q, τ, q′),Motion〉, h = None, h′ = None}∪
{po′ = p′o′ , 〈(τ, po′), CFreeo′〉 | o′ ∈ O}

• CoMoveH = {h = o, h′ = o, 〈(q, τ, q′, po),MotionHi〉} ∪
{po′ = p′o′ , 〈(τ, po′), CFreeo′〉 | o′ ∈ O, o 6= o′}

• CoPick = {〈(po), Stableo〉, 〈(p′o), Graspo〉, q = q′, h =
None, h′ = o, 〈(p′o, po, q),Kino〉} ∪ {po′ = p′o′ | o′ ∈
O, o 6= o′}

• CoP lace = {〈(po), Graspo〉, 〈(p′o), Stableo〉, q = q′, h =
o, h′ = None, 〈(po, p′o, q),Kino〉} ∪ {po′ = p′o′ | o′ ∈
O, o 6= o′}

Motion is the set of legal start configurations, trajectories,
and end configurations. MotionHo is the set of legal start
configurations, trajectories, end configurations, and grasps
when holding object o. CFreeo is the set of collision-free
poses and trajectories with respect to object o. Kino is the set
of kinematic solutions involving object o for a grasp, pose,
and configuration.

Consider a pick-and-place problem with two movable ob-
jects A,B: initial state x̄0 = (q0, p0A, p

0
B ,None) is fully spec-

ified using equality constraints and X̄∗ is given as constraints
{〈(pA) ∈ Region〉, q = q∗} where Region ⊆ S tableA is a
region of poses. Figure 4 displays the constraint network for
a plan skeleton that manipulates A and moves the robot to q∗.
Thick edges indicate pairwise equality constraints. Light gray
parameters are transitively fixed by pairwise equality. Despite
having 29 total parameters, only 7 are free parameters. This
highlights the strong impact of equality constraints on the
dimensionality of the plan parameter space.

0 1 2 3

Rob

Hold

Obj A

Obj B

Traj

4 5

q0
M otion M otionH

CFree

A

Grasp

p0
A

M otion

CFree CFree CFree

CFree

RegionGrasp

S tableS table

K in K in

p0
B p0

B p0
B p0

B p0
B p0

B

p0
A

M oveHPick M oveM ove P lace

ANone None None None

None None⌧1 ⌧3 ⌧5

q1 q3q1 q3

p2
A p4

A p4
Ap2

A

q⇤

Fig. 4. Pick-and-place constraint network.

V. SAMPLE-BASED PLANNING

Constraints involving continuous variables are generally un-
countably infinite sets, which are often difficult to characterize
and reason with explicitly. Instead, each constraint can be
described using a blackbox, implicit test. A test for constraint
C = 〈P,R〉 is a boolean-valued function fC : Z̄P → {0, 1}
where fC(z̄P) = [z̄P ∈ R]. Implicit representations are
used in sample-based motion planning, where they replace
explicit representations of complicated robot and environment
geometries with collision-checking procedures.

In order to use tests, we need to produce potentially satis-
fying values for z̄P = (zp1 , ..., zpk) by sampling Zp1 , ...,Zpk .
Thus we still require an explicit representation for X1, ...,Xm
and U1, ...,Un; however, these are typically less difficult
to characterize. We will assume X1, ...,Xm, U1, ...,Un are
each subsets of a bounded manifold. This strategy of sam-
pling variable domains and testing constraints is the basis
of sample-based planning [22]. These methods draw values
from X1, ...,Xm and U1, ...,Un using deterministic or random
samplers for each space and test which combinations of
sampled values satisfy required constraints.

Sample-based techniques are usually not complete over
all problem instances. First, they cannot generally identify
and terminate on infeasible instances. Second, they are often
unable to find solutions to instances that require identifying
values from a set that has very small or even zero measure in
the space from which samples are being drawn (this is referred
to as the “narrow passage” problem in motion planning).
Thus, sample-based algorithms are typically only complete
over robustly feasibly problems. A problem is robustly feasible
if there exists a plan skeleton ~a such that µ(

⋂
C∈C~a Ĉ) > 0

where µ is a product measure on the plan-parameter space Z̄ .

A. Dimensionality-reducing constraints

Some domains involve constraints that only admit a set
of values on a lower dimensional subset of its parameter
space. A dimensionality-reducing constraint C is one in which
µ(Ĉ) = 0 for all problems in the domain. Consider the S table
constraint. The set of satisfying values lies on a 3-dimensional
manifold. By our current definition, all plans involving this
constraint are not robustly feasible. When a problem involves
dimensionality-reducing constraints, we have no choice but
to sample at their intersection. This, in general, requires an

explicit characterization of their intersection, which we may
not have. Moreover, the number of dimensionality-reducing
constraint combinations can be unbounded. However, for some
domains, we can produce this intersection automatically using
explicit characterizations for only a few spaces.

bC1
bC2

bC3
bC1 \ bC2 \ bC3

x

y

x

y

x

y

x

y

Fig. 5. Intersection of two dimensionality-reducing constraints.

We motivate these ideas with an example. Consider a plan
skeleton ~a with parameters (x, y) ∈ Z̄ = [−2,+2]2 and
constraints C~a = {C1, C2, C3} where C1 = 〈(y), {−1, 0, 1}〉,
C2 = 〈(x, y), {(x, y) | x+ y = 0}〉, and C3 = 〈(x), {x | x ≥
0}〉. The set of solutions Ĉ1 ∩ Ĉ2 ∩ Ĉ3 = {(1,−1), (0, 0)}
is 0-dimensional while the parameter space is 2-dimensional.
This is because C1 and C2 are both dimensionality-reducing
constraints. A uniform sampling strategy where X,Y ∼
Uniform(−2,+2) has zero probability of producing a solution.
To solve this problem using a sampling-based approach, we
must sample from Ĉ1∩ Ĉ2. Suppose we are unable to analyti-
cally compute Ĉ1∩Ĉ2, but we do have explicit representations
of C1 and C2 independently. In particular, suppose we know
C2 conditioned on values of y, C2(y) = 〈(x), {−y}〉. Now, we
can characterize Ĉ1 ∩ Ĉ2 = {(x, y) | y ∈ R1, x ∈ R2(y)} =
{(1,−1), (0, 0), (−1, 1)}. With respect to a counting measure
on this discrete space, Ĉ1 ∩ Ĉ2 ∩ Ĉ3 has positive measure.
This not only gives a representation for the intersection but
also suggests the following way to sample the intersection:
Y ∼ Uniform({−1, 0,+1}), X = −Y , and reject (X,Y)
that does not satisfy C3. This strategy is not effective for all
combinations of dimensionality-reducing constraints. Suppose
that instead C1 = 〈(x, y), {(x, y) | x− y = 0}〉. Because both
constraints involve x and y, we are unable to condition on the
value of one parameter to sample the other.

B. Intersection of Manifolds

In this section, we develop the topological tools to gener-
alize the previous example. We start by defining conditional
constraints, a binary partition of P for a constraint 〈P,R〉.
Definition 1. A conditional constraint 〈I,O,R〉 is given by a
set of input parameters I , a set of output parameters O, and
a relation R defined on I ∪O where I ∩O = ∅.

In our analysis, we will assume all constraints are constraint
manifolds. A constraint manifold C = 〈P,M〉 is a constraint
where the relation is a manifold M defined by a finite set
of charts. We will relate constraint manifolds back to con-
straints involving arbitrary relations in the subsequent section.
The following lemma indicates that all conditional constraint
manifolds are also manifolds when parameterized with values

for their input parameters. We give all proofs in supplemen-
tary material available here: http://web.mit.edu/caelan/www/
publications/rss2017.pdf. Let projP (Z̄) = {Z̄P | z̄ ∈ Z̄} be a
set-theoretic projection of Z̄ onto parameters P .

Lemma 1. For any conditional constraint 〈I,O,M〉 where M
is a d-dimensional manifold and for all x ∈ projI(M), the
set proj−1I (x) = {z̄ ∈M | z̄I = x} is a (d−dim projI(M))-
dimensional manifold.

Let S =
⋂n
i=1 M̂i be the intersection of constraint man-

ifolds M = {〈P1,M1, 〉, ..., 〈Pn,Mn〉}. S ⊆ Z̄ is defined
on parameters Θ =

⋃n
i=1 Pi. We now present the main

theorem which gives a sufficient condition for when S is a
manifold. This theorem is useful because it identifies when
the intersection of several possibly dimensionality-reducing
constraints is a space that we can easily characterize.

Theorem 1. S is a manifold of dimension∑n
i=1

(
dimMi − dim projIi(Mi)

)
if there exists an

ordering and conditioning of M into constraint manifolds
(〈I1, O1,M1〉, ..., 〈In, On,Mn〉) such that

⋃n
i=1Oi = Θ and

∀i ∈ {1, ..., n}:
1) ∀j ∈ {1, ..., n} \ {i}. Oi ∩Oj = ∅ ,
2) Ii ⊆

⋃i−1
j=1Oj

3) dim projIi
(⋂i

j=1Mj

)
= dim projIi

(⋂i−1
j=1Mj

)

We will call S a sample-space when theorem 1 holds.
From condition 1, each parameter must be the output of
exactly one conditional constraint manifold. From condition
2, each input parameter must be an output parameter for some
conditional constraint manifold earlier in the sequence. And
from condition 3, the input parameter space projIi(Mi) must
not reduce the dimensionality of the space. A sufficient and
more direct criterion for condition 3 is that the input parameter
space has full dimensionality.

Lemma 2. If dim projIi(Mi) = dim Z̄Ii , then
dim projIi

(⋂i
j=1Mj

)
= dim projIi

(⋂i−1
j=1Mj

)

Theorem 1 can be understood graphically using sampling
networks. A sampling network is an acyclic orientation of
a constraint network defined on constraint manifolds M in
which each parameter node has exactly one incoming edge.
Directed edges go from input parameters to constraints or
constraints to output parameters. Each parameter is the output
of exactly one constraint. Additionally, the graph is acyclic.

C. Robustness

When S is a sample-space, we can define a measure µS on
it. Let µS be the uniform measure on the Euclidean codomain
of S. Now we can provide a more general definition of robust
feasibility. We will define robustness properties with respect to
a set of constraint manifoldsM. This will allow us to analyze
the set of solutions in a lower dimensional space where it may
have nonzero measure.

Definition 2. A set of constraints C is robustly sat-
isfiable with respect to M if for some subset of

{〈P1,M1, 〉, ..., 〈Pn,Mn〉} ⊆ M, their intersection S =⋂n
i=1 M̂i is a sample-space and µS(S ∩⋂C∈C Ĉ) > 0.

Definition 3. A factored transition problem P is robustly
feasible with respect to M if there exists a plan skeleton ~a
such that C~a is robustly satisfiable with respect to M.

We still need to identify an appropriate set of constraint
manifoldsM for a domain. These are spaces within a domain
for which we have an explicit representation. In particular,
useful constraint manifolds are those that not only contain
the low-dimensional intersection of one or more constraints
but also have equivalent dimensionality. Thus, constraint
manifolds can be thought of as a known, true space that
a constraint resides in. More formally stated, a constraint
manifold 〈P,M〉 is useful for a set of constraints {C1, ..., Ck}
when

⋂k
i=1 Ĉi ⊆M and for all other manifolds M ′ such that⋂k

i=1 Ĉi ⊆M ′,dimM ≤ dimM ′.
Motion planning does not involve any dimensionality-

reducing constraints. Thus, the configuration space itself is
the only appropriate constraint manifold M = {〈(q),Q〉}.
In pick-and-place problems, Stable , Region , Grasp, Kin ,
Motion , and MotionH are all individually dimensionality-
reducing constraints. Fortunately, we generally understand
explicit representations of these sets barring collisions with
fixed obstacles. In the subsequent section, we will show that
these constraint manifolds are of sufficient dimension for many
problems to be robustly feasible.

D. Conditional Samplers
Now that we have identified spaces that arise from

dimensionality-reducing constraints, we can design samplers
to draw values from these spaces. Our treatment of samplers
will mirror the treatment of conditional constraints.

Definition 4. A conditional sampler ψ is a function from a
set of input values z̄I for input parameters I to a sampler.
The sampler generates a sequence of output values ψ(z̄I) for
output parameters O using SAMPLE(ψ(z̄I)).

We frequently design conditional samplers to intentionally
draw values from conditional constraints. A useful conditional
sampler for a kinematic constraint 〈(g, q, p),Kin〉 has input
parameters I = (g, p) and output parameters O = (q). Condi-
tional samplers can directly sample conditional constraints by
performing rejection sampling on the conditional constraint
manifold. For Kin , SAMPLE performs inverse kinematics,
producing configurations q that have end-effector transform
g−1p. For a 7 degree-of-freedom manipulator in SE(3), this
would sample from a 1-dimensional manifold.

A conditional sampler must generally produce values cov-
ering the constraint to allow completeness across a domain. In
motion planning, a traditional sampler is dense with respect
a topological space Z if the topological closure of its output
sequence is Z. We extend this idea to conditional samplers.

Definition 5. A conditional sampler ψ is dense with respect
to a conditional constraint 〈I,O,R〉 if ∀z̄I ∈ projI(R), ψ(zI)
is dense in projO(proj−1I (z̄I)).

http://web.mit.edu/caelan/www/publications/rss2017.pdf
http://web.mit.edu/caelan/www/publications/rss2017.pdf

Like conditional constraints, conditional samplers can be
composed in a sample sequence ~ψ = (ψ1, ..., ψk) to produce
a vector of values for several parameters jointly. A well-
formed sample sequence for a set of parameters Θ satisfies
Θ =

⋃n
j=1Oj as well as conditions 1 and 2 from theorem 1.

We are interested in identifying combinations of conditional
samplers that will provably produce a solution for robustly
feasible problems.

Definition 6. A set of conditional samplers Ψ = {ψ1, ..., ψs}
is sufficient for a robustly satisfiable plan skeleton ~a with
respect to M if there exists a sample sequence ~ψ ⊆ Ψ
that with probability one samples a parameter assignment
satisfying C~a within a finite number of calls to SAMPLE.

Definition 7. Ψ is sufficient for a domain D with respect to
M if for all robustly feasible P ∈ D, there exists a robustly
satisfiable plan skeleton ~a for which Ψ is sufficient.

The following lemma indicates that dense conditional sam-
plers for the appropriate conditional constraints will result in
a sufficient collection of samplers.

Lemma 3. A set of conditional samplers Ψ is sufficient
for a robustly satisfiable plan skeleton ~a if for condi-
tional constraint manifolds (〈I1, O1,M1〉, ..., 〈In, On,Mn〉)
satisfying theorem 1 and containing conditional constraints
(〈I1, O1, R1〉, ..., 〈In, On, Rn〉), ∀i ∈ {1, ..., n}, ∃ψi ∈ Ψ that
is dense with respect to 〈Ii, Oi, Ri〉.

VI. EXAMPLE DOMAINS REVISITED

Figure 6 shows a sampling network for the motion planning
constraint network in figure 3. The green constraints are
implicit domain constraints. A conditional sampler that has
no inputs and is dense on Q is sufficient for this domain.

q1 qk�1

(q0, q1),CFree (qk�1, q⇤),CFree

Q Q
Fig. 6. Motion planning sampling network for constraint network in figure 3.

Figure 7 shows a sampling network for the pick-and-
place constraint network in figure 4. The sampling net-
work satisfies the graph theoretic conditions 1 and 2 in
theorem 1. Additionally, each conditional constraint mani-
fold (in red) has full dimensionality in its input parameter
space. For Kin , a nonzero volume of poses and grasps
admit an inverse kinematic solution. The same holds for
Motion and MotionH but with respect to pairs of con-
figurations and grasp transforms. Thus, the following set
of conditional samplers is sufficient for this plan skeleton:
〈(), (p),Region ∩Stable〉, 〈(), (p), Grasp〉, 〈(g, p), (q),Kin〉,
〈(q, q′), (τ),Motion〉, 〈(q, q′, g), (τ),MotionH 〉.

⌧1 ⌧3 ⌧5

p2
A p4

A

q1 q3

(p0
B , ⌧1),CFree (p0

A, ⌧1),CFree (p0
B , ⌧3),CFree (p0

B , ⌧5),CFree

(p2
A),Grasp (p2

A),Region \ S table

(p2
A, q3, p4

A),K in(p1
A, q1, p0

A),K in

(q0, ⌧1, q1),M otion (q3, ⌧5, q⇤),M otion(q1, ⌧3, q3, p1
A),M otionH

(p4
A, ⌧5),CFree

Fig. 7. Pick-and-place sampling network for constraint network in figure 4.

This sampling network structure generalizes to all pick-and-
place problems with goal constraints on object poses and robot
configurations. Each new cycle introduces a new grasp param-
eter, pose parameter, two configuration parameters, and two
trajectory parameters. However, the only interaction with the
next cycle is through the beginning and ending configurations
which serve as the input parameters for the next move action.
Thus, this small set of conditional samplers is enough to solve
a large set of pick-and-place problems involving many objects.

VII. ALGORITHMS

We have shown that, given a plan skeleton and sampling
network, we can construct samplers that produce solutions.
However, the input for a factored planning problem is just a
transition system, initial set of states, and goal set of states.
Thus, algorithms must search over plan skeletons and sampler
sequences in order to produce solutions. Many skeletons will
not admit solutions due to constraints absent from the sample-
space, such as collision constraints, that are evaluated as tests.
Like in sample-based motion planning, we are interested in
identifying probabilistically complete algorithms.

Definition 8. An algorithm is probabilistically complete with
respect to D and M if for all robustly feasible P ∈ D, it will
return a plan in finite time with probability one.

We present algorithms that take, as a hyper-parameter input,
a set of conditional samplers Ψ for the domain. The algo-
rithms are therefore domain-independent because the problem-
specific knowledge is restricted to the constraints and sam-
plers. We will show that these algorithms are probabilistically
complete, given a set of sufficient conditional samplers Ψ. Our
Python implementation of the algorithms can be found here:
https://github.com/caelan/stripstream.

We give two algorithms, INCREMENTAL and FOCUSED.
Both algorithms share two common subroutines. First, SOLVE-
DISCRETE constructs and solves a discretized transition sys-
temffor problem P = 〈C0, C∗, {C1, ..., Cα}〉 given a set of
samples from each Xi and Ui. The procedure INSTANCES
produces the set of states and transitions formed from sam-
ples that also satisfy their respective conjunctive constraint
clauses C. As a hyper-parameter, SOLVE-DISCRETE requires
a blackbox search procedure SEARCH to find plans within

https://github.com/caelan/stripstream

the discretized problem. This can be implemented using any
sound and complete search algorithm such as breadth-first
search (BFS). Artificial intelligence planning algorithms are
much more efficient than classical graph search algorithms for
high-dimensional, factored problems. Using generic heuristics,
they can frequently avoid exploring most of the discrete state-
space. Therefore, our implementation automatically compiles
to Planning Domain Definition Language (PDDL) [30] in
order to use the efficient FastDownward planning system [19].

SOLVE-DISCRETE(〈C0, C∗, {C1, ..., Cα}〉, samples | SEARCH):
1 initial = INSTANCES(C0, samples); goal = INSTANCES(C∗, samples)
2 transitions = {INSTANCES(C, samples) for C in {C1, ..., Cα}}
3 return SEARCH(initial , goal , transitions)

PROCESS(queue, samples , CALL, blocked , k):
1 processed = ∅
2 while len(queue) 6= 0 and len(processed) < k :
3 ψ(inps) = POP(queue)
4 samples += CALL(ψ(inps)); processed += {ψ(inps)}
5 for ψ′(inps′) in reduce(INSTANCES(ψ′, samples) for ψ′ in Ψ)
6 if ψ′(inps′) not in (queue + processed + blocked):
7 PUSH(queue, ψ′(inps′))
8 return processed

Second, PROCESS iteratively calls sampler instances, con-
ditional samplers Ψ conditioned on particular values. PRO-
CESS’s inputs are a queue of samplers, a set of samples ,
and three additional parameters that are used differently by
INCREMENTAL and FOCUSED. CALL is a procedure that takes
as input a sampler instance and returns a set of values, blocked
is a set of samplers which are not to be processed, and
k is the maximum number of iterations. On each iteration,
PROCESS pops a sampler instance ψ(inps) off of queue , adds
the result of CALL to samples , and adds ψ(inps) to processed ,
a set of processed samplers. New sampler instances ψ′(inps ′)
resulting from the produced values are added to queue . After
k iterations or queue is empty, PROCESS returns processed .

A. Incremental Algorithm
INCREMENTAL(P | Ψ, SEARCH):
1 samples = GET-SAMPLES(P)
2 queue = reduce(INSTANCES(ψ, samples) for ψ in Ψ)
3 while True:
4 processed = PROCESS(queue, samples , ∅ | SAMPLE, len(queue))
5 plan = SOLVE-DISCRETE(P , samples , SEARCH)
6 if plan 6= None: return plan
7 PUSH(queue, processed)

The INCREMENTAL algorithm alternates between generating
samples and checking whether the current set of samples
admits a solution. It can be seen as a generalization of the
probabilistic roadmap (PRM) [22] for motion planning and the
FFRob algorithm for task and motion planning [16]. INCRE-
MENTAL maintains a queue of samplers. On each iteration,
INCREMENTAL calls the PROCESS subroutine to sample at
most len(queue) samplers using the function SAMPLE. It calls
SOLVE-DISCRETE to attempt to find a plan using the current
set of samples . If SOLVE-DISCRETE is successful, plan is re-
turned. Otherwise, INCREMENTAL adds the processed sampler
instances back to queue to be used again on later iterations.

Theorem 2. INCREMENTAL is probabilistically complete for

a domain given a sufficient set of conditional samplers.

Because INCREMENTAL creates sampler instances exhaus-
tively, it will produce many unnecessary samples.

B. Focused Algorithm

The FOCUSED algorithm uses lazy samples as placeholders
for actual concrete sample values. Lazy samples are similar
in spirit to symbolic references [34]. The lazy samples are
optimistically assumed to satisfy constraints with concrete
samples and other lazy samples. This allows SOLVE-DISCRETE
to reason about plan skeletons without some concrete param-
eters. After finding a plan, FOCUSED calls samplers that can
produce values for the lazy samples used. This algorithm is
related to a lazy PRM [4, 9], which defers collision checks
until a path is found. However, FOCUSED defers generation of
entire samples until an optimistic plan is found.

LAZY-CALL(ψ(inps)):
1 return [LAZYSAMPLE(ψ(inps), out) for out in OUTPUTS(ψ)]

On each iteration, the FOCUSED algorithm creates a new
queue and calls PROCESS to produce mixed samples . It
passes the procedure LAZY-CALL rather than SAMPLE in to
PROCESS. For each output out of ψ, LAZY-CALL creates a
unique object for the combination of ψ, inps , and out . The
inputs inp may be lazy samples themselves. In order to avoid
producing an infinite number of lazy samples, out becomes
shared across sampler inputs after a fixed depth.

RETRACE(sample):
1 if not IS-LAZY(sample): return ∅
2 ψ(inps) = GET-SAMPLER(sample)
3 return reduce(RETRACE(inp) for inp in inps) + {ψ(inps)}

FOCUSED(P | Ψ, SEARCH):
1 samples = GET-SAMPLES(P); new samples = ∅; called = ∅
2 while True:
3 mixed samples = COPY(samples)
4 queue = reduce(INSTANCES(ψ, mixed samples) for ψ in Ψ)
5 PROCESS(queue, mixed samples , LAZY-CALL, called, ∞)
6 plan = SOLVE-DISCRETE(P , mixed samples | SEARCH)
7 if plan = None:
8 samples += new samples; new samples = ∅; called = ∅
9 continue

10 if GET-SAMPLES(plan) ⊆ samples: return plan
11 for ψ(inps) in reduce(RETRACE(s) for s in GET-SAMPLES(plan)):
12 if inps ⊆ samples:
13 new samples += SAMPLE(ψ, inps); called += {ψ(inps)}

SOLVE-DISCRETE performs its discrete search using
mixed samples , a mixed set of samples and lazy samples.
If SOLVE-DISCRETE returns a plan , FOCUSED first checks
whether it does not use any lazy samples, in which case it
returns plan . Otherwise, it calls RETRACE to extract the set
of sampler instances used to produce the lazy samples. For
each sampler instance ψ(inps) without lazy sample inputs,
FOCUSED draws a sample and adds it to new samples. To
ensure all relevant samplers are called, each sampler instance
is added to called after it is processed. This prevents these sam-
pler instances from constructing lazy samples within PROCESS.
Additionally, samples are added to new samples before they
are moved to samples to limit the growth in sampler instances.

Fig. 8. Total runtime of the algorithms over 5 trials per problem size. Left: experiment 1. Center: experiment 2. Right: experiment 3

When SOLVE-DISCRETE fails to find a plan, new samples are
added to samples , called is reset, and the process repeats. In
practice, to bias SEARCH to use few lazy samples, we add a
non-negative cost to each transition instance corresponding to
the number of lazy samples used.

Theorem 3. FOCUSED is probabilistically complete for a
domain given a sufficient set of conditional samplers.

VIII. EXPERIMENTS

We performed three scaling experiments on pick-and-place
problems. All experiments used the same factored transition
system and conditional samplers. The conditional samplers
for poses, grasps, inverse kinematics, and motion plans were
implemented using OpenRAVE [11]. All experiments consid-
ered five problem sizes, varying the number of objects. We
considered two FastDownward configurations for the INCRE-
MENTAL and FOCUSED algorithms: H uses the FastForward
heuristic [20] in a greedy search and No H does not. Both
configurations benefit from a compilation process that can
quickly detect some infeasible problems using admissible
heuristics. We performed five trials using randomly (with the
exception of experiment 2) generated problem instances for
each problem size. All trials were run on 2.8 GHz Intel Core
i7 processor with a 120 second time limit. The scatter plots
in figure 9 display the total runtime of each configuration per
trial. Timeouts are indicated by the omission of a trial.

Fig. 9. Left: experiment 2. Right: regrasp problem.

Experiment 1 in figure 9 is the “grid@tabletop” bench-
mark [24] where each object has a specified goal pose. The
initial placements are randomly generated. The table size
scales with the number of objects. Each object has a single

top-grasp. Focused - H solved all problem instances and
Incremental - H solved all but one (size=14) indicating that use
of a heuristic is necessary for problems with long-horizons.

Experiment 2 in figure 9 has the goal that a single green
object be placed in the green region. The green object is
obstructed by four red objects. The number of distracting red
objects on the right table is varied between 0 and 40. Each
object has four side-grasps. This experiment reflects many
real-world environments where the state-space is enormous but
many objects do not substantially affect a task. Both Focused
- No H and Focused - H solved all problem instances show-
ing that the FOCUSED algorithm is able to avoid producing
samples for objects until they are relevant to the task.

Experiment 3 in figure 1 has the goal that a single blue
object be moved to a different table. The blue object starts at
the center of the visible table, and the red objects are randomly
placed on the table. The table size scales with the number of
objects. Each object has four side-grasps. Focused - H solved
all instances and Focused - No H solved all but one (size=21).

We also performed five trials on the non-monotonic, regrasp
problem in figure 9. The goal constraints are that the green
object be at the green pose and the blue object remain at
its current pose. The robot must place the green object at an
intermediate pose to obtain a new grasp in order to insert
it in the thin, right cupboard. All configurations solved all
trials in less than 5 seconds. This indicates that the algorithms
can solve pick-and-place problems where even non-collision
constraints affect the plan skeleton of solutions.

IX. CONCLUSION

We introduced the idea of conditional constraints and sam-
plers. This allowed us to give a general definition of robust fea-
sibility for factored transition systems. We gave two general-
purpose algorithms that are probabilistically complete given
sufficient samplers. We demonstrated that these algorithms are
effective at solving challenging pick-and-place problems.

X. ACKNOWLEDGEMENTS

We acknowledge support from NSF grants 1122374,
1420927, and 1523767, ONR grant N00014-14-1-0486, and
ARO grant W911NF1410433. Any opinions, findings, and
conclusions or recommendations expressed are our own and
do not necessarily reflect the views of our sponsors.

REFERENCES

[1] R. Alami, J.-P. Laumond, and T. Siméon. Two ma-
nipulation planning algorithms. In Workshop on Algo-
rithmic Foundations of Robotics (WAFR), 1994. URL
http://dl.acm.org/citation.cfm?id=215085.

[2] Rachid Alami, Thierry Siméon, and Jean-Paul Laumond.
A geometrical approach to planning manipulation tasks.
the case of discrete placements and grasps. In Inter-
national Symposium of Robotic Research (ISRR), 1990.
URL http://dl.acm.org/citation.cfm?id=112736.

[3] Jennifer Barry, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. A hierarchical approach to manipula-
tion with diverse actions. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages
1799–1806. IEEE, 2013. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.365.1060.

[4] Robert Bohlin and Lydia E Kavraki. Path planning
using lazy PRM. In IEEE International Conference
on Robotics and Automation (ICRA), volume 1, pages
521–528. IEEE, 2000. URL http://ieeexplore.ieee.org/
document/844107/.

[5] Stephane Cambon, Rachid Alami, and Fabien Gravot.
A hybrid approach to intricate motion, manipulation
and task planning. International Journal of Robotics
Research (IJRR), 28, 2009. URL http://journals.sagepub.
com/doi/abs/10.1177/0278364908097884.

[6] Neil T. Dantam, Z. Kingston, Swarat Chaudhuri, and Ly-
dia E. Kavraki. Incremental task and motion planning: A
constraint-based approach. In Robotics: Science and Sys-
tems (RSS), 2016. URL http://www.roboticsproceedings.
org/rss12/p02.pdf.

[7] Lavidra de Silva, Amit Kumar Pandey, Mamoun Gharbi,
and Rachd Alami. Towards combining HTN planning
and geometric task planning. In RSS Workshop on
Combined Robot Motion Planning and AI Planning for
Practical Applications, 2013. URL https://arxiv.org/abs/
1307.1482.

[8] Rina Dechter. Constraint networks. Technical report,
Information and Computer Science, University of Cali-
fornia, Irvine, 1992. URL http://www.ics.uci.edu/∼csp/
r17-survey.pdf.

[9] Christopher M Dellin and Siddhartha S Srinivasa. A
unifying formalism for shortest path problems with ex-
pensive edge evaluations via lazy best-first search over
paths with edge selectors. International Conference
on Automated Planning and Scheduling (ICAPS), 2016.
URL https://arxiv.org/abs/1603.03490.

[10] Ashwin Deshpande, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. Decidability of semi-holonomic prehen-
sile task and motion planning. Workshop on Algo-
rithmic Foundations of Robotics (WAFR), 2016. URL
http://lis.csail.mit.edu/pubs/deshpande-WAFR16.pdf.

[11] Rosen Diankov and James Kuffner. Openrave:
A planning architecture for autonomous robotics.
Technical Report CMU-RI-TR-08-34, Robotics

Institute, Carnegie Mellon University, 2008.
URL https://pdfs.semanticscholar.org/c28d/
3dc33b629916a306cc58cbff05dcd632d42d.pdf.

[12] Christian Dornhege, Patrick Eyerich, Thomas Keller,
Sebastian Trüg, Michael Brenner, and Bernhard Nebel.
Semantic attachments for domain-independent planning
systems. In International Conference on Automated
Planning and Scheduling (ICAPS), pages 114–121.
AAAI Press, 2009. URL https://www.aaai.org/ocs/index.
php/ICAPS/ICAPS09/paper/viewPaper/754.

[13] Christian Dornhege, Andreas Hertle, and Bernhard
Nebel. Lazy evaluation and subsumption caching for
search-based integrated task and motion planning. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) Workshop on AI-based robotics,
2013. URL https://robohow.eu/ media/workshops/
ai-based-robotics-iros-2013/paper08-final.pdf.

[14] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. FFRob: An efficient heuristic
for task and motion planning. In Workshop on
the Algorithmic Foundations of Robotics (WAFR),
2014. URL https://link.springer.com/chapter/10.1007%
2F978-3-319-16595-0 11.

[15] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Backward-forward search for
manipulation planning. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2015.
URL http://lis.csail.mit.edu/pubs/garrett-iros15.pdf.

[16] Caelan Reed Garrett, Tomas Lozano-Perez, and
Leslie Pack Kaelbling. FFRob: Leveraging symbolic
planning for efficient task and motion planning.
arXiv preprint arXiv:1608.01335, 2016. URL
https://arxiv.org/abs/1608.01335.

[17] K. Hauser and J.C. Latombe. Integrating task and prm
motion planning: Dealing with many infeasible motion
planning queries. In International Conference on Auto-
mated Planning and Scheduling (ICAPS) Workshop on
Bridging the Gap between Task and Motion Planning,
2009.

[18] Kris Hauser and Victor Ng-Thow-Hing. Randomized
multi-modal motion planning for a humanoid robot ma-
nipulation task. International Journal of Robotics Re-
search (IJRR), 30(6):676–698, 2011. URL http://journals.
sagepub.com/doi/abs/10.1177/0278364910386985.

[19] Malte Helmert. The fast downward planning sys-
tem. Journal of Artificial Intelligence Research (JAIR),
26:191–246, 2006. URL http://www.jair.org/papers/
paper1705.html.

[20] Jörg Hoffmann and Bernhard Nebel. The FF plan-
ning system: Fast plan generation through heuristic
search. Journal Artificial Intelligence Research (JAIR),
14:253–302, 2001. URL http://dl.acm.org/citation.cfm?
id=1622404.

[21] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hi-
erarchical planning in the now. In IEEE International
Conference on Robotics and Automation (ICRA), 2011.

http://dl.acm.org/citation.cfm?id=215085
http://dl.acm.org/citation.cfm?id=112736
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.1060
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.365.1060
http://ieeexplore.ieee.org/document/844107/
http://ieeexplore.ieee.org/document/844107/
http://journals.sagepub.com/doi/abs/10.1177/0278364908097884
http://journals.sagepub.com/doi/abs/10.1177/0278364908097884
http://www.roboticsproceedings.org/rss12/p02.pdf
http://www.roboticsproceedings.org/rss12/p02.pdf
https://arxiv.org/abs/1307.1482
https://arxiv.org/abs/1307.1482
http://www.ics.uci.edu/~csp/r17-survey.pdf
http://www.ics.uci.edu/~csp/r17-survey.pdf
https://arxiv.org/abs/1603.03490
http://lis.csail.mit.edu/pubs/deshpande-WAFR16.pdf
https://pdfs.semanticscholar.org/c28d/3dc33b629916a306cc58cbff05dcd632d42d.pdf
https://pdfs.semanticscholar.org/c28d/3dc33b629916a306cc58cbff05dcd632d42d.pdf
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/viewPaper/754
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/viewPaper/754
https://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper08-final.pdf
https://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper08-final.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-16595-0_11
https://link.springer.com/chapter/10.1007%2F978-3-319-16595-0_11
http://lis.csail.mit.edu/pubs/garrett-iros15.pdf
https://arxiv.org/abs/1608.01335
http://journals.sagepub.com/doi/abs/10.1177/0278364910386985
http://journals.sagepub.com/doi/abs/10.1177/0278364910386985
http://www.jair.org/papers/paper1705.html
http://www.jair.org/papers/paper1705.html
http://dl.acm.org/citation.cfm?id=1622404
http://dl.acm.org/citation.cfm?id=1622404

URL http://ieeexplore.ieee.org/document/5980391/.
[22] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.

Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4):566–580, 1996.
URL http://ieeexplore.ieee.org/document/508439/.

[23] A. Krontiris and K. E. Bekris. Dealing with difficult
instances of object rearrangement. In Robotics: Sci-
ence and Systems (RSS), Rome, Italy, 07/2015 2015.
URL http://www.cs.rutgers.edu/∼kb572/pubs/Krontiris
Bekris rearrangement RSS2015.pdf.

[24] A. Krontiris and K. E. Bekris. Efficiently solving
general rearrangement tasks: A fast extension primitive
for an incremental sampling-based planner. In Interna-
tional Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 05/2016 2016. URL http://www.cs.
rutgers.edu/∼kb572/pubs/fast object rearrangement.pdf.

[25] Fabien Lagriffoul, Dimitar Dimitrov, Alessandro Saf-
fiotti, and Lars Karlsson. Constraint propagation on inter-
val bounds for dealing with geometric backtracking. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2012. URL http://ieeexplore.ieee.
org/document/6385972/.

[26] Fabien Lagriffoul, Dimitar Dimitrov, Julien Bidot,
Alessandro Saffiotti, and Lars Karlsson. Effi-
ciently combining task and motion planning us-
ing geometric constraints. International Journal of
Robotics Research (IJRR), page 0278364914545811,
2014. URL http://journals.sagepub.com/doi/abs/10.1177/
0278364914545811?journalCode=ijra.

[27] T. Lozano-Pérez, J. L. Jones, E. Mazer, P. A. O’Donnell,
W. E. L. Grimson, P. Tournassoud, and A. Lanusse.
Handey: A robot system that recognizes, plans, and ma-
nipulates. In IEEE International Conference on Robotics
and Automation (ICRA), 1987. URL http://ieeexplore.
ieee.org/document/1087847/.

[28] Tomás Lozano-Pérez. Automatic planning of manipulator
transfer movements. IEEE Transactions on Systems,
Man, and Cybernetics, 11:681–698, 1981. URL http:
//ieeexplore.ieee.org/document/4308589/.

[29] Tomás Lozano-Pérez and Leslie Pack Kaelbling. A
constraint-based method for solving sequential manip-
ulation planning problems. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 3684–3691. IEEE, 2014. URL http://lis.csail.mit.
edu/pubs/tlpk-iros14.pdf.

[30] Drew McDermott, Malik Ghallab, Adele Howe, Craig
Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld,
and David Wilkins. Pddl: The planning domain definition
language. Technical report, Yale Center for Computa-
tional Vision and Control, 1998. URL http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9941.

[31] Amit Kumar Pandey, Jean-Philippe Saut, Daniel Sido-
bre, and Rachid Alami. Towards planning human-
robot interactive manipulation tasks: Task dependent
and human oriented autonomous selection of grasp and

placement. In RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics, 2012. URL
http://ieeexplore.ieee.org/abstract/document/6290776/.

[32] Erion Plaku and Gregory Hager. Sampling-based motion
planning with symbolic, geometric, and differential con-
straints. In IEEE International Conference on Robotics
and Automation (ICRA), 2010. URL http://ieeexplore.
ieee.org/document/5509563/.

[33] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and
Anis Sahbani. Manipulation planning with probabilistic
roadmaps. International Journal of Robotics Research
(IJRR), 23(7-8):729–746, 2004. URL http://journals.
sagepub.com/doi/abs/10.1177/0278364904045471.

[34] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Ro-
han Chitnis, Stuart Russell, and Pieter Abbeel. Combined
task and motion planning through an extensible planner-
independent interface layer. In IEEE International Con-
ference on Robotics and Automation (ICRA), 2014. URL
http://ieeexplore.ieee.org/document/6906922/.

[35] Mike Stilman and James J. Kuffner. Planning among
movable obstacles with artificial constraints. In Workshop
on Algorithmic Foundations of Robotics (WAFR), 2006.

[36] Mike Stilman, Jan-Ulrich Schamburek, James J. Kuffner,
and Tamim Asfour. Manipulation planning among mov-
able obstacles. In IEEE International Conference on
Robotics and Automation (ICRA), 2007. URL http:
//ieeexplore.ieee.org/document/4209604/.

[37] Marc Toussaint. Logic-geometric programming: an
optimization-based approach to combined task and mo-
tion planning. In AAAI Conference on Artificial Intel-
ligence, pages 1930–1936. AAAI Press, 2015. URL
https://www.ijcai.org/Proceedings/15/Papers/274.pdf.

[38] Jur Van Den Berg, Mike Stilman, James Kuffner, Ming
Lin, and Dinesh Manocha. Path planning among movable
obstacles: a probabilistically complete approach. In
Algorithmic Foundation of Robotics VIII, pages 599–614.
Springer, 2009. URL https://link.springer.com/chapter/
10.1007%2F978-3-642-00312-7 37.

[39] William Vega-Brown and Nicholas Roy. Asymptotically
optimal planning under piecewise-analytic constraints. In
Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2016. URL http://www.wafr.org/papers/WAFR
2016 paper 11.pdf.

[40] Gordon T. Wilfong. Motion planning in the presence of
movable obstacles. In Symposium on Computational Ge-
ometry, pages 279–288, 1988. URL https://link.springer.
com/article/10.1007/BF01530890.

http://ieeexplore.ieee.org/document/5980391/
http://ieeexplore.ieee.org/document/508439/
http://www.cs.rutgers.edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf
http://www.cs.rutgers.edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf
http://www.cs.rutgers.edu/~kb572/pubs/fast_object_rearrangement.pdf
http://www.cs.rutgers.edu/~kb572/pubs/fast_object_rearrangement.pdf
http://ieeexplore.ieee.org/document/6385972/
http://ieeexplore.ieee.org/document/6385972/
http://journals.sagepub.com/doi/abs/10.1177/0278364914545811?journalCode=ijra
http://journals.sagepub.com/doi/abs/10.1177/0278364914545811?journalCode=ijra
http://ieeexplore.ieee.org/document/1087847/
http://ieeexplore.ieee.org/document/1087847/
http://ieeexplore.ieee.org/document/4308589/
http://ieeexplore.ieee.org/document/4308589/
http://lis.csail.mit.edu/pubs/tlpk-iros14.pdf
http://lis.csail.mit.edu/pubs/tlpk-iros14.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9941
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9941
http://ieeexplore.ieee.org/abstract/document/6290776/
http://ieeexplore.ieee.org/document/5509563/
http://ieeexplore.ieee.org/document/5509563/
http://journals.sagepub.com/doi/abs/10.1177/0278364904045471
http://journals.sagepub.com/doi/abs/10.1177/0278364904045471
http://ieeexplore.ieee.org/document/6906922/
http://ieeexplore.ieee.org/document/4209604/
http://ieeexplore.ieee.org/document/4209604/
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://link.springer.com/chapter/10.1007%2F978-3-642-00312-7_37
https://link.springer.com/chapter/10.1007%2F978-3-642-00312-7_37
http://www.wafr.org/papers/WAFR_2016_paper_11.pdf
http://www.wafr.org/papers/WAFR_2016_paper_11.pdf
https://link.springer.com/article/10.1007/BF01530890
https://link.springer.com/article/10.1007/BF01530890

	Introduction
	Related Work
	Factored Transition System
	Factoring
	Constraint Satisfaction

	Example Domains
	Motion Planning
	Pick-and-Place Planning

	Sample-Based Planning
	Dimensionality-reducing constraints
	Intersection of Manifolds
	Robustness
	Conditional Samplers

	Example Domains Revisited
	Algorithms
	Incremental Algorithm
	Focused Algorithm

	Experiments
	Conclusion
	Acknowledgements

