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Abstract— In this paper, we theoretically prove that gradient

descent can find a global minimum for nonlinear deep neural
networks of sizes commonly encountered in practice. The theory
developed in this paper requires only the number of trainable
parameters to increase linearly as the number of training
samples increases. This allows the size of the deep neural
networks to be several orders of magnitude smaller than that
required by the previous theories. Moreover, we prove that
the linear increase of the size of the network is the optimal
rate and that it cannot be improved, except by a logarithmic
factor. Furthermore, deep neural networks with the trainability
guarantee are shown to generalize well to unseen test samples
with a natural dataset but not a random dataset.

I. INTRODUCTION

Deep neural networks have recently achieved significant

empirical success in the fields of machine learning and its

applications. Neural networks have been theoretically studied

for a long time, dating back to the days of multilayer

perceptron, with focus on the expressivity of shallow neural

networks [1], [2], [3], [4], [5], [6]. More recently, the expres-

sivity of neural networks was theoretically investigated for

modern deep architectures with rectified linear units (ReLUs)

[7], residual maps [8], and/or convolutional and max-pooling

layers [9].

However, the expressivity of a neural network does not

ensure its trainability. The expressivity of a neural network

states that, given a training dataset, there exists an optimal

parameter vector for the neural network to interpolate that

given dataset. It does not guarantee that an algorithm will

be able to find such an optimal vector, efficiently, during

the training of neural networks. Indeed, finding the optimal

vector for a neural network has been proven to be an NP-hard

problem, in some cases [10], [11], [12].

Quite recently, it was proved in a series of papers that, if

the size of a neural network is significantly larger than the

size of the dataset, the (stochastic) gradient descent algorithm

can find an optimal vector for shallow [13], [14], [15] and

deep networks [16], [17], [18]. However, a considerable

gap still exists between these trainability results and the

expressivity theories; i.e., these trainability results require

a significantly larger number of parameters, when compared

to the expressivity theories. Table I summarizes the number

of parameters required by each previous theory, in terms of
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TABLE I: Number of parameters required to ensure the

trainability, in terms of n, where n is the number of samples

in a training dataset and H is the number of hidden layers.

Reference # Parameters Depth H Trainability

[3], [4], [5] Ω̃(n) 1,2 No (expressivity only)

[8], [9], [7] Ω̃(n) any H No (expressivity only)

[13] Ω̃(poly(n)) 1 Yes

[14] Ω̃(n6) 1 Yes

[15] Ω̃(n2) 1 Yes

[16], [18] Ω̃(poly(n,H)) any H Yes

[17] Ω̃(2O(H)n8) any H Yes

this paper Ω̃(n) any H Yes
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(a) Training loss
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Fig. 1: Training loss and accuracy versus the number of

epochs (in log scale) for pre-activation ResNet with 18

layers. Training accuracy reaches 100% (and training loss is

approximately zero) for all datasets, even though the number

of total parameters is several orders of magnitude smaller

than that required by the previous theories.

the size n of the dataset, where the Ω̃(·) notation ignores

the logarithmic factors and the poly(·) notation hides the

significantly large unknown polynomial dependencies: for

example, poly(n) ≥ n60 in [16].

There is also a significant gap between the trainability

theory and common practice. Typically, deep neural networks

used in practical applications are trainable, and yet, much

smaller than what the previous theories require to ensure

trainability. Figure 1 illustrates this fact with various datasets

and a pre-activation ResNet with 18 layers (PreActRes-

Net18), which is widely used in practice. FMNIST represents

the Fashion MNIST. RANDOM represents a randomly gen-

erated dataset of size 50000 (with the inputs being 3×24×24
images of pixels drawn randomly from the standard normal

distribution and the target being integer labels drawn uni-



formly from between 0 and 9). Here, the sizes of the training

datasets vary from 50000 to 73257. For these datasets, the

previous theories require at least n8 = (50000)8 parameters

for the deep neural network to be trainable, which is several

orders of magnitude larger than the number of parameters

of PreActResNet18 (11169994 parameters) or even larger

networks such as WideResNet18 (36479219 parameters).

In this paper, we aim to bridge these gaps by theoretically

proving the upper and lower bounds for the number of

parameters required to ensure trainability. In particular, we

show that deep neural networks with Ω̃(n) parameters are

efficiently trainable by using a gradient descent algorithm.

That is, our theory only requires the number of total param-

eters to be in the order of n, which matches the practical

observations. Moreover, we demonstrate that trainable deep

neural networks of size Ω̃(n) are generalizable to unseen test

points with a natural dataset, but not with a random dataset.

II. PRELIMINARIES

This paper studies feedforward neural networks with H
hidden layers, where H ≥ 1 is arbitrary. Given an input

vector x ∈ R
mx and a parameter vector θ, the output of the

neural network is given by

f(x, θ) =W (H+1)x(H) + b(H+1) ∈ R
my , (1)

where W (H+1) ∈ R
my×mH and b(H+1) ∈ R

my are the

weight matrix and bias term, respectively, of the output layer.

The output of the last hidden layer x(H) is given by the set

of recursive equations: x(0) = x and

x(l) =
1√
ml
σ(W (l)x(l−1) + b(l)), l = 1, 2, · · · , H, (2)

where W (l) ∈ R
ml×ml−1 is the weight matrix, b(l) ∈ R

ml is

the bias term, and σ is the activation unit, which is applied

coordinate-wise to its input. Here, x(l) is the output of the

l-th layer, which has ml neurons.

Then, the vector containing all trainable parameters is

given by θ = (vec(W̄ (1))⊤, . . . , vec(W̄ (H+1))⊤)⊤, where

W̄ (l) = [W (l), b(l)] and vec(M) represents the standard

vectorization of the matrix M . Thus, the total number of

trainable parameters is

d =

H
∑

l=0

(mlml+1 +ml+1),

where m0 = mx and mH+1 = my .

This paper analyzes the trainability in terms of the standard

objective of empirical risk minimization:

J(θ) =
1

n

n
∑

i=1

ℓ(f(xi, θ), yi),

where {(xi, yi)}ni=1 is a training dataset, yi is the i-th target,

and ℓ(·, yi) represents a loss criterion such as the squared

loss or cross-entropy loss. The following assumptions are

employed for the loss criterion q 7→ ℓ(q, yi) and activation

unit σ(x):

Assumption 1. (Use of common loss criteria) For any

i ∈ {1, . . . , n}, the function ℓi(q) = ℓ(q, yi) ∈ R≥0 is

differentiable and convex, and ∇ℓi is ζ-Lipschitz (with the

metric induced by the Euclidian norm ‖ · ‖2).

Assumption 2. (Use of common activation units) The activa-

tion function σ(x) is real analytic, monotonically increasing,

1-Lipschitz, and the limits exist as: limx→−∞ σ(x) = σ− >
−∞ and limx→+∞ σ(x) = σ+ ≤ +∞.

Assumption 1 is satisfied by simply using a common

loss criterion such as the squared loss or cross-entropy loss.

For example, ζ = 2 for the squared loss, as ‖∇ℓi(q) −
∇ℓi(q′)‖2 ≤ 2‖q−q′‖2. The training objective function J(θ)
is nonconvex in θ, even if the loss criterion q 7→ ℓ(q, yi) is

convex in q.

Assumption 2 is satisfied by using common activation

units such as sigmoid and hyperbolic tangents. Moreover,

the softplus activation, which is defined as σα(x) = ln(1 +
exp(αx))/α, satisfies Assumption 2 with any hyperparam-

eter α ∈ R>0. The softplus activation can approximate the

ReLU activation for any desired accuracy as

σα(x) → relu(x) as α→ ∞,

where relu represents the ReLU activation.

Throughout this paper, neural networks are initialized with

random Gaussian weights, following the common initializa-

tion schemes used in practice. More precisely, the initial pa-

rameter vector θ0 is randomly drawn as (W
(l)
ij )0 ∼ N (0, cw)

and (b(l))0 ∼ N (0, cb), where cw and cb are constants

and (W
(l)
ij )0 and (b(l))0 correspond to the initial vector

θ0 as θ0 = (vec((W̄ (1))0)⊤, . . . , vec((W̄ (H+1))0)⊤)⊤ with

(W̄ (l))(0) = [(W (l))(0), (b(l))(0)]. With this random ini-

tialization scheme, the outputs are normalized properly as

‖x(l)‖22 = O(1) for 0 ≤ l ≤ H , and ‖f(x, θ)‖22 = O(my)
with high probability.

III. MAIN TRAINABILITY RESULTS

This section first introduces the formal definition of train-

ability, in terms of the number d of parameters, and then

presents our main results for the trainability.

A. Problem formalization

The goal of this section is to formalize the question

of trainability in terms of the number of parameters, d.

Intuitively, given the dataset size n, depth H , and any δ > 0,

we define the probable trainability Pn,H,δ as Pn,H,δ(d) =
true if having d parameters can ensure the trainability for all

datasets with probability at least 1−δ, and Pn,H,δ(d) = false
otherwise. We formalize this intuition as follows.

Let FH
d be the set of all neural network architectures

f(·, ·) of the form in equation (1) with H hidden layers,

at most d parameters, and activation units σ satisfying

Assumption 2. Let Sn be the set of all training datasets

S = {(xi, yi)}ni=1 of size n such that the data points

are normalized as ‖xi‖22 = 1 and yi ∈ [−1, 1]my for all

i ∈ {1, . . . , n}. Let Lζ
S be a set of all loss functionals L such

that for any L ∈ Lζ
S , we have L(g) = 1

n

∑n
i=1 ℓ(g(xi), yi)

and argming:Rmx→R
my L(g) 6= ∅, where g : Rmx → R

my is

a function, S ∈ Sn is a training dataset, and q 7→ ℓ(q, yi) is



a loss criterion satisfying Assumption 1. For any (θ, W̄ ),
we define ψl(θ, W̄ ) ∈ R

d to be the parameter vector θ
with the corresponding W̄ (l) entries replaced by W̄ . For

example, ψH+1(θ, W̄ ) = (vec(W̄ (1))⊤, . . . , vec(W̄ (H))⊤,
vec(W̄ )⊤)⊤. We use the symbol ⊙ to represent the entrywise

product (i.e., Hadamard product).

With these notations, we can now formalize the probable

trainability Pn,H,δ, in terms of d, as follows:

Definition 1. Pn,H,δ : N → {true, false} is a function such

that Pn,H,δ(d) = true if and only if the following statement

holds true: ∀ζ > 0, ∃f ∈ FH
d , ∃η ∈ R

d, ∀S ∈ Sn, ∀L ∈
Lζ
S , ∃cθ ∈ R, and ∀ǫ > 0, with probability at least 1 − δ

(over randomly drawn initial weights θ0), there exists t =
O(crζ/ǫ) such that

J(θt) = L(f(·, θt)) ≤ L(f∗) + ǫ, (3)

and ‖θt‖22 ≤ cθ, where f∗ ∈ argming :Rmx→R
my L(g) is a

global minimum of the functional L, (θk)k∈N is the sequence

generated by the gradient descent algorithm θk+1 = θk −
η ⊙ ∇J(θk), and cr = maxl∈{1,...,H+1} infW̄∗∈W∗

l
‖W̄ ∗ −

(W̄ (l))0‖2F with W∗
l = argminW̄ L(f(·, ψl(θ

0, W̄ ))).

Here, Pn,H,δ(d) = true implies that a gradient descent

algorithm finds a global minimum of a deep neural network

with d trainable parameters for any dataset (if a global

minimum exists). To verify this, let P̃n,H,δ be equivalent

to Pn,H,δ, except that inequality (3) is replaced by

L(f(·, θt)) ≤ L(f(·, θ∗)) + ǫ, (4)

where θ∗ ∈ R
d is a global minimum of J(θ) = L(f(·, θ)).

As L(f∗) ≤ L(f(·, θ∗)), Pn,H,δ(d) = true implies that

P̃n,H,δ(d) = true, which is the desired statement.

The reason we use Pn,H,δ(d) instead of P̃n,H,δ(d) is that

P̃n,H,δ(d) admits trivial and unpreferred solutions in that a

global minimum θ∗ can have a large loss value L(f(·, θ∗))
when f is restricted. As an extreme example, one can set f to

be a neural network with only one trainable parameter. Then,

a bijection search can trivially find a global minimum with a

large loss value. The use of Pn,H,δ(d) instead of P̃n,H,δ(d)
forces us to find nontrivial solutions with small loss values.

In the definition of Pn,H,δ(d), the network architecture

f and learning rate η must be fixed for all datasets. This

forces the gradient descent algorithm to actually learn the

predictor based on each dataset, instead of encoding too

much information into the architecture and learning rate.

B. Analysis

The following theorem states that the probable trainability

is ensured with the total parameter number d being linear in

n:

Theorem 1. For any n ∈ N
+, H ≥ 2, and δ > 0, it holds

that Pn,H,δ(d) = true for any

d ≥ c

((

n+mxH
2 +H5 log

(

Hn2

δ

))

log

(

Hn2

δ

)

+ nmy

)

,

where c > 0 is a universal constant.

Remark 1. In Theorem 1, we restrict ourselves to the case

of H ≥ 2. If H = 1, then by setting mH−1 = mx and

x
(H−1)
i = xi in the proof of Theorem 1, it holds that

Pn,1,δ(d) = true for any d ≥ cn(mx + my). In practice,

mx would be much larger than my , and if this is the case,

the lower bound Ω̃(nmx) for the case of H = 1 is worse

than the lower bound Ω̃(nmy) in Theorem 1.

In other words, Theorem 1 and Remark 1 state that there

are trainable neural networks of size Ω̃(nmy+mxH
2+H5)

if H ≥ 2, and size Ω̃(n(mx + my)) if H = 1. This is

significantly smaller than the sizes required by the previous

studies. For deep neural networks, to the best of our knowl-

edge, the state-of-the-art result, in terms of the size, is given

in [17], where the neural networks are required to have size

Ω̃(2O(H)n8+n4(mx+my)). For shallow networks, building

on previous works [13], [14], it has been proven in [15] that,

single-layer networks of size Ω̃(n2(mx+my)) are trainable.

Theorem 1 proves the probable trainability for considerably

smaller networks when compared with the previous results.

Then, a natural question is whether we can further im-

prove Theorem 1 by reducing d while keeping the probable

trainability. The following theorem and its corollary state that

Theorem 1 is already optimal and that it cannot be improved

in terms of the order of the leading term nmy:

Theorem 2. There exists a universal constant c > 0 such

that the following holds: for any large β > 0,
nmy

d − 1 ≥
cβH logn
log(1/ǫ) , and deep neural network architecture f ∈ FH

d ,

there exists a dataset S ∈ S such that if

n
∑

i=1

‖f(xi, θ)− yi‖22 ≤ ǫ, (5)

then ‖θ‖22 ≥ nβ .

Corollary 1. For any n ∈ N
+, H ≥ 1, and δ > 0, it holds

that Pn,H,δ(d) = false for any d < nmy .

Corollary 1 follows from Theorem 2 by taking the param-

eters β =
√

log(1/ǫ) and ǫ→ 0. If n≫ H,mx, we have the

lower bound d = Ω̃(nmy) in Theorem 1, which matches the

upper bound nmy in Corollary 2, except for the logarithmic

term and constant.

IV. PROOFS OF TRAINABILITY

This section presents the proofs of Theorems 1 and 2.

Throughout this paper, we use c and C to represent various

constants, which may be different from line to line.

A. Proof of Theorem 1

We first analyze the properties of the randomly initialized

neural networks, and then, relate these properties to the

trainability. The following lemma shows that if the input to a

layer is normalized, then the outputs and their differences of

the layer concentrate to the corresponding means with high

probability:

Lemma 1. Consider two data points x, x′ ∈ R
m′

that satisfy

‖x‖22 = O(1) and ‖x′‖22 = O(1). Consider a random weight



matrix W ∈ R
m×m′

with N (0, cw) entries and a random

bias term b ∈ R
m with N (0, cb) entries. Then, the following

estimates hold:

P

(∣

∣

∣

∣

‖σ(Wx+ b)‖22
m

− E[σ2(g)]

∣

∣

∣

∣

≥ β√
m

)

≤ e−cβ2

, (6)

P

(∣

∣

∣

∣

‖σ(Wx+ b)− σ(Wx′ + b)‖22
m

− E(σ(g) − σ(g′))2
∣

∣

∣

∣

≥ β√
m

)

≤ e−cβ2

, (7)

where g, g′ are joint Gaussian variables with zero mean and

covariances E[g2] = cw‖x‖22 + cb and E[g′2] = cw‖x′‖22 +
cb,E[gg

′] = cw〈x, x′〉+ cb.

Proof of Lemma 1. Since W and b have independent Gaus-

sian entries, (Wx)1+ b1, (Wx)2+ b2, · · · , (Wx)m+ bm are

independent Gaussian variables with zero mean and variance

cw‖x‖22 + cb. We can rewrite the norm as

1

m
‖σ(Wx+ b)‖22 =

1

m

m
∑

i=1

σ2((Wx)i + bi). (8)

By Assumption 2, the activation function σ is 1-Lipschitz.

The random variables σ2((Wx)i + bi) are sub-exponential.

Therefore, for |λ| > 0 sufficiently small, we have

E

[

eλ(‖σ(Wx+b)‖2
2−mE[σ2(g)])

]

=

m
∏

i=1

E

[

eλ(σ
2(Wix+bi)−E[σ2(g)])

]

≤ ecmλ2

.
(9)

Inequality (6) follows from applying the Markov inequality

to (9) and setting λ = ±β/(2c√m). For (7), we can rewrite

the norm of the difference as 1
m‖σ(Wx + b) − σ(Wx′ +

b)‖22 = 1
m

∑m
i=1 (σ((Wx)i + bi)− σ((Wx′)i + bi))

2
.

Moreover, the random variables (σ((Wx)i + bi) −
σ((Wx′)i + bi))

2 are sub-exponential. Thus, inequality (7)

follows from the derivation of (6).

By repeatedly applying Lemma 1 to each layer, we obtain

the following corollary, which approximates ‖x(l)i ‖22 and

‖x(l)i − x
(l)
j ‖22 using some constants p(l) and p

(l)
ij with error

terms O
(

∑l
i=1

β√
mi

)

:

Corollary 2. For the randomly initialized neural network,

the following holds: for any β > 0, with probability at least

1−O(le−cβ2

) over θ0,

‖x(l)i ‖22 = p(l) +O

(

l
∑

i=1

β√
mi

)

, (10)

‖x(l)i − x
(l)
j ‖22 = p

(l)
ij +O

(

l
∑

i=1

β√
mi

)

, (11)

where p(0) = 1, p
(0)
ij = ‖xi − xj‖22 ≥ γ, and for 1 ≤ l ≤ H ,

p
(l)
i = E[σ2(g)], and p

(l)
ij = E(σ(g) − σ(g′))2. Here, g, g′

are joint Gaussian variables with zero mean and covariances

E[g2] = E[g′2] = cwp
(l−1) + cb and E[gg′] = cw(p

(l−1) −
p
(l−1)
ij /2) + cb.

Proof of Corollary 2. We prove the statement by induction

on l. The statements hold trivially for l = 0. In the following,

we assume the statements for l, and prove them for l + 1.

From Lemma 1, with probability at least 1−O(e−cβ2

),

‖x(l+1)
i ‖22 = E[σ2(g̃)] +O

(

β√
ml+1

)

, (12)

‖x(l+1)
i − x

(l+1)
j ‖22 = E[(σ(g̃)− σ(g̃′))2] +O

(

β√
ml+1

)

,

where g̃, g̃′ are Gaussian variables with zero mean and

covariances E[g̃2] = cw‖x(l)i ‖2 + cb = cwp
(l) + cb +

O(
∑l

i=1 β/
√
mi), E[g̃′2] = cw‖x(l)j ‖2 + cb = cwp

(l) +

cb + O(
∑l

i=1 β/
√
mi), E[g̃g̃′] = cw〈x(l)i , x

(l)
j 〉 + cb =

cw(p
(l) − p

(l)
ij /2)+ cb +O(

∑l
i=1 β/

√
mi). We approximate

g̃, g̃′ by mean zero Gaussian variables g, g′ such that E[g2] =

E[g′2] = cwp
(l) + cb, E[gg

′] = cw(p
(l) − p

(l)
ij /2) + cb. Since

the activation function σ is 1-Lipschitz, we have

E[σ2(g̃)] = E[σ2(g)] +O

(

l
∑

i=1

β√
mi

)

= p(l+1) +O

(

l
∑

i=1

β√
mi

)

,

(13)

and

E[(σ(g̃)− σ(g̃′))2] = E[(σ(g) − σ(g′))2] +O

(

l
∑

i=1

β√
mi

)

= p
(l+1)
ij +O

(

l
∑

i=1

β√
mi

)

. (14)

The statements for l + 1 follow from combining (12), (13),

and (14).

Now that we have an understanding of the output x
(H)
i

for each i-th input, we analyze the set of outputs {x(H)
i }ni=1

for all inputs. Let d̃ = mH(mH−1 + 1), x̃ = x(H−1), x̃i =

x
(H−1)
i , w̃ = [w̃⊤

1 , . . . , w̃
⊤
mH

]⊤ = vec((W (H))⊤), and b̃ =

b(H). Let M(w̃, b̃) ∈ R
n×(mH+1) given by M(w̃, b̃)ij =

σ(w̃⊤
j x̃i+ b̃j)/

√
mH and M(w̃, b̃)i(mH+1) = 1, for 1 ≤ i ≤

n and 1 ≤ j ≤ mH . The following lemma shows that if

x
(H−1)
i and x

(H−1)
j are distinguishable and the last layer is

wide, then the set of outputs {x(H)
i }ni=1 is degenerate only

when the weights are in a measure zero set:

Lemma 2. If ‖x(H−1)
i ‖22−〈x(H−1)

i , x
(H−1)
j 〉 > cγ for all i 6=

j and mH ≥ n, the Lebesgue measure of the set {(w̃, b̃) ∈
R

d̃ : rank(M(w̃, b̃)) < n} is zero.

Proof of Lemma 2. Under our assumption, the function

ϕ(w̃, b̃) = det(M(w̃, b̃)M(w̃, b̃)⊤)

is analytic since σ is analytic. With this function, we have

that {(w̃, b̃) ∈ R
d̃ : rank(M(w̃, b̃)) < n} = {(w̃, b̃) ∈ R

d̃ :
ϕ(w̃, b̃) = 0}, which follows the fact that since M(w̃, b̃) ∈
R

n×(mH+1), the rank of M(w̃, b̃) and the rank of the Gram

matrix are equal.



Since ϕ is analytic, if ϕ is not identically zero (ϕ 6= 0), the

Lebesgue measure of its zero set {(w̃, b̃) ∈ R
d̃ : ϕ(w̃, b̃) =

0} is zero [19]. Therefore, it remains to show that ϕ(w̃, b̃) 6=
0 for some (w̃, b̃).

We now construct a pair (w̃, b̃) such that M(w̃, b̃) is of

rank n and ϕ(w̃, b̃) 6= 0. Set w̃j = βx̃j and b̃j = cγβ/2 −
β‖x̃j‖22 for j = 1, 2, . . . , n. Then,

M(w̃, b̃)ii = σ(cγβ/2)/
√
mH , (15)

and for any j 6= i,

M(w̃, b̃)ij = σ(cγβ/2 + w̃⊤
j x̃i − β‖x̃j‖22)/

√
mH

≤ σ(−cγβ/2)/
√
mH ,

(16)

which follows the assumption of ‖x(H−1)
i ‖22 −

〈x(H−1)
i , x

(H−1)
j 〉 > cγ , and the monotonicity of σ(x).

In (15) and (16), as β → ∞, by our Assumption 2,

M(w̃, b̃)ii → σ+/
√
mH , and M(w̃, b̃)ij → σ−/

√
mH ,

for any j 6= i. Therefore, for β sufficiently large, and any

i ∈ {1, . . . , n},

|M(w̃, b̃)ii − σ−/
√
mH | >

∑

j 6=i

|M(w̃, b̃)ij − σ−/
√
mH |.

This means that the matrix M̃ = [M(w̃, b̃)ij −
(σ−/

√
mH)]1≤i,j≤n ∈ R

n×n is strictly diagonally dom-

inant and nonsingular; hence, its rank is n. This implies

that [M̃, 1] ∈ R
n×(n+1) has rank n, which then im-

plies that [M̃ ′, 1] ∈ R
n×(n+1) has rank n, where M̃ ′ =

[M(w̃, b̃)ij ]1≤i,j≤n, since elementary matrix operations pre-

serve the matrix rank. Since mH ≥ n and the columns of

M(w̃, b̃) contain all columns of [M̃ ′, 1], this implies that

rank(M(w̃, b̃)) = n and ϕ(w̃, b̃) 6= 0 for this constructed

(w̃, b̃), as desired.

We now derive an upper bound for the Lipschitz con-

stant of the gradient of the objective function. Let zi =

[(x
(H)
i )⊤, 1]⊤, W̄ = W̄ (H+1), and ψ = ψH+1. Let W̄ t =

(W̄ (H+1))t correspond to θt as θt = (vec((W̄ (1))t)⊤, . . . ,
vec((W̄ (H+1))t)⊤)⊤. Let J̄(w) = L(f(·, ψ(θ0, W̄ ))), where

w = vec(W̄ ) ∈ R
d̂. The following lemma bounds the

Lipschitz constant.

Lemma 3. ∇J̄ is Lipschitz continuous with Lipschitz con-

stant at most
ζ
n

∑n
i=1 ‖zi‖

2
2.

Proof of Lemma 3. Let θw = ψ(θ0, W̄ ) and θw′ =
ψ(θ0, W̄ ′) where w′ = vec((W̄ ′)⊤). Then,

‖∇J̄(w) −∇J̄(w′)‖2

=
1

n

∥

∥

∥

∥

∥

n
∑

i=1

∇w(ℓi ◦ fi)(θw)−∇w′(ℓi ◦ fi)(θw′)

∥

∥

∥

∥

∥

2

≤ 1

n

n
∑

i=1

‖[zi ⊗ Imy
]‖2 ‖∇ℓi(fi(θw))−∇ℓi(fi(θw′))‖2

≤ 1

n

n
∑

i=1

ζ‖zi‖2 ‖f(xi, θw)− f(xi, θw′)‖2

≤
(

ζ

n

n
∑

i=1

‖zi‖22

)

‖W̄ − W̄ ′‖2 ≤
(

ζ

n

n
∑

i=1

‖zi‖22

)

‖w − w′‖2,

where the last line follows ‖W̄ − W̄ ′‖2 ≤ ‖W̄ − W̄ ′‖F =
‖w − w′‖2.

Using these lemmas, we can complete the proof of The-

orem 1. Let f be an arbitrary neural network architecture

satisfying m1,m2, . . . ,mH−2 ≥ O(C2H2 log(Hn2/δ)),
mH−1 ≥ O(C2 log(Hn2/δ)), and mH ≥ O(n), for some

constant C. Since such an arbitrary network has a total num-

ber of parameters d = c(mxH
2 log(Hn2

δ )+H5 log2(Hn2

δ )+

n(log(Hn2

δ )+my)) or higher, all we need to show now is that

such an arbitrary architecture ensures the desired trainability.

By setting β =
√

log(Hn2/δ)/c and l = H − 1 in

Corollary 2 and by taking a union bound, it holds that with

probability at least 1− δ, for any 1 ≤ i 6= j ≤ n,

‖x(H−1)
i ‖22 = p(H−1) +O(1/(cC))),

‖x(H−1)
i − x

(H−1)
j ‖22 = p

(H−1)
ij +O(1/(cC)).

(17)

In particular, it follows by considering C sufficiently large

that with probability at least 1− δ, for any 1 ≤ i 6= j ≤ n,

‖x(H−1)
i ‖2 = O(1), (18)

‖x(H−1)
i ‖22 − 〈x(H−1)

i , x
(H−1)
j 〉 = (p

(H−1)
ij + o(1))/2 > cγ ,

where the constant cγ depends only on γ.

Since the neural network is initialized by the Gaus-

sian probability measure, which is absolutely continuous

with respect to the Lebesgue measure, equations (17)–

(18) and Lemma 2 imply that, with probability at least

1 − δ, rank(M(w̃, b̃)) = n and 1
n

∑n
i=1 ‖zi‖2 ≤ cz for

some constant cz . Accordingly, we consider the case of

rank(M(w̃, b̃)) = n and 1
n

∑n
i=1 ‖zi‖2 ≤ cz in the follow-

ing.

Since 1
n

∑n
i=1 ‖zi‖2 ≤ cz , from Lemma 3, ∇J̄ has

Lipschitz constant at most czζ. Therefore, for any w′, w ∈
R

d̂,

J̄(w′) = J̄(w) +

∫ 1

0

∇J̄(w + q(w′ − w))⊤(w′ − w)dq

≤ J̄(w) +∇J̄(w)⊤(w′ − w) +
czζ

2
‖w′ − w‖22. (19)

We set ηi =
1

czζ
if i >

∑H−1
l=0 mlml+1 +ml+1 and ηi = 0

otherwise. Using (19) with w′ = wk+1 and w = wk , and the

equation of wk+1 = wk − 1
czζ

∇J̄(wk), we obtain

J̄(wk+1) ≤ J̄(wk)− czζ

2
‖wk+1 − wk‖22 ≤ J̄(wk). (20)

Using (19) with w′ = wk+1 and w = wk, we find that, for

all w ∈ R
d̂,

J̄(wk+1)

≤ J̄(wk) +∇J̄(wk)⊤(wk+1 − wk) +
czζ

2
‖wk+1 − wk‖22

= J̄(wk) +∇J̄(wk)⊤(w − wk) +
czζ

2
(‖w − wk‖22 − ‖w − wk+1‖22)

≤ J̄(w) +
czζ

2
(‖w − wk‖22 − ‖w − wk+1‖22), (21)

where the third line contains only arithmetic rearrangements

using the equation of ∇J̄(wk) = czζ(w
k − wk+1), and the



last line follows the convexity of J̄ . Using (20) and (21), we

have that, for any w ∈ R
d̂,

tJ̄(wt) ≤
t−1
∑

k=0

J̄(wk+1)

≤ tJ̄(w) +
czζ

2
(‖w − w0‖22 − ‖w − wt‖22). (22)

Let f∗(X) = [f∗(x1), . . . , f∗(xn)] ∈ R
my×n

and f(X, θ) = [f(x1, θ), . . . , f(xn, θ)] ∈ R
my×n.

If rank(M(w̃, b̃)) = n, there exists a minimum

norm solution W̄ ∗ ∈ R
my×(mH+1) such that

f(X,ψ(θ0, W̄ ∗)) = W̄ ∗M(w̃, b̃)⊤ = f∗(X), and

hence J̄(w∗) = L(f(·, ψ(θ0, W̄ ∗))) = L(f∗),
where w∗ = vec((W ∗)⊤). Thus, using (22) and

recalling the parameter cr from Definition 1, we

have J̄(wt) ≤ L(f∗) + czcrζ
2t , which implies that

J̄(wt) ≤ J̄(w∗) + ǫ, where t = O( crζǫ ).

Therefore, recalling that we have rank(M(w̃, b̃)) = n and
1
n

∑n
i=1 ‖zi‖2 ≤ cz with probability at least 1 − δ, it holds

that with probability at least 1− δ,

J̄(wt) ≤ J̄(w∗) + ǫ

where t = O( crζǫ ). Then, using (22), we have ‖w∗ −
wt‖2 ≤ ‖w∗ −w0‖2, which implies that ‖wt‖22 ≤ (‖w0‖2+
2‖w∗‖2)2 ≤ cθ for some constant in ǫ > 0.

B. Proof of Theorem 2

We consider the following map from the parameter

space to the concatenation of the output of the model at

x1, x2, · · · , xn:

fX : θ 7→ vec([f(x1, θ), f(x2, θ), · · · , f(xn, θ)]). (23)

By Assumption 2, the map fX is analytic in θ. We recall

that the Jacobian of the map fX is defined as

Jac(fX)(θ) = [∂kf(xi, θ)]1≤i≤n,1≤k≤d ∈ R
nmy×d

In general, the image of the map fX may not be a manifold.

Sard’s theorem asserts that the set of critical values, i.e., the

image of the set of critical points {θ : rank Jac(fX)(θ) <
d}, has Lebesgue measure 0. For any noncritical point θ,

i.e., rank Jac(fX)(θ) = d, there exists a small neighborhood

U(θ) of θ, such that over U(θ), the rank of the Jacobian

matrix of fX is d. Then, the rank theorem states that, the

image fX(U(θ)) is a manifold of dimension d. Therefore,

the volume of the image of the map fX is well defined, and

we have the upper bound:

volfX({θ : ‖θ‖22 ≤ R2})≤ vol(Bd(R)) sup
θ∈Bd(R)

det JacfX(θ)

=
πd/2Rd

Γ(d/2 + 1)
sup

θ∈Bd(R)

det JacfX(θ),

(24)

where Bd(R) is the radius-R ball in R
d.

In the following, we show that if for any point

vec([y1, y2, · · · , yn]) ∈ [−1, 1]nmy , there exists some θ ∈

R
d with

∑n
i=1 ‖f(xi, θ)−yi‖22 ≤ ǫ, then there exists a large

universal constant c such that
nmy

d − 1 ≤ cβH logn
log(1/ǫ) . If this

is the case, then the
√
ǫ-neighborhood of the image set of

the map fX covers all possible labels [−1, 1]nmy . This fact,

combined with (24), implies that

ǫ(nmy−d)/2 πd/2Rd

Γ(d/2 + 1)
sup

θ∈Bd(R)

det JacfX(θ) ≥ 2nmy ,

(25)

The following lemma provides an upper bound on

det JacfX(θ), which will be used to obtain the lower bound

for the Euclidean norm of θ.

Lemma 4. We have the following estimates for the determi-

nant of the Jacobian of fX :

sup
θ∈Bd(R)

det JacfX(θ)

≤





2(H + 1)n

d

(

m2
y +H +R2

H + 1

)H+1




d/2
(26)

Proof of Lemma 4. For any θ, we denote the singular values

of JacfX(θ) as s1, s2, · · · , sd. Then,

det JacfX(θ) =

d
∏

i=1

si ≤
(

∑d
i=1 s

2
i

d

)d/2

=

(‖JacfX(θ)‖2F
d

)d/2

.

(27)

In the following, we derive an upper bound for the Frobenius

norm of JacfX(θ). Then, inequality (27) gives an upper

bound for the determinant of JacfX(θ).
By the definition of the Jacobian matrix,

‖JacfX(θ)‖2F =

n
∑

i=1

‖∂θf(xi, θ)‖2F

=

H+1
∑

l=1

n
∑

i=1

‖∂W (l)f(xi, θ)‖2F + ‖∂b(l)f(xi, θ)‖2F .
(28)

We have the following estimates for the derivatives for 1 ≤
l ≤ H ,

‖∂W (l)f(xi, θ)‖2F + ‖∂b(l)f(xi, θ)‖2F

≤ ‖W (H+1)‖2F (1 + ‖x(l−1)‖22)
H
∏

i=l+1

‖W (i)‖22,
(29)

and for l = H + 1

‖∂W (H+1)f(xi, θ)‖2F + ‖∂b(H+1)f(xi, θ)‖2F
= m2

y(1 + ‖x(H)‖22),
(30)

since the activation function is 1-Lipschitz. From the defining

relation of a feedforward neural network, and from the fact

that the activation function is 1-Lipschitz, we obtain the

following recursive bound for x(l),

‖x(l)‖22 ≤ ‖W (l)x(l−1) + b(l)‖22
≤ (‖W (l)‖2F + ‖b(l)‖2F )(‖x(l−1)‖22 + 1).

(31)



We can iterate inequality (31) and obtain the following bound

for 1 + ‖x(l)‖22,

1 + ‖x(l)‖22 ≤ (1 + ‖x‖22)
l
∏

i=1

(1 + ‖W (i)‖2F + ‖b(i)‖2F ). (32)

Using (29), (30), and (32), we conclude the following

estimate for the Euclidean norm of ∂θf(xi, θ),

‖∂θf(xi, θ)‖2F

=

H+1
∑

l=1

‖∂W (l)f(xi, θ)‖2F + ‖∂b(l)f(xi, θ)‖2F

≤ 2(H + 1)(m2
y + ‖W (H+1)‖2F )

H
∏

i=1

(1 + ‖W (i)‖2F + ‖b(i)‖2F )

≤ 2(H + 1)

(

m2
y +H + ‖θ‖22
H + 1

)H+1

(33)

where the last line follows the AM–GM inequality. Lemma

4 follows from combining (27), (28) and (33), and noticing

θ ∈ Bd(R).

Using Lemma 4, we can finish the proof of Theorem 2.

By substituting (26) into (25), and raising both sides to the

1/d-th power, we obtain the following key estimate

CRn

d3/2
(m2

y +H +R2)H+1

HH
≥
(

2√
ǫ

)nmy/d−1

, (34)

where C is a universal constant. It follows that there exists a

large universal constant c such that if
nmy

d − 1 ≥ cβH logn
log(1/ǫ) ,

then R ≥ nβ . This finishes the proof of Theorem 2.

V. GENERALIZATION BOUND AND EXPERIMENTS

The previous sections presented the construction of deep

neural network architectures of practical sizes, with the

trainability guarantee. A major question remaining now is

whether the constructed neural networks can generalize to

unseen data points after training, which is the focus of this

section.

This section considers multiclass classification with the

one-hot vector y ∈ {0, 1}my . Let j(y) ∈ {1, . . . ,my}
be the index of the one-hot vector y having entry one as

yj(y) = 1. Let ℓ01 represent the 0–1 loss as ℓ(f(x, θ), y) =
1{argmaxj f(x, θ)j 6= j(y)}, with which we can write

the expected test error E(x,y)[ℓ01(f(x, θ), y)]. Let ℓρ be a

standard multiclass margin loss defined by ℓρ(f(x, θ), y) =
min(max(1− (f(x, θ)j(y) −maxj′ 6=j(y) f(x, θ)j′ )/ρ, 0), 1).
We set f and η as constructed in the proof of Theorem 1

(i.e., m1,m2, . . . ,mH−2 = O(H2 log(Hn2/δ)), mH−1 =
O(log(Hn2/δ)), and mH = O(n)).

The following proposition provides a data-dependent gen-

eralization bound, which shows that the trainable deep net-

works can generalize to unseen data points if the weight

norm turns out to be small after training:

Proposition 1. Fix ρ > 0 and ς ≥ 1. Then, for any δ′ >
0, with probability at least 1 − δ − δ′ over θ0 and i.i.d.
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Fig. 2: Training accuracy, test accuracy, generalization gap,

and weight norm for a neural network of practical size with

the trainability guarantee, which is constructed in the proof

of Theorem 1. Even though the trainable neural network has

the capacity to memorize any dataset, it generalizes well

with the natural label, but not with the random label. This

behavior matches the growth of the weight norm as predicted

by Proposition 1.

((xi, yi))
n
i=1, the following holds for any θt generated by

the gradient descent (as θt = θt−1 − η ⊙∇J(θt−1)):

E(x,y)[ℓ01(f(x, θ
t), y)]− 1

n

n
∑

i=1

ℓρ(f(xi, θ
t), yi)

≤ cm2
y⌈ς‖(W̄ t)⊤‖2,∞⌉

ρς
√
n

+

√

ln
π2⌈ς‖(W̄ t)⊤‖2,∞⌉2

δ′

2n
.

for some constant c = O(1).

Figure 2 shows the training accuracy, test accuracy, gener-

alization gap, and weight norm of one of the neural networks

trained with our trainability guarantee. In the figure, the

trainable deep neural network generalizes well with a natural

dataset, while it does not generalize well with a random

dataset, as predicted by the values of the weight norm. Here,

we use the softplus activation, H = 2, m1 = 16 log(Hn2/δ),
and mH = 4n. We employ the MNIST dataset [20], which

is a popular dataset for recognizing handwritten digits with

mx = 784 and my = 10. For the random-label experiment,

the natural labels in the MNIST dataset are replaced by

randomly generated labels. The generalization gap plotted

in subfigure 2c is the value of (training accuracy - test

accuracy)/100. The weight norm plotted in subfigure 2d is the

value of C‖W̄⊤‖2,∞, where C is the normalization constant.

VI. CONCLUSIONS

In this paper, we have proven that there are trainable and

generalizable deep neural networks of sizes growing only

linearly in the dataset size n. We have shown that this is

already the optimal rate in terms of the dataset size n and that



it cannot be improved further, except by a logarithmic factor.

In terms of the rate, these theoretical results are consistent

with the practical observations and previous expressivity

theories. Future work involves improvements in terms of

constant and logarithmic factors.

Looking forward, the formalization of the probable train-

ability Pn,H,δ would contribute to set a common language

in the future studies on trainability. For example, one can

consider data-dependent probable trainability by redefining

Sn and architecture-dependent probable trainability by re-

formulating FH
d , in the definition of Pn,H,δ. Our trainability

results differ from recent results of practical guarantees on

loss landscape with representation learning effects [21], [22].

APPENDIX

A. Proof of Proposition 1

Define Θk = {θ ∈ R
d : (∃W̄ ∈ Wk)[θ = ψ(θ0, W̄ )]}

for all k ∈ N
+, where Wk = {W̄ ∈ R

my×(mH+1) :
k − 1 ≤ ς‖W̄⊤‖2,∞ < k]}. Let T (Θk) = {x 7→ f(x, θ)j :
θ ∈ Θk, j ∈ J } where J = {1, . . . ,my}. Then, the

previous result [23] implies that for any δ′k > 0, with

probability at least 1 − δ′k, the following holds for all

θ ∈ Θk: E(x,y)[ℓ01(f(x, θ), y)] − 1
n

∑n
i=1 ℓρ(f(xi, θ), yi) ≤

2m2
y

ρ Rn(T (Θk)) +

√

ln(1/δ′
k
)

2n , where Rn(T (Θk)) is the

Rademacher complexity of the set T (Θk), given by:

Rn(T (Θk)) = ES,ξ

[

supθ∈Θ,j∈J
1
n

∑n
i=1 ξif(xi, θ)j

]

.
Here, ξ1, . . . , ξn are independent uniform random variables

taking values in {−1, 1} (i.e., Rademacher variables).

Set δ′k = δ′ 6
π2k2 , with which

∑∞
k=1 δ

′
k = δ′. By taking the

union bound over k ∈ N
+, for any δ′ > 0, with probability

at least 1 − δ′, the following holds for all k ∈ N
+ and all

θ ∈ Θk:

E(x,y)[ℓ01(f(x, θ), y)]−
1

n

n
∑

i=1

ℓρ(f(xi, θ), yi)

≤ 2m2
y

ρ
Rn(T (Θk)) +

√

ln
π2⌈ς‖W̄⊤‖2,∞⌉2

δ′

2n
. (35)

By using the Cauchy–Schwarz inequality,

Rn(T (Θk)) ≤ ⌈ς‖W̄⊤‖2,∞⌉
ςn ES,ξ

[

‖∑n
i=1 ξizi‖2

]

. By

using linearity of expectation and Jensen’s inequality

(since the square root is concave in its domain),

ES,ξ[‖
∑n

i=1 ξizi‖2] ≤ (ES

∑n
i=1

∑n
j=1 Eξ[ξiξj ]z

⊤
i zj)

1/2 =

(
∑n

i=1 ES [‖zi‖22])1/2 ≤ (c/2)
√
n, where we utilize the fact

that, with probability at least 1 − δ, ‖zi‖2 ≤ c/2 for some

constant c = O(1), as shown in the proof of Theorem 1.

Therefore, with probability at least 1− δ,

Rn(T (Θk) ≤
(c/2)⌈ς‖W⊤‖2,∞⌉

ς
√
n

. (36)

The desired statement follows by taking the union bound for

the events of (35) and (36).

REFERENCES

[1] E. B. Baum, “On the capabilities of multilayer perceptrons,” J.

Complexity, vol. 4, no. 3, pp. 193–215, 1988. [Online]. Available:
https://doi.org/10.1016/0885-064X(88)90020-9

[2] T. M. Cover, “Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition,” IEEE

Trans. Electronic Computers, vol. 14, no. 3, pp. 326–334, 1965.
[Online]. Available: https://doi.org/10.1109/PGEC.1965.264137

[3] G. Huang, “Learning capability and storage capacity of two-
hidden-layer feedforward networks,” IEEE Trans. Neural Networks,
vol. 14, no. 2, pp. 274–281, 2003. [Online]. Available:
https://doi.org/10.1109/TNN.2003.809401

[4] S. Huang and Y. Huang, “Bounds on the number of hidden neurons in
multilayer perceptrons,” IEEE Trans. Neural Networks, vol. 2, no. 1,
pp. 47–55, 1991. [Online]. Available: https://doi.org/10.1109/72.80290

[5] G. Huang and H. A. Babri, “Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear
activation functions,” IEEE Trans. Neural Networks, vol. 9, no. 1, pp.
224–229, 1998. [Online]. Available: https://doi.org/10.1109/72.655045

[6] M. Yamasaki, “The lower bound of the capacity for a neural network
with multiple hidden layers,” in International Conference on Artificial

Neural Networks. Springer, 1993, pp. 546–549.
[7] C. Yun, S. Sar, and A. Jadbabaie, “Small relu networks are powerful

memorizers: a tight analysis of memorization capacity,” arXiv preprint,

arXiv:1810.07770, 2018.
[8] M. Hardt and T. Ma, “Identity matters in deep learning,” in Interna-

tional Conference on Learning Representations, 2017.
[9] Q. Nguyen and M. Hein, “Optimization landscape and expressivity

of deep cnns,” in Proceedings of the 35th International Conference

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
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