
Humanoid Manipulation Planning using Backward-Forward Search*

Michael X. Grey1, Caelan R. Garrett2,
C. Karen Liu1, Aaron D. Ames1, and Andrea L. Thomaz3

Abstract— This paper explores combining task and manip-
ulation planning for humanoid robots. Existing methods tend
to either take prohibitively long to compute for humanoids
or artificially limit the physical capabilities of the humanoid
platform by restricting the robot’s actions to predetermined
trajectories. We present a hybrid planning system which is able
to scale well for complex tasks without relying on predetermined
robot actions. Our system utilizes the hybrid backward-forward
planning algorithm for high-level task planning combined with
humanoid primitives for standing and walking motion planning.
These primitives are designed to be efficiently computable
during planning, despite the large amount of complexity present
in humanoid robots, while still informing the task planner of the
geometric constraints present in the problem. Our experiments
apply our method to simulated pick-and-place problems with
additional gate constraints impacting navigation using the
DRC-HUBO1 robot. Our system is able to solve puzzle-like
problems on a humanoid within a matter of minutes.

I. INTRODUCTION
The potential versatility of humanoid robots makes them

promising candidates for a broad variety of applications,
ranging from domestic assistance and commercial hospi-
tality to industrial labor and disaster relief. While modern
humanoids are still often teleoperated, we ultimately wish
for them to be able to autonomously perform these everyday
tasks with minimal instruction in order for them to be
maximally economical. To do this, humanoids must be able
to independently solve task and motion planning problems
wherein they determine not only the sequence of high-level
actions that will achieve their task but also the joint motions
that are necessary to perform it in the real world.

However, solving task and motion planning problems is
particularly challenging for humanoids due to their com-
plexity. Humanoid robots are high-dimensional systems with
low-dimensional constraint manifolds. This makes their con-
figuration spaces difficult to explore comprehensively and
thus their capabilities hard to fully utilize. Methods that
exhaustively search through their configuration spaces when
planning a manipulation are prohibitively slow. To circum-
vent this problem, many approaches preprogram a set of
manipulation trajectories that can be used, thus drastically

*This work was supported in part by DARPA grant D15AP00006, NSF
grants 1420927 and 1523767, ONR grant N00014-14-1-0486, and ARO
grant W911NF1410433

1Georgia Institute of Technology, Atlanta, GA 30332 USA
mxgrey@gatech.edu, karenliu@cc.gatech.edu,
ames@gatech.edu

2Computer Science and Artificial Intelligence Laboratory at Mas-
sachusetts Institute of Technology, Cambridge, MA 02139 USA
caelan@csail.mit.edu

3University of Texas at Austin, Austin, TX 78701 USA
athomaz@ece.utexas.edu

simplifying a humanoid’s domain. However, this is prob-
lematic in itself because it often discards a large amount
of manipulation capabilities that are needed to robustly
solve everyday problems. Additionally, the biped nature of
humanoids requires footstep planning which can be compu-
tationally expensive.

In this paper, we propose a system for solving humanoid
manipulation problems that balances this trade-off between
efficiency and completeness. Our system uses the hybrid
backward-forward (HBF) planning algorithm as a task-
planner along with humanoid manipulation primitives for
pick, place, move, and press actions. These primitives are
particularly designed to be efficient enough to sample many
times during the task-planning search while still powerful
enough to produce a wide range of robot behaviors. We
do not discretize the physical actions that are available to
the robot, but we also do not search strictly within the
valid configuration space of the robot. Instead, we com-
promise by searching through continuous subspaces of the
configuration—subspaces which are guaranteed to be reach-
able from the robot’s constraint manifold. This allows the
robot to reason abstractly about its task while guaranteeing
that its plan of action will be feasible.

We empirically evaluate this system on three complex
pick-and-place problems. In particular, the latter two prob-
lems involve gate obstacles that the robot must toggle in
order to walk throughout the environment. Our experiments
show that our humanoid samplers are able to quickly operate
while still faithfully representing the capabilities of the robot
allowing HBF to efficiently solve these problems.

A. Related Work

Due to the complexity of humanoid robots, their technical
challenges are usually decomposed into various independent
fields of study. For example, Navigation Among Movable
Obstacles (NAMO) [1] and footstep planning [2] are often
studied as separate problems, even though navigating around
and moving objects in an environment requires the robot to
perform footsteps. NAMO solvers typically avoid footstep
planning by projecting the problem onto a 2D grid and pro-
viding the robot with a discrete set of predetermined footstep
actions. While this approach may be fast and capable of
running online, it discards all of the more complex behaviors
that a humanoid may be able to utilize for accomplishing its
goals. For example: a humanoid may be able to crawl under
a heavy obstacle rather than move the obstacle out of the
way, but this would elude a NAMO planner which projects
the environment onto a planar grid.



Fig. 1. Example scenario: The robot must swap the blocks that are on
the tables. A “force field” gate blocks the robot’s path, and the robot must
press a switch to disable it.

On the other end of the spectrum are methods which search
through the full configuration space of the problem [3]. These
methods are complete and able to fully exploit the versatility
of the humanoid platform in theory. However, they suffer
from extremely long run times (minutes to hours) in static
environments. This is not likely to scale well if a task requires
the robot to alter its environment, such as moving an obstacle
out of the way of its goal.

Prior work on integrated task and motion planning mostly
focuses on standard mobile manipulators applied to pick-
and-place tasks [4], [5], [6]. These methods are able to
efficiently project the geometry and kinematics of pick-and-
place problems into a symbolic search which ultimately
produces a sequence of valid motion plans.

II. HBF ALGORITHM

HBF is an algorithm for solving high-dimensional plan-
ning problems in hybrid state spaces [6]. It uses an approx-
imate backward search to focus the sampling of successor
actions in forward, state space heuristic search. When previ-
ously applied to mobile manipulation problems using a PR2
robot, it was able to solve long-horizon planning problems
in around one minute.

In order to apply HBF to our humanoid manipulation prob-
lems, we must represent the abstract manipulation actions
the robot may perform (such as Pick and Move) and specify
samplers that produce instantiations of these actions as fully
parameterized manipulation primitives.

III. ACTION REPRESENTATION

Garrett et al. represent abstract actions such as Pick, Place,
Move, and MoveHolding as action templates, parameterized
sets of action constraints (con) and effects (eff) [6]. Our
representation of actions will be similar apart from two
differences. First, rather than strictly separate the motion
from the contact, we couple each Pick and Place action with
the standing trajectories used to pick or place the object.
Consequently, each Move and MoveHolding can then just be

used to express walking trajectories. Consider the following
Pick action as defined using the action template structure. Its
parameters are a standing robot configuration q, grasp robot
configuration q′, manipulated object label j, grasp transform
γ, approach trajectory τ1, and departure trajectory τ2. There
are implicit, permanent constraints on the parameters such
that τ1 is a valid trajectory from q to q′ as well as τ2 is a
valid trajectory from q′ to q while holding object oj with
grasp transform γ.
Pick(q, q′, j, γ, τ1, τ2):
con : r, h, oj = q,None,Pose(q′, γ)

oi ∈ collision-free-posesi(τ1) ∩
collision-free-poses-holdingi(τ2, j, γ) ∀i 6= j

eff : h, g, oj = j, γ,None
Notice that in its effects, instead of updating the value

of oj to its true pose, Pick assigns it None which indicates
that the oj is not placed. The true pose of the object can
still be derived from Pose(q, γ) using forward kinematics
when needed. As a consequence, our MoveHolding actions
now need not update oj because the pose of object j is
always implicitly available. Our Place actions are defined
using similar changes.

The motivation for this representational difference is to
be able to easily reconsider pick and place actions in the
planning process. Although the planner may not immediately
pursue an action sampled in the search, it may prove useful
later on. Because sampling the approach and departure
trajectories is particularly time-consuming for a humanoid
robot, it is advantageous to try to reuse as many previously
sampled actions as possible rather than always resample.

Additionally, we introduce the PressDown and PressRe-
lease actions for pressing buttons. In our experiments, we
explore problems involving “force fields” as obstacles which
constrain the movement of the robot (see Figure 1). While
the force fields cannot be manipulated directly themselves,
each force field is connected to button k which can toggle
the state of certain force fields m between a disabled value
fm = None and an enabled value fm = p0m where p0m
is the fixed initial pose of force field m. The buttons
themselves also have an on state bk = Active and an off
state bk = Inactive where PressDown activates the button
and PressRelease deactivates the buttons. Depending on the
“wiring” of buttons and force fields, activating a button may
enable, disable, or not affect a force field.

This description of a PressRelease action template resem-
bles the Pick template. A single trajectory τ is sufficient to
represent the move from standing robot configuration q to
press the button and return to q. Additionally, k is the label
for the button to be pressed. Releasing button k will disable
some force fields and enable other force fields. Note that
PressDown is defined similarly.
PressRelease(q, k, τ):

con : r, h, bk = q,None,Active
oi ∈ collision-free-posesi(τ) ∀i

eff : bk = Inactive
fm = None ∀m ∈ disable-force-fields(k)
fn = p0n ∀n ∈ enable-force-fields(k)



(a) Balanced Configuration (b) Unbalanced Configuration

Fig. 2. The green polygon is the “support polygon”. The blue dot in
2(a) represents the balanced ZMP while the red dot in 2(b) represents the
unbalanced ZMP.

IV. HUMANOID MANIPULATION PRIMITIVES

Now that we have identified the task-level action templates
that HBF will use, we need to produce samplers that can
efficiently produce instantiations of these Move, Pick, Place,
MoveHolding, PressRelease, and PressDown actions. This
requires developing whole body inverse kinematics solvers,
standing motion planners, and whole body motion planners
for humanoid robots. However, this is more challenging to
do for humanoid robots than standard mobile manipulators
for several reasons. First, humanoid robots tend to be much
higher dimensional. A one-armed robot manipulator on a
mobile platform tends to have 10-11 degrees of freedom.
Conversely, a humanoid platform tends to have anywhere
from 30-50 degrees of freedom. This larger dimensionality
makes it much more time consuming to perform standard
robotics procedures such as solving inverse kinematics. Sec-
ond, whereas mobile manipulators are only restricted by joint
limits and collision constraints, humanoid robots also have
to handle balance constraints and end effector constraints.
Finally, many standard mobile manipulators use a holonomic,
wheeled base while humanoid robots are bipedal, requiring
footstep planning.

We begin by describing how we incorporate the balance
and end-effector constraints in our manipulation primitives.

1) Balance Constraints: A common heuristic for ensuring
that a humanoid is balanced, is for its Zero Moment Point
(ZMP) [7] to remain underneath its “support polygon“ [8].
For simplification purposes, we assume quasi-static motion
while generating a plan. In other words, we assume the robot
is moving slowly enough that its ZMP lines up with the
downward projection of its center of mass. This allows us to
leave velocity out of the configuration space while planning.
An illustration of a balanced versus unbalanced configuration
can be seen in Figure 2. Our algorithm for finding balanced
configurations can be found in lines 20-24 of Algorithm 1.

2) End-Effector Constraints: A standard mobile manipu-
lator performing a one-handed grasping task only needs to
consider a 6-dimensional pose constraint for one end effector.
When a humanoid is generating a standing trajectory, it ad-
ditionally needs to consider a 6-dimensional pose constraint
for each foot. We express these end effector constraints as
Task Space Regions (TSR) [9]. For an end effector that is
fully constrained, we set all the boundary parameters to zero

(a) Start of a left-foot forward step (b) Dexterous manipulation task

Fig. 3. Visualizations of collision geometries (a) during walking and (b)
during manipulation. A “safe-zone” is given to the robot while walking to
ensure that it will be able to find a collision-free footstep plan along its
route. But this “safe-zone” is not used during manipulation, so the robot is
free to be dexterous.

Fig. 4. The route planning uses a 3D RRT: two dimensions for translation
and one dimension for yaw. Overlapping edges in the visualization are
an artifact of projecting away the yaw dimension. We treat the robot as
holonomic because it is capable of taking a step in any direction at any time.
This allows the RRT search to be unconstrained and therefore extremely fast.

(or ±ε, some small tolerance to help with convergence).

A. Route Planning

In order to sample Move and MoveHolding actions in
our representation, we need a way of producing walking
trajectories. Rigorously planning out footsteps tends to re-
quire a significant amount of computational time. In our
implementation, it takes on the order of thirty seconds
to one minute per call. HBF must produce a substantial
number of movement actions during its search as it moves
to manipulate objects from different states. Many of these
movement actions do not ultimately end up in the final
plan. Thus, it would be incredibly cumbersome to generate
full footstep trajectories during the planning process. At the
same time, totally ignoring the walking motion planning by
assuming a trajectory exists can result in a substantially
incomplete planner on problems which impose constraints
on the reachable walking configurations.

To address this, we simplify the walking problem by
turning it into a route finding problem. This allows us to
ignore the balancing and end effector constraints that are
required while generating a standing trajectory. All we are
left with is a standard collision-free path finding problem, so
we can employ traditional RRT-connect[10] in a 3D domain
(see Figure 4) for blazingly fast planning times.

However, there is a catch: The full motion that the robot
must go through during a walking cycle is not captured with



a standard three-dimensional RRT. There are also torso sway
and leg motion factors that must be taken into account. We do
this by constructing a collision geometry that approximates
the swept volume that the robot might move through during
an arbitrary walk cycle (see Figure 3). Performing collision
checks against this extended geometry guarantees that the
robot will be able to find a feasible footstep plan along
any path that it sweeps. Incorporating two translational
dimensions and the yaw dimension in the plan allows the
robot to make use of its sidestepping capabilities, which can
be useful for squeezing through tight spaces.

Since we know that the generated routes will allow for
feasible footstep plans, we can defer computing the foot-
steps until HBF produces a final plan. This saves us from
performing expensive footstep computations on subplans that
will never get used.

Multi-Query Star Roadmap: For an additional per-
formance boost, at the expense of completeness on some
problems, we experimented with a meta motion planning
roadmap called a star roadmap. The roadmap is a star graph
where the center is an arbitrarily chosen configuration q0
(such as the initial robot configuration). Each time a new
motion planning query q, q′ is made, if q or q′ is not already
contained in the star roadmap, a standard motion planner (i.e.
our RRT) computes trajectories from q0 to q or from q0 to q′

respectively. These trajectories become new edges (q0 → q)
and (q0 → q′) in the star graph. The returned trajectory
is then q0 → q reversed and concatenated with q0 → q′.
Note that this assumes the trajectories are reversible. This
roadmap is simple to implement and can be helpful for task
and motion planning problems where we may have already
indirectly found a plan from q to q′ earlier in the search.
In particular, the number of trajectories computed is always
linear in the number of reached configurations instead of
quadratic. However, it is incomplete because in some cases,
it may be necessary to obtain a path directly from q to q′

without moving through q0. Still, it performs reliably on
problems which effectively have only one homotopic class.

B. Grasping Configurations

To produce Pick, Place, PressDown, and PressRelease
actions, we require the ability to sample grasping config-
urations. Note that although PressDown and PressRelease
never actually grasp the button, we treat the button press
configuration as a grasp configuration.

For a grasping configuration to be valid, it must satisfy all
the same constraints mentioned in section IV-.1 through IV-
.2, except that the feet are less constrained: x-/y-translation
and yaw have no limits (i.e. their TSR boundary parameters
are ±∞).

There are two additional constraints that a grasping con-
figuration must satisfy in order to be considered “valid”.
First, the route planner must be able to approach it. What
we mean by “approach” is that it must be possible for
the walking collision geometry (see Figure 3) to stand at
the grasp configuration without being in collision with the
environment. Otherwise, there is no guarantee that it will

be possible for the robot to walk into the foot placements
needed for the grasping configuration.

Secondly, a grasping configuration is only considered valid
if the robot can move itself into a “walk ready” configuration
without moving its feet. If a standing trajectory cannot be
found (within a reasonable time limit) from the grasping
configuration to a stance that permits walking, then we must
assume that the grasping configuration cannot be reached.

Finding valid grasp configurations is perhaps the most
computationally expensive aspect of our entire planning
process. To make it as computationally efficient as possible,
we employ some important improvements to standard whole
body IK methods.

1) Computing Whole Body Inverse Kinematics: We pri-
marily use built-in features of the DART1 [11] software
package. DART solves whole body inverse kinematics by
hierarchically combining several constrained optimization
problems into one. Each constraint (grasping, stance feet,
balance) offers its own error gradient which get superim-
posed on each other to produce the net error gradient.
When constraints are put into a hierarchy, the lower priority
constraint error gradients get projected through the null space
of the higher priority constraint error Jacobians.

Analytical inverse kinematics solutions are available for
each limb of the DRC-HUBO1 robot. DART’s whole body
inverse kinematics solver can leverage the analytical solu-
tions for each limb to considerably speed up the whole body
IK. Some pseudo-code that shows how this can be done is
given in Algorithm 1.

Often whole body IK methods are applied in local
optimization problems [12][13][14] or local control algo-
rithms [15][16][17] because iterative whole body IK methods
tend to be effective at correcting small violations of many
simultaneous constraints. However, we will need to find valid
grasping configurations across a broad domain as seen in
Figure 6, which puts the whole body IK solver at risk of
getting caught in local minima.

To avoid local minima traps, we start off the whole
body IK problem by localizing it. We begin with a seed
configuration, adjust the height, pitch, and roll of the end
effector to match the target grasp pose using whole body IK
without concern for x-/y-translation or yaw. Once that has
converged, we then directly alter the root transform of the
robot in x-/y-translation and yaw to place the end effector
at its target. The whole body IK is then briefly applied
once more to wash away small errors caused by numerical
imprecision. The procedure is laid out in Algorithm 2. This
localized solving approach exploits the fact that the robot’s
stance and balance constraints are invariant to the x-/y-
translation and yaw of the overall robot. Therefore, we defer
those dimensions of the IK problem until after we locally
solve the dimensions that the stance and balance constraints
do depend on: z-translation, roll, and pitch.

2) Configuration seeds: The constraint manifold for a
balanced humanoid is very low dimensional compared to its

1More information on DART can be found at http://dartsim.github.io/



(a) (b) (c)

Fig. 5. Examples of useful seed configurations that were given to the whole
body inverse kinematics for finding left-handed grasping configurations.

Fig. 6. The whole body inverse kinematics solver needs to be applicable
over a wide region.

overall configuration space. This means that the probability
of randomly sampling configurations that are anywhere near
the constraint manifold is close to zero. This is especially
problematic because whole body IK is vulnerable to getting
caught in local minima, so the further a random configuration
is from the constraint manifold, the less likely it is that the
whole body IK will be able to converge onto the constraint
manifold from it.

To avoid this issue, we can start from seed configurations.
Seed configurations are predetermined configurations that are
likely to be useful for the whole body IK problems that
the robot encounters. Seeds can be computed offline by a
procedure of aggressive sampling and optimization or be
provided by a knowledgeable user. They can also be saved
and loaded from databases that persist between problem
encounters [18]. Some examples of seed configurations that
were used for this paper can be seen in Figure 5.

V. EXPERIMENTS

We tested the effectiveness of our system on three diverse
scenarios. These scenarios focus on pick-and-place tasks
but also include obstacles that require the robot to alter its
environment in order to achieve its goals. Obstacles come
in two forms: small manipulatable items that obstruct the
robot’s ability to reach for goal items, and “force field”
barriers that are controlled by switches in the environment.
The “force fields” can be thought of as automated doors that
can be operated by pressing a button.

a) First Scenario: There are two tables in the envi-
ronment. One table is empty while the other is covered in
blocks. The robot’s objective is to move the two blue blocks

(a) Start (b) First block

(c) Second block (d) Finish

Fig. 7. First Scenario: Robot must move the blue blocks to the other table.

(a) Start (b) Finish

(c) Pressing switch to lower force
field

(d) Sidestepping through narrow
passage

Fig. 8. Second Scenario: Robot must swap the table that each object is
sitting on while dealing with a force field obstruction.

(a) Start (b) Grabbing first block

(c) Moved both to center table (d) Finish

Fig. 9. Third Scenario: Robot must move both blocks across the room
while switching the force field back and forth.



Algorithm 1 Iterative-Analytical Hybrid Whole Body IK
1: function SOLVEWHOLEBODYIKFORGRASP(q, Tgrasp)
2: t← 0
3: γ ← GetWeights()
4: λ← GetDampingCoefficient()
5: ε← GetTolerance()
6: maxT ← GetMaximumIterations()
7: do
8: ∆q ← 0
9: for f in StanceFeet() do . Flat Foot Constraints

10: Tfoot ← ComputeFootFK(f , q + ∆q)
11: Tgoal ← ProjectToGround(Tfoot)
12: qf ← AnalyticalIKForFoot(f , Tgoal, q+ ∆q)
13: Tfoot ← ComputeFootFK(f , qf )
14: Tgoal ← ProjectToGround(Tfoot)
15: ∆xf ← ComputeScrew(Tgoal, Tfoot)
16: Jf ← ComputeJacobianForFoot(f , qf )
17: qf ← qf + γJT

f (λI + JfJ
T
f )−1∆xf

18: ∆q ← qf − q
19: end for

. Balancing Constraint
20: xcom ← ComputeCenterOfMass(q + ∆q)
21: xp ← ComputeSupportPolygonCenter(q + ∆q)
22: ∆xcom ← xp − xcom
23: Jcom ← ComputeCOMJacobian(q + ∆q)
24: ∆q ← ∆q + JT

com(λI + JcomJ
T
com)−1∆xcom

. Grasping Constraint
25: qh ← AnalyticalIKForHand(Tgrasp, q + ∆q)
26: Thand ← ComputeHandFK(qh)
27: ∆xh ← ComputeScrew(Tgrasp, Thand)
28: Jh ← ComputeJacobianForHand(qh)
29: qh ← qh + γJT

h (λI + JhJ
T
h )−1∆xh

30: ∆q ← qh − q
. Conclude this iteration

31: q ← q + ∆q
32: t← t+ 1
33: while norm(∆q) > ε and t < maxT
34: if norm(∆q) > ε) then
35: return None
36: end if
37: return q
38: end function

to the other table. It is free to move the red blocks around
however it chooses. See Figure 7.

b) Second Scenario: There are two tables and two force
fields. One force field is blocking the way to one of the
tables while the other force field leads nowhere. The robot’s
objective is to move each block to the table that it is not
currently sitting on. Also, courtesy dictates that the robot
must return itself and all force fields back to their original
states. This is an example of a non-monotonic problem which
requires the robot to undo some of its goals in order to
accomplish others. See Figure 8.

c) Third Scenario: There are three tables. A button in
the center of the room is able to swap a force field from

Algorithm 2 Localized Whole Body IK
1: function FINDGRASPINGCONFIGURATION(Tgrasp)
2: q ← GetSeedConfiguration()
3: q ← RandomizedPerturbation(q)
4: Thand ← ComputeHandFK(q)
5: zdesired ← GetTranslationZ(Tgrasp)
6: SetTranslationZ(Thand, zdesired)
7: Rxy ← GetRotationXY(Tgrasp)
8: SetRotationXY(Thand, Rxy)
9: q ← SolveWholeBodyIKForGrasp(q, Thand)

10: if q is None then . Failure to converge
11: return None
12: end if
13: Thand ← ComputeHandFK(q)
14: Troot ← GetRootTransform(q)
15: Troot ← TgraspT

−1
handTroot

16: q ← SetRootTransform(q, Troot)
17: return SolveWholeBodyIKForGrasp(q, Tgrasp)
18: end function

one side of the room to the other side. The robot must move
both of the green blocks from the far side of the room to
the near side of the room while switching the force field as
needed. To do this, the robot must temporarily place each
block on the middle table in order to change the force field
which results in puzzle-like behavior. See Figure 9.

We tested three versions of the resulting system that each
handle route planning differently.

d) Deferred Route Motion Planning: This version de-
fers all walking motion planning, not just footstep computa-
tion, until HBF finds a solution by assuming each trajectory
is feasible. If the deferred motion planning problems are not
feasible when HBF finds a solution, then the algorithm fails.

e) Standard RRT: This version uses the standard strat-
egy of calling a new RRT to sample each movement action.

f) Multi-Query Star Roadmap: This version uses the
multi-query star roadmap to answer motion planning queries.

Each experiment had a 10 minute timeout. There were
20 trials per problem all conducted on a single 1.87GHz
Intel Core i7 processor. We use deferred greedy best first
search [19] as the HBF search control in our experiments
which gives a slight increase in performance over enforced
hill climbing search.

Each entry in figure 10 reports the success percentage (%)
as well as the median and median absolute deviation (MAD)
of the runtime, resulting symbolic plan length, and the post-
processing time it took to generate footsteps for a single run.
We use median-based statistics to be robust against outliers.

The statistics for trials that failed to find a solution are
included in the entries. Thus, entries with a runtime of 600
and MAD of 0 did not solve any trial. The accompanying
video simulates the DRC-HUBO1 executing a solution for
each problem.

The multi-query star roadmap proved more efficient than
the normal RRT strategy as it was able to reduce the number
of new RRT calls. The footstep computation time tends



P Deferred Route Motion Planning Standard RRTs Multi-Query Star Roadmap
% time len foot % time len foot % time len foot

1 55 251 (121) 24 (0) 433 80 199 (26) 24 (0) 549 80 187 (34) 24 (0) 701
2 0 600 (0) - (-) - 95 266 (19) 27 (0) 619 100 144 (13) 27 (0) 1611
3 0 600 (0) - (-) - 100 215 (17) 13 (0) 562 100 85 (11) 13 (0) 636

Fig. 10. Manipulation experiment results over 20 trials. Multiple trials are used because the results of randomized planners are not deterministic.

to be larger for multi-query star roadmap simply because
its chaining of trajectories produces longer trajectories. An
additional post-processing method could further smooth the
chained trajectories before performing footstep planning.
Note that the deferred route motion planning strategy failed
to solve problems two and three at all because they involve
force fields which need to be deactivated. Thus, the route
planning compromise of approximating the walking robot
using a swept volume is able to provide sufficient information
for HBF to solve these problems while being efficiently
computable and later resulting in a valid footstep trajectory.

Finally, although the post-processing footstep computation
time is still large, the footsteps themselves can be computed
online while the humanoid executes the plan because our
method guarantees that a satisfying solution exists.

VI. CONCLUSIONS

This work has presented a new system for combining
task and manipulation planning on humanoid robots. The
method presented is faster than existing methods by orders
of magnitude, although probabilistic completeness for edge
cases is sacrificed in favor of speed. It is capable of solving
tasks that constrain the reachable walking configurations of
the robot while being more versatile than high-level planning
methods that utilize predetermined primitive trajectories.

While the generated plans may be physically feasible
for the robot, they are not necessarily of good “quality”.
The randomization factor of the motion planner tends to
produce trajectories that are inefficient or close to unstable
regions. In future work, to improve the quality of the
plans that are generated, we will use the feasible plans to
inform trajectory optimization routines and online control
methods [20] [21] [22], ensuring that the actions performed
by the robot are stable and efficient in addition to feasible.

REFERENCES

[1] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, “Planning and
executing navigation among movable obstacles,” Advanced Robotics,
vol. 21, no. 14, pp. 1617–1634, 2007.

[2] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue, “Online
footstep planning for humanoid robots,” in Robotics and Automation,
2003. Proceedings. ICRA ’03. IEEE International Conference on,
vol. 1, Sept 2003, pp. 932–937 vol.1.

[3] K. Hauser and J.-C. Latombe, “Integrating task and prm motion
planning: Dealing with many infeasible motion planning queries,”
in ICAPS Workshop on Bridging the gap between task and motion
planning, 2009, pp. 19–23.

[4] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE Conference on Robotics and
Automation (ICRA), 2014.

[5] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in International
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2014.

[6] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Backward-
forward search for manipulation planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015. [Online].
Available: http://lis.csail.mit.edu/pubs/garrett-iros15.pdf

[7] M. VUKOBRATOVIĆ and B. BOROVAC, “Zero-moment point —
thirty five years of its life,” International Journal of Humanoid
Robotics, vol. 01, no. 01, pp. 157–173, 2004.

[8] E. Yoshida, O. Kanoun, C. Esteves, and J.-P. Laumond, “Task-driven
support polygon reshaping for humanoids,” in Humanoid Robots, 2006
6th IEEE-RAS International Conference on. IEEE, 2006, pp. 208–
213.

[9] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” International
Journal of Robotics Research (IJRR), vol. 30, no. 12, pp. 1435 – 1460,
October 2011.

[10] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, vol. 2,
2000, pp. 995–1001 vol.2.

[11] C. K. Liu and S. Jain, “A short tutorial on multibody dynamics,”
Georgia Institute of Technology, School of Interactive Computing,
Tech. Rep. GIT-GVU-15-01-1, 08 2012.

[12] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” in Humanoid Robots, 2005 5th IEEE-
RAS International Conference on, Dec 2005, pp. 238–244.

[13] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-
based inverse kinematics,” in ACM transactions on graphics (TOG),
vol. 23, no. 3. ACM, 2004, pp. 522–531.

[14] K. Yamane and Y. Nakamura, “Natural motion animation through
constraining and deconstraining at will,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 9, no. 3, pp. 352–360, July
2003.

[15] T. Sugihara and Y. Nakamura, “Whole-body cooperative balancing of
humanoid robot using cog jacobian,” in Intelligent Robots and Systems,
2002. IEEE/RSJ International Conference on, vol. 3, 2002, pp. 2575–
2580 vol.3.

[16] L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human environments,” in Robotics and Au-
tomation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, May 2006, pp. 2641–2648.

[17] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics
with floating base and constraints for full body humanoid robot
control,” in Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS
International Conference on, Dec 2008, pp. 22–27.

[18] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3671–3678.

[19] M. Helmert, “The fast downward planning system,” Journal of Artifi-
cial Intelligence Research, vol. 26, pp. 191–246, 2006.

[20] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, “3D
dynamic walking with underactuated humanoid robots: A direct collo-
cation framework for optimizing hybrid zero dynamics,” in accepted
by IEEE Conference on Robotics and Automation, 2016.

[21] C. M. Hubicki, A. Hereid, M. X. Grey, A. L. Thomaz, and A. D. Ames,
“Work those arms: Toward dynamic and stable humanoid walking
that optimizes full-body motion,” in accepted by IEEE Conference
on Robotics and Automation, 2016.

[22] A. D. Ames and M. Powell, “Towards the unification of locomotion
and manipulation through control lyapunov functions and quadratic
programs,” in Control of Cyber-Physical Systems. Springer, 2013,
pp. 219–240.

http://lis.csail.mit.edu/pubs/garrett-iros15.pdf

	INTRODUCTION
	Related Work

	HBF Algorithm
	Action Representation
	Humanoid Manipulation Primitives
	Balance Constraints
	End-Effector Constraints

	Route Planning
	Grasping Configurations
	Computing Whole Body Inverse Kinematics
	Configuration seeds


	Experiments
	Conclusions
	References

