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Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
With no unrealistic assumption, we first prove the following statements for the
squared loss function of deep linear neural networks with any depth and any
widths: 1) the function is non-convex and non-concave, 2) every local minimum is
a global minimum, 3) every critical point that is not a global minimum is a saddle
point, and 4) there exist “bad” saddle points (where the Hessian has no negative
eigenvalue) for the deeper networks (with more than three layers), whereas there
is no bad saddle point for the shallow networks (with three layers). Moreover, for
deep nonlinear neural networks, we prove the same four statements via a reduction
to a deep linear model under the independence assumption adopted from recent
work. As a result, we present an instance, for which we can answer the following
question: how difficult is it to directly train a deep model in theory? It is more dif-
ficult than the classical machine learning models (because of the non-convexity),
but not too difficult (because of the nonexistence of poor local minima). Further-
more, the mathematically proven existence of bad saddle points for deeper models
would suggest a possible open problem. We note that even though we have ad-
vanced the theoretical foundations of deep learning and non-convex optimization,
there is still a gap between theory and practice.

1 Introduction

Deep learning has been a great practical success in many fields, including the fields of computer
vision, machine learning, and artificial intelligence. In addition to its practical success, theoretical
results have shown that deep learning is attractive in terms of its generalization projavies (
et_all, 2014 Mhaskaret al, 2Z016. That is, deep learning introduces good function classes that
may have a low capacity in the VC sense while being able to represent target functions of interest
well. However, deep learning requires us to deal with seemingly intractable optimization problems.
Typically, training of a deep model is conducted via non-convex optimization. Because finding a

global minimum of ageneralnon-convex function is an NP-complete problekiufty & Kabadi,

1987, a hope is that a function induced by a deep model has some structure that makes the non-
convex optimization tractable. Unfortunately, it was shown in 1992 that training a very simple
neural network is indeed NP-harBlim & Rivest T992. In the past, such theoretical concerns in
optimization played a major role in shrinking the field of deep learning. That is, many researchers
instead favored classical machining learning models (with or without a kernel approach) that require
only convex optimization. While the recent great practical successes have revived the field, we do

not yet know what makes optimization in deep learning tractable in theory.

In this paper, as a step toward establishing the optimization theory for deep learning, we prove a
conjecture noted inGgoodfellowet all, 2016 for deeplinear networks, and also address an open
problem announced irChoromanskat all, 207151 for deepnonlinear networks. Moreover, for
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both the conjecture and the open problem, we prove more general and tighter statements than those
previously given (in the ways explained in each section).

2 Deep linear neural networks

Given the absence of a theoretical understanding of deep nonlinear neural nefémokgelow

et all (2016 noted that it is beneficial to theoretically analyze the loss functions of simpler models,
i.e., deeplinear neural networks. The function class of a linear multilayer neural network only
contains functions that are linear with respect to inputs. However, their loss functions are non-
convex in the weight parameters and thus nontrivishxeet all (2014) empirically showed that

the optimization of deefinear models exhibits similar properties to those of the optimization of
deepnonlinear models. Ultimately, for theoretical development, it is natural to start with linear
models before working with nonlinear models (as note@aidi_ & 1T, 2017, and yet even for
linear models, the understanding is scarce when the models betampe

2.1 Model and notation

We begin by defining the notation. Lé&f be the number of hidden layers, and (&f, V") be the
training data set, wit ¢ R%>™ and X € R%*™, wherem is the number of data points.
Here,d, > 1 andd, > 1 are the number of components (or dimensions) of the outputs and
inputs, respectively. Let = YXT(XXT)~1 XY 7. We denote the model (weight) parameters by
W, which consists of the entries of the parameter matrices corresponding to eachidgyer: €
Rvxdu W, € R&xde—1 W, € Rh>xd= Here,d, represents the width of theth layer,
where the0-th layer is the input layer and thgf + 1)-th layer is the output layer (i.edy = d.
anddg1 = dy). Let Iy, be thed, x dj, identity matrix. Letp = min(dg, . ..,d;) be the smallest
width of a hidden layer. We denote tlig ¢)-th entry of a matrixM by M; ;. We also denote the
Jj-th row vector ofM by M; . and thei-th column vector of\/ by M. ;.

We can then write the output of a feedforward deep limeadel,Y (W, X) € R%*™ as

YW, X) =Wy WegWg_q--- WoW X.
We consider one of the most widely used loss functions, squared error loss:

_ 1< 1
L) = 5 SIV W, X). - Vil = SIV (W X) - Y3,
=1

where||-|| p is the Frobenius norm. Note th& (W) is the usuameansquared error, for which

all of our results hold as well, since multiplying( W) by a constant i}’ results in an equivalent
optimization problem.

2.2 Background

Recently Goodfellowef all (2016 remarked that wheBaldi-& Hornik (1989 proved Proposition
1 for shallow linear networks, they stated Conjectiiz2without proof for deep linear networks.

Proposition 2.1 (Baldi—& _Hornik, T989 shallow linear network)Assume thatd = 1 (i.e,
Y(W,X) = WoW;X), assume thal X7 and XY are invertible, assume tha& hasd, dis-
tinct eigenvalues, and assume that d,, p < d, andd, = d, (e.g., an autoencoder). Then, the
loss functionZ (W) has the following properties:

(i) Itis convex in each matri¥/; (or W) when the othefV, (or W) is fixed.

(i) Every local minimum is a global minimum.
Conjecture 2.2 (Baldix Hornik, T989 deeplinear network)Assume the same set of conditions as
in PropositionZ71 except forH = 1. Then, the loss functiof(1V) has the following properties:

() Foranyk € {1,...,H + 1}, itis convex in each matri{/, when for allk’ # k, Wy is
fixed.

(i) Every local minimum is a global minimum.



Baldi'& T (2012 recently provided a proof for Conjectuge2 (i), leaving the proof of Conjecture
22 (ii) for future work. They also noted that the casepof d, = d, is of interest, but requires
further analysis, even for a shallow network with= 1. An informal discussion of Conjectutz2
can be found inKaldl, T989. In AppendixD, we provide a more detailed discussion of this subject.

2.3 Results

We now state our main theoretical results for deep linear networks, which imply ConjEcii¢
as well as obtain further information regarding the critical points with more generality.

Theorem 2.3 (Loss surface ofleeplinear networks)Assume thak X7 and XY are of full rank
with d, < d, and X hasd, distinct eigenvalues. Then, for any degth> 1 and for any layer
widths and any input-output dimensioig, dg, dgr—1, - . .,d1,d,; > 1 (the widths can arbitrarily
differ from each other and fromd, andd,,), the loss functior (W) has the following properties:

(i) Itis non-convex and non-concave.
(ii) Every local minimum is a global minimum.
(iif) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(Wpg --- W5) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvaluk.

Corollary 2.4 (Effect of deepness on the loss surfagesume the same set of conditions as in
TheoremZ=3 and consider the loss functioi(W). For three-layer networks (i.ed = 1), the
Hessian at any saddle point has at least one (strictly) negative eigenvalue. In contrast, for networks
deeper than three layers (i.d > 2), there exist saddle points at which the Hessian does not have
any negative eigenvalue.

The assumptions of having full rank and distinct eigenvalues in the training data matrices in Theorem

3 are realistic and practically easy to satisfy, as discussed in previous workB@ad & Hornik,
1989. In contrast to related previous workdldi & Hornik, T989 Baldi & Tul, 2017, we do not
assume the invertibility oK Y?', p < d,,, p < d,, nord, = d,. In TheorenZ3, p > d,, is allowed,
as well as many other relationships among the widths of the layers. Therefore, we successfully
proved ConjecturE2 (ii) and a more general statement. Moreover, Thed&kiv) and Corollary

24 provide additional information regarding the important properties of saddle points.

TheorenZ3 presents an instance of a deep model that would be tractable to train with direct greedy
optimization, such as gradient-based methods. If there are “poor” local minima with large loss values
everywhere, we would have to search the entire sp#te yolume of which increases exponentially

with the number of variables. This is a major cause of NP-hardness for non-convex optimization. In
contrast, if there are no poor local minima as TheoBe&(ii) states, then saddle points are the main
remaining concern in terms of tractabiltyBecause the Hessian 6{17) is Lipschitz continuous, if

the Hessian at a saddle point has a negative eigenvalue, it starts appearing as we approach the saddle
point. Thus, Theorerda=3 and CorollaryZ4a suggest that for 1-hidden layer networks, training can

be done in polynomial time with a second order method or even with a modified stochastic gradient
decent method, as discussed ge(et_all, 20T%. For deeper networks, CorollaBi4 states that

there exist “bad” saddle points in the sense that the Hessian at the point has no negative eigenvalue.
However, we know exactly when this can happen from ThedZ&{iv) in our deep models. We

leave the development of efficient methods to deal with such a bad saddle point in general deep
models as an open problem.

3 Deep nonlinear neural networks

Now that we have obtained a comprehensive understanding of the loss surfacelofetrapodels,
we discuss deeponlinearmodels. For a practical deep nonlinear neural network, our theoretical
results so far for the deep linear models can be interpreted as the following: depending on

YIf H = 1, to be succinct, we defind’g - -- Wa = W1 - - - Wa £ I, with a slight abuse of notation.
2Typically, we do this by assuming smoothness in the values of the loss function.
30ther problems such as the ill-conditioning can make it difficult to obtain a fast convergence rate.



nonlinear activation mechanism and architecture, training would not be arbitrarily difficult. While
theoretical formalization of this intuition is left to future work, we address a recently proposed open
problem for deep nonlinear networks in the rest of this section.

3.1 Model

We use the same notation as for the deep linear models, defined in the beginning of Baciitve
output of deep nonlinear neural netwolk(IV, X) € R4 *™ is defined as

YW, X) = qop1(Wap10u0(Whog—1(Wy—1 - - - 02(Wao1 (W1 X)) - ),

whereq € R is simply a normalization factor, the value of which is specified later. Hege;
Rd>xm _, Rdexm jg the element-wise rectified linear function:

b1 ... bim 5’(611) ce 5'(b1m)
ol | o =l s
bdkl te bdkm 5(bdk1) e 5'(bdkm)

whereg (b;;) = max(0, b;;). In practice, we usually set;,; to be an identity map in the last layer,
in which case all our theoretical results still hold true.

3.2 Background

Following the work byDauphinefall (2014, Choromanskat all (Z015) investigated the connec-

tion between the loss functions of deep nonlinear networks and a function well-studied via random
matrix theory (i.e., the Hamiltonian of the spherical spin-glass model). They explained that their
theoretical results relied on seveualrealisticassumptions. Late€horomanskat all (2?0151 sug-

gested at the Conference on Learning Theory (COLT) 2015 that discarding these assumptions is an
important open problem. The assumptions were labeled Alp, A2p, A3p, Adp, A5u, A6u, and A7p.

In this paper, we successfully discard most of these assumptions. In particular, we only use a weaker
version of assumptions Alp and A5u. We refer to the part of assumption Alp (resp. A5u) that
corresponds only to theodelassumption as Alp-m (resp. A5u-m). Note that assumptions Alp-m
and A5u-m are explicitly used in the previous wotkhpromanskaet all, P0T53 and included in

Alp and A5u (i.e., we araot making new assumptions here).

As the modelY(W, X) € R¥*™ represents a directed acyclic graph, we can express an output
from one of the units in the output layer as
v H+1

YW, X)j0=a) [XilgwnlZilun H w(“)) @)
p=1

Here,V is the total number of paths from the inputs to eg¢h output in the directed acyclic graph.
In addition, [X;](; ) € R represents the entry of thieth sample input datum that is used in the

p-th path of thej-th output. For each layék, w; )) € R is the entry ofi¥;, that is used in the-th
path of thej-th output. Finally[Z;]; ,y € {0,1} represents whether theth path of thej-th output

is active (Z;](;,,) = 1) or not (Z;](;,y = 0) for each samplé as a result of the rectified linear
activation.

Assumption Alp-m assumes that th& are Bernoulli random variables with the same probability
of successPr([Zi](;» = 1) = pfor alli and(j,p). Assumption ASu-m assumes that thts are
independent from the input’s and parameters’s. Wlth assumptions Alp-m and A5u-m, we can

. - ] H+1
W”teEZ[Y(VV’X)j,i}:qu 1[Xil Gy p TTi= + (”))

Choromanskaf all (20150 noted that A6u is unrealistic because it implies that the inputs are not
shared among the paths. In addition, Assumption A5u is unrealistic because it implies that the
activation of any path is independent of the input data. To understand all of the seven assumptions
(Alp, A2p, A3p, Adp, A5u, A6u, and A7p), we note tHahoromanskat all (Z0T5h&) used these
seven assumptions to reduce their loss functions of nonlinear neural networks to:
1 A H+1
Acpreviouiw) = \H/2 Z Xiy yia,. SEH 41 H w;, sSubjectto— Zw =1,

i1ineyigp1=1 k=1 i=1



where) € R is a constant related to the size of the network. For our purpose, the detailed definitions
of the symbols are not importank(andw are defined in the same way as in equailpnHere,

we point out thathe target functiort” has disappeared in the lo€evioud W) (i.€., the loss value

does not depend on the target function). That is, whatever the data polntaref their loss values

are the same. Moreovehe nonlinear activation function has disappeareigevioud V) (and the
nonlinearity is not taken into account i or w). In the next section, by using only a strict subset

of the set of these seven assumptions, we reduce our loss function to a more realistic loss function
of an actual deep model.

Proposition 3.1 (High-level description of a main result @horomanskaet_all, 20153 Assume
Alp (including Alp-m), A2p, A3p, Adp, A5u (including A5u-m), A6u, and Khoromanska

et al, Z0T58. Furthermore, assume thaf, = 1. Then, the expected loss of each sample datum,
Lorevioud W), has the following property: above a certain loss value, the number of local minima
diminishes exponentially as the loss value increases.

3.3 Results

We now state our theoretical result, which partially address the aforementioned open problem. We
consider loss functions for all the data points and all possible output dimensionalities (i.e., vectored-
valued output). More concretely, we consider the squared error loss with expectatidn, =

EZ[Y (W, X) - Y]|I%.

Corollary 3.2 (Loss surface of deep nonlinear networRssume Alp-m and A5u-m. lget= p— 1.
Then, we can reduce the loss function of the deep nonlinear nigilé) to that of the deep linear
modelL(W). Therefore, with the same set of conditions as in The@#&the loss function of the
deep nonlinear model has the following properties:

(i) Itis non-convex and non-concave.
(i) Every local minimum is a global minimum.
(iii) Every critical point that is not a global minimum is a saddle point.
(iv) The saddle points have the properties stated in The@®&x(iv) and CorollaryZ—2.

Comparing Corollary82 and Propositiof8~1, we can see that we successfully discarded assump-
tions A2p, A3p, Adp, A6bu, and A7p while obtaining a tighter statement in the following sense:
CorollaryB2 states with fewer unrealistic assumptions that there is no poor local minimum, whereas
PropositioriZroughly asserts with more unrealistic assumptions that the number of poor local min-
imum may be not too large. Furthermore, our moidk strictly more general than the model an-
alyzed in Choromanskaf all, 20T5560) (i.e., this paper’s model class contains the previous work’s
model class but not vice versa).

4 Proof Idea and Important lemmas

In this section, we provide overviews of the proofs of the theoretical results. Our proof approach
largely differs from those in previous worBaldi & Hornik, 1989 Baldi& 1 U, P012 Choromanska

ef_all, P0T536). In contrast to Baldi-& Hornik, T989 Baldi & 11, ?0T7, we need a different
approach to deal with the “bad” saddle points that start appearing when the model becomes deeper
(see Sectioz33), as well as to obtain more comprehensive properties of the critical points with
more generality. While the previous proofs heavily rely on the first-order information, the main
parts of our proofs take advantage of the second order information. In cobifmshmanskaf all
(?01530) used the seven assumptions to relate the loss functions of deep models to a function
previously analyzed with a tool of random matrix theory. With no reshaping assumptions (A3p, A4p,
and A6u), we cannot relate our loss function to such a function. Moreover, with no distributional
assumptions (A2p and A6u) (except the activation), our Hessian is deterministic, and therefore, even
random matrix theory itself is insufficient for our purpose. Furthermore, with no spherical constraint
assumption (A7p), the number of local minima in our loss function can be uncountable.

One natural strategy to proceed toward TheoPEdand CorollaryfB2would be to use the first-order
and second-order necessary conditions of local minima (e.g., the gradient is zero and the Hessian is



positive semidefinite). However, are the first-order and second-order conditions sufficient to prove
TheoremZ=3 and Corollary3=2? CorollariedZ-4 show that the answer is negative fisepmodels

with H > 2, while it is affirmative for shallow models withl = 1. Thus, for deep models, a simple

use of the first-order and second-order information is insufficient to characterize the properties of
each critical point. In addition to the complexity of the Hessian oftbepmodels, this suggests that

we must strategically extract the second order information. Accordingly, in séEidpwe obtain

an organized representation of the Hessian in Ler@@and strategically extract the information

in LemmadZ4 anddB. With the extracted information, we discuss the proofs of Thedehand
CorollaryB22in sectionz=3.

4.1 Notations

Let M @ M’ be the Kronecker product dff andM’. LetD .y f() = 5 97C)_ pe the partial

vee(W;I)
derivative off with respect tovec(W,I') in the numerator layout. That s, ff : Rdi» — Rdout, we
haveD,..qyr) f(-) € Réuex(ddi=1) | et R(M) be the range (or the column space) of a matrix
M. Let M~ be any generalized inverse df. When we write a generalized inverse in a condition
or statement, we mean it for any generalized inverse (i.e., we omit the universal quantifier over
generalized inverses, as this is clear). ket (Y(W,X) — Y)T € R™*dv be an error matrix.
LetC = Wy --- Wy € RwX4, When we writel}, - - - Wy, we generally intend that > &’
and the expression denotes a product é¥erfor integerk > j > k. For notational compactness,
two additional cases can arise: whier= £/, the expression denotes simpk,, and wherk < £/,
it denotesl,, . For example, in the statement of Lem#&3d, if we setk := H + 1, we have that
WhsiWey - Whys £ 1,

In LemmaZ3® and the proofs of Theorenis3, we use the following additional notation. We de-
note an eigendecomposition Bfas>X = UAUT, where the entries of the eigenvalues are ordered
asAy1 > -+ > Ay, a, With corresponding orthogonal eigenvector matrix= [ul,...,udy].

For eachk € {1,...d,}, wz € R%*! is a column eigenvector. Let = rank(C) €
{1,...,min(d,,p)}. We define a matrix containing the subset of théargest eigenvectors as
Us = [u1,...,up). Given any ordered sél; = {i1,...,i5 | 1 < iy < -+ < iy < min(dy,p)},
we define a matrix containing the subset of the corresponding eigenvectdrs asfu;,, . . ., u;,).
Note the difference betwedr, andUz, .

4.2 Lemmas

As discussed above, we extracted the first-order and second-order conditions of local minima as
the following lemmas. The lemmas provided here are also intended to be our additional theoretical
results that may lead to further insights. The proofs of the lemmas are in the appendix.

Lemma 4.1 (Critical point necessary and sufficient conditid#i)is a critical point of £(W) if and
onlyifforall k € {1,...,H + 1},

_ T T
(Dvec(wg)ﬁ(W)) = (Wys1Wh - Wiy @ (Wi - WaW1. X)) vec(r) = 0.
Lemma 4.2 (Representation at critical poirif) 1 is a critical point of £(1V), then
WyaWy - WolWy = C(CTC)~cTy xT(xxT)~L.

Lemma 4.3 (Block Hessian with Kronecker produdtrite the entries o¥2L(W) in a block form
as

_ T _ T

DveC(W§+1) (DveC(W};Jrl)‘C(W)) T Dvec(WlT) (Dvec(W§+1)£(W))
VAL(W) = : - :
_ T _ T

DVeC(WE+1) (Dvec(WlT)‘C(W)) T ’Dvec(WlT) <Dvec(W1T)£(W)>

“For a non-convex anton-differentiabldunction, we can still have a first-order and second-order necessary
condition (e.g.Rockafellar & Wets?009 theorem 13.24, p. 606).




Then, foranyk € {1,..., H + 1},

_ T

Dvec(Wg) (Dvec(WkT)ﬁ(W)>

= ((Whsr - Wig1)" Wegr - Wig1) @ Wiy - Wi X)(Wimy - Wi X))
and, foranyk € {2,..., H + 1},

_ T
Dvec(W,;F) (IDvec(WlT)E(W))
= (CT"(Wpgy1 - W) @ X(Wi—y - - W X)) +
(Wi W) @ X] [T, @ rWrga - Wia)on oo Lay, @ ((Waga - Wiga) . a] -
Lemma 4.4 (Hessian semidefinite necessary conditiériy> £ (W) is positive semidefinite or neg-
ative semidefinite at a critical point, then for ahye {2, ..., H + 1},
R(Wy_1--- WsWo)T) CR(CTC) or XrWy Wy -+ Wiy1 = 0.
Corollary 4.5 If V2£(W) is positive semidefinite or negative semidefinite at a critical point, then
foranyk € {2,..., H + 1},
rank(WH+1WH s Wk) > rank(Wk,l s W3W2) or XTWH+1WH s Wk+1 =0.

Lemma 4.6 (Hessian positive semidefinite necessary conditibR) £ (1) is positive semidefinite
at a critical point, then

ccre)y-ct =UU; or Xr=0.
4.3 Proof sketches of theorems

We now provide the proof sketch of Theor& and Corollary32 We complete the proofs in the
appendix.

4.3.1 Proof sketch of Theoreni=3 (ii)

By case analysis, we show that any point that satisfies the necessary conditions and the definition of
a local minimum is a globahinimum.

Casel: rank(Wg ---Wy) =p andd, < p: If d, < p, CorollaryEB with £ = H + 1 implies
the necessary condition of local minima th&i = 0. If d, = p, Lemma&B with & = H + 1
andk = 2, combined with the fact thaR(C) C R(Y X7T), implies the necessary condition that
Xr = 0. Therefore, we have the necessary condition of local minifa,= 0 . Interpreting
conditionXr = 0, we conclude thalll” achievingXr = 0 is indeed a globahinimum.

Casell: rank(Wg ---Ws) =p andd, > p: From LemmalZ®, we have the necessary condi-
tion that C(CTC)~CT = UzUL or Xr = 0. If Xr = 0, using the exact same proof as in
Case |, it is a global minimum. Suppose then th4C7'C)~C" = UzU}. From LemmaZ2
with k¥ = H + 1, we conclude thap £ rank(C) = p. Then, from Lemmd&2 we write
Wiy Wi = UU'YXT(XXT)~!, which is the orthogonal projection onto the subspace
spanned by the eigenvectors corresponding to thdargest eigenvalues following the ordinary
least square regression matrix. This is indeed the expression of a giobalum.

Caselll: rank(Wpg - -- Ws) < p: We first show that ifrank(C') > min(p,d,), every local min-
imum is a global minimum. Thus, we consider the case wherk(Wy ---W5) < p and
rank(C') < min(p, d,). Inthis case, by inductiondn= {1, ..., H+1}, we prove that we can have
rank(Wy, --- W1) > min(p, d,) with arbitrarily small perturbation of each entry &fy,...,W;
without changing the value a(W). Once this is proved, along with the results of Case | and Case
II, we can immediately conclude that any point satisfying the definition of a local minimum is a
global minimum.

We first prove the statement for the base case with 1 by using an expression 6 that is
obtained by a first-order necessary condition: for an arbitfary

W, =Ty oy xT(xxT)=' + (I - (cTc)~cTO)L,.



By using LemmaZ8 to obtain an expression @, we deduce that we can havenk(WV/;) >
min(p, d,,) with arbitrarily small perturbation of each entry Bf; without changing the loss value.

For the inductive step witk € {2,..., H + 1}, from LemmaZ3, we use the following necessary
condition for the Hessian to be (positive or negative) semidefinite at a critical point: fok any
{2,....H +1},

R((Wk,1 s WQ)T) - R(CTC) or X?“WH+1 cee Wk+1 =0.
We use the inductive hypothesis to conclude that the first condition is false, and thus the second
condition must be satisfied at a candidate point of a local minimum. From the latter condition, with
extra steps, we can deduce that we can hauk(W;Wj_1 --- W) > min(p, d,;) with arbitrarily
small perturbation of each entry @f;, while retaining the same loss value.

We conclude the induction, proving that we can hawek(C) > rank(Wgyi---Wp) >
min(p, d,) with arbitrarily small perturbation of each parameter without changing the value of
L(W). Upon such a perturbation, we have the case whetk(C') > min(p, d, ), for which we

have already proven that every local minimum is a global minimum. Summarizing the above, any
point that satisfies the definition (and necessary conditions) of a local minimum is indeed a global
minimum. Therefore, we conclude the proof sketch of Thedeesiii) .

4.3.2 Proof sketch of Theoren®=3 (i), (iii) and (iv)

We can prove the non-convexity and non-concavity of this function simply from its Hessian (The-
oremPZ3 (i)). That is, we can show that in the domain of the function, there exist points at which
the Hessian becomes indefinite. Indeed, the domain contains uncountably many points at which the
Hessian is indefinite.

We now consider Theorei®3 (iii): every critical point that is not a global minimum is a saddle
point. Combined with Theore3 (ii), which is proven independently, this is equivalent to the
statement that there are no local maxima. We first show th&if.; - - - Wa # 0, the loss function
always has some strictly increasing direction with respeét’toand hence there is no local maxi-
mum. If Wy, --- Wo = 0, we show that at a critical point, if the Hessian is negative semidefinite
(i.e., a necessary condition of local maxima), we can R&yg, ; - - - W5 # 0 with arbitrarily small
perturbation without changing the loss value. We can prove this by inductién=o8, ..., H + 1,
similar to the induction in the proof of Theord® (ii) . This means that there is no local maximum.

TheoremZ3 (iv) follows TheoreniZ3 (ii)-(iii) and the analyses for Case | and Case Il in the proof
of TheorenZ3 (ii) ; whenrank(Wy; - - - W) = p, if V2L(W) = 0 at a critical point}V is a global
minimum.

4.3.3 Proof sketch of Corollary32

Since the activations are assumed to be random and independent, the effect of nonlinear activations
disappear by taking expectation. As a result, the loss funati{d#) is reduced ta(W).

5 Conclusion

In this paper, we addressed some open problems, pushing forward the theoretical foundations of
deep learning and non-convex optimization. For déggar neural networks, we proved the afore-
mentioned conjecture and more detailed statements with more generality. Foridieparneural
networks, when compared with the previous work, we proved a tighter statement (in the way ex-
plained in sectiofd) with more generalityd,, can vary) and with strictly weaker model assumptions
(only two assumptions out of seven). However, our theory does not yet directly apply to the prac-
tical situation. To fill the gap between theory and practice, future work would further discard the
remaining two out of the seven assumptions made in previous work. Our new understanding of the
deep linear models at least provides the following theoretical fact: the bad local minima would arise
in a deep nonlinear model banhly as an effect of adding nonlinear activatidnghe corresponding
deeplinear model. Thus, depending on the nonlinear activation mechanism and architecture, we
would be able to efficiently traideepmodels.
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Deep Learning without Poor Local Minima
Appendix

A Proofs of lemmas and corollary in Sectiord2

We complete the proofs of the lemmas and corollary in Se@i@an

A.1 Proof of Lemmai1

Proof SinceL(W) = $||Y(W, X) = Y||%= 5 vec(r)T vec(r),

Dvec(WE)‘C_(W) ( vec(r) E( )) ( vec(W,I') vec(r))
T ( vec(WT) vec( X Iq, VV1 W;;Jrlfdy) — DVeC(WI;T) Vec(YT))

—VeC r

)
()" (Duecqry Wi 1+ Wies1 @ (W -+ Wi X)) vee(WT) )
ec(r)” Wagr - Wig1 @ Wiy - Wi X)T) .
T
By setting (Dvec(wg)ﬁ(W)) =0forall k € {1, ..., H + 1}, we obtain the statement of Lemma

271 For the boundary cases (i.&,= H + 1 or k = 1), it can be seen from the second to
the third lines that we obtain the desired results with the definitidf, -- Wi, = I, (i.e.,
WH+1"'WH+2 £ Idy andWo~--W1 éldl)- O

A.2 Proof of Lemmal=2

Proof From the critical point condition with respectt%; (LemmaZ),
_ T T
0= (Dvec(WE)E(W)) = (WH+1 e WQ X X ) VEC(T) = VGC(XT’WH+1 e WQ),

which is true if and only ifXr W1 - - - Wo = 0. By expanding, 0 = XXTW{ICTC - XY TC.
By solving forWy,

=(cTo)y c'yxT(xx")'+ (1 - (cTc)y-cTo)L, 2)

for an arbitrary matrix’.. Due to the property of any generalized invergaang 2006 p. 41), we
have thaC(CTC)~CTC = C. Thus,

cwy =cCcto)y Ty xT(xx")y '+ -cctoy c"eyL=ccte)y ety xT(xxT)!

A.3 Proof of LemmaE3

Proof For thediagonal blocks: the entries of diagonal blocks are obtained simply using the result
of Lemmal_l as

_ T T
DVCC(WI;T) (DVCC(WE)L(W)) = (WH+1 e Wk-i-l ® (Wk—l e WIX)T) DVCC(WE) VQC(T).

Using the formula ofD,..(y 1) vec(r) computed in the proof of of Lemm&1 yields the desired
result.
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For the of-diagonalblockswith k = 2, ..., H:
Dvcc(WkT) [Dvoc(WlT)Z(W)]T
T T
= (Wig1 - W@ X)) Dyee(wrry vee(r) + (DveC(WkT)WHH o Wit ® XT) vec(r)

The first term above is reduced to the first term of the statement in the same way as the diagonal
blocks. For the second term,

T
(Dvec(wg)WHH Wy ® XT) vec(r)

T
((DVCC(WE)WHH,JWH o W2) ®XiT) Tij

‘Pnﬂs
NgE

i=1 j=1
m dy
T
= ((Ap)j. © By @ X{')" ri
i=1 j=1
m dy
= Z [(Ak)J 1 (B X X) (Ak)j,dk, (B;{ X Xl)} Tij
i=1j=1
T m dy
= [(Bk O Y Ti,j(Ak)j,lXi) (Bk ® D it 25l Ti,j(Ak)j,dei)} :
where Ay, = Wpgy1--- Wiy and By = Wjy_1---W5.  The third line follows the
fact that (WH-H,jWH cee WQ)T = VQC(WQT cee WEW%HJ) = (WH+1,j s Wk+1 ®
Wl WL Yvec(W[). In the last line, we have the desired result by rewriting

S S v (AR) X = X (r W - Wiga).oo

For the of-diagonalblockswith £k = H 4+ 1: The first term in the statement is obtained in the
same way as above (for the off-diagonal blocks Vit 2, ..., H). For the second term, notice that

vee(Wh 1) = [(Way)i, .. (WH+1)d ] where(Wp11);,. is thej-th row vector ofW 11

or the vector correspondlng to thieh output component Thatis, itis conveniently organized as the
blocks, each of which corresponds to each output component (or rather weveh(i8€’ ) instead

of vec(WW},) for this reason, among others). Also,

T
(Dvec(W§+l)WH+1 - Wa® XT) vee(r) =

T T
= (P ) ©X7) ria o S (P, o) 0 X7) iy |
where we also used the fact that

ZZ (( vee((Wir+)T.) O, ) ®X1T)T7"i»a‘ = i ((Dvec«wmoz.)@f) ®X1T)T7’at-

=1 j=1 =1
For each block entry =1, ..., d, in the above, similarly to the case bf= 2, ..., H,

Z ((DVec((WHH)T,.)CJ‘#) ® Xz‘T)T”vt = (BIE—H ® eri,t(AHH)j,tXi) :

1=

Here, we have the desired result by rewrithy” | 7 +(Ap+1);,1X; = X(rlg, ). = Xr. ;. O

A.4 Proof of Lemmal&2

Proof Note that a similarity transformation preserves the eigenvalues of a matrix. Fokeach
{2,...,H + 1}, we take a similarity transform o¥72L(W) (whose entries are organized as in
Lemmad3) as

T

_ T _
Dvec(WlT) (,Dvec(WlT)L(W)> Dvec(Wg) (DveC(WlT)’C(W))
—1g2p _ = T = T
Pk \ E(W)Pk - Dvec(Wf) <Dvec(Wg)£(W)> Dvec(W,?) (Dvec(WE)E(W))
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Here,P;, = [eH+1 e Pk] is the permutation matrix wheeg is thei-th element of the standard

basis (i.e., a column vector with 1 in thieh entry and 0 in every other entries), afil is any
arbitrarily matrix that make$’; to be a permutation matrix. Leét/;, be the principal submatrix of
Pl;1V2£(W)Pk that consists of the first four blocks appearing in the above equation. Then,

VZL(W) =0
=>Vke{2,...., H+1},M; =0
= Vk € {2’ ERRR H+ 1}7 R(Dvec(WE)(Dvec(WlT)E(W))T) < R(Dvec(WlT)(Dvec(WlT)Z(W))T)?
Here, the first implication follows the necessary condition with any principal submatrix and the sec-

ond implication follows the necessary condition with the Schur complerZénairiy 2006 theorem
1.20, p. 44).

Note thatR(M') C R(M) < (I — MM~ )M’ = 0 (Zhang 2006 p. 41). Thus, by plugging in
the formulas ofD. w1y (Dyecqw ) L(W)) andeeC(WlT)(Dvec(wlT)L(W))T that are derived in
Lemmad33, V2L(W) = 0 = Vk € {2,...,H + 1},

0= (1 —(CTCe(XXTHCTC® (XXT))—) (CT Ay ® BuW:1 X)

+ (1= (C"co(XXM)CETC o (XXT)) BE @ X] [Tayy @ (A1 - Loy ® (PAR)-a]

whereA, = Wiy Wy andBy = Wy_q - -- Wo. Here, we can replacg®” C @ (XXT))~
by ((CTC)~@(XXT)~1) (see Appendi&). Thus,/ — (CTC®(XXT))(CTC®(XXT)) can
be replaced byly, ® 1a,) — (CTC(CTC)~ @ 1a,) = (15, — CTC(CTC)™) ® I4,. Accordingly,
the first term is reduced to zero as

((Jd1 —cTecTo) ) @ Idy) (OTAk ® BkW1X) = ((Is, — CTC(CTC))CT A) ® BpWi X =0,
sinceCTC(CTC)~CT = CT (zhang 2006 p. 41). Thus, with the second term remained, the
condition is reduced to

Vke{2,..., H+1},Vte {1,...,d,}, (BFf —CTC(CTC)"Bf) @ X(rAg)., = 0.

This implies

Vke{2,...,H+1}, (R(BF) CR(CTC) or XrA,=0),
which concludes the proof for the positive semidefinite case. For the necessary condition of the
negative semidefinite case, we obtain the same condition since

VIL(W) = 0

S VEe{2,.. . H+1},M, <0

=Vk € {27 AR H+ 1}’ R(i'Dvec(WE)(DveC(WlT)Z(W))T) c R(ipvec(WiT)(Dvec(WlT)E(W))T)
=Vk € {2’ AR H+ 1}7 R(DVCC(W];T)(Dvcc(WlT)‘C_(W))T) c R(DVCC(WIT)(Dvcc(WlT)‘c_(W))T)

A.5 Proof of Corollary 25

Proof From the first condition in the statement of Lem#h3,

RWL - WE ) CRWE - WE Wiy - Wa)
= rank(W,[ - - W}, ) > rank(Wy - W, |) = rank(Wyyq - - - Wy) > rank(Wy_q - - Wa).

The first implication follows the fact that the rank of a product of matrices is at most the minimum
of the ranks of the matrices, and the fact that the column spaidé/of- - W, , is subspace of the

column space ofV --- W[ . 4
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A.6 Proof of LemmaE®

Proof Forthe(Xr = 0) condition: LetM ., be the principal submatrix as defined in the proof of
Lemmal-2 (the principal submatrix oPI}ilVQE(W)PHH that consists of the first four blocks of

it). Let By, = Wiy -+ Wa. Let F = By (1WA X XTWI' BT, . Using Lemm&&3for the blocks
corresponding t&V; andWy 1,

Moo — CTCo XXT (CT & XXT(ByW)T)+ E
HH1 = (0 @ By Wi XXT) + ET I, ® F
whereE = [Bf;,, ® Xr.1 ... B}, ®Xr. 4 ]. Then, by the necessary condition with the

Schur complemenZhang 2006 theorem 1.20, p. 44\ g1 = 0 implies

0=((Ia, ®Lay) — (Is, ® F)(Iq, ® F)")((C @ By W1 XX") + ET)
=0=(lg, ® Iy, — FF)(C® By Wi XX") + (I, ® Ia,, — FF~)E"
= (la, @ Lo, — FF)E"

IdH —FF~®1; 0 BH+1®(X7“.’1)T

i 0 IdH —FF~® 1L BH+1®(X’I’.7dy)T
i (IdH — FF_>BH+1 [029] (Xr.,l)T

|(Iay — FF7)Bpy1 ® (Xr.g,)"

where the second line follows the fact thidg, © F')~ can be replaced byf;, ® F'~) (see Appendix
B77). The third line follows the fact thatl — FF~)By1W1X = 0 becauséR (B 1 W1 X) =

R(BuiW1i XXTW{I' B]; . |) = R(F). In the fourth line, we expandefl and used the definition
of the Kronecker product. It implies

FF"Bygi1 =Bgy1 or Xr=0.

Here, if Xr = 0, we have obtained the statement of the lemma. Thus, from now on, we focus on the
case wherd"F~ By 1 = By1 andXr # 0to obtain the other conditio; (CTC)~CT = U,Uj.

Forthe(C(CTC)~C" = U,Uj,) condition: By using another necessary condition of a matrix being
positive semidefinite with the Schur complemenhéng 2006 theorem 1.20, p. 44Mpy1 = 0
implies that

(I, ® F) — (C ® By WiXX" + ET) (cTce xxT)" (C’T & XXT (BraaWh)" + E) =0 (3)

Since we can replad®?C ® XXT)~ by (CTC)~ @ (XXT)~! (see Appendi), the second
term in the left hand side is simplified as

(C®BuumXXT+ E") (€"C o xX")™ (C" & XX (BuysW1)" + E)

= ((C(CTC)’ ® BHHWl) + BT ((CTC)* ® (XXT)’I)) ((CT ® XXT(BHHWl)T) n E)
= (c(oy ") + BT ((0T0) @ (XXT) ) B

= (C(CTC)*CT ® F) n (TTXT(XXT)*XT ® BHH(CTC)’BHH) @)

In the third line, the crossed terms(G(CTC)— ® Bpi1 Wl) E and its transpose — are vanished

to 0 because of the following. From Lemn#al, (I;, ® (WH---WlX)T)Tvec(r) =0 &
Wy - Wi Xr = By Wi Xr = 0 at any critical point. Thus(C(C"C)” ® Bu41W1) E =
[C(CTC) Bl ® BupiWiXr.y ... C(CTC) Bf,, ® BupaWiXr.q,] = 0. The forth line
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follows
ET ((CTCY ® (XXT)*) E=

Bu41(CTC) " BE 1 @ (1 )" XT(XXT) "' Xr. 1 -+ Buta(CTC)"Bh, ® (r )" XT(XXT) "' Xr. a,

Bry1(CTC) Bl 1 @ (ra))" XT(XXT) ' X7 1+ - Buya(CTC) " Bfy ® (r.,a,) " XT(XXT) " X7, a,,
=rTXT(XX") ' Xr ® Bu41(CTC)” Buy1,
where the last line is due to the fact that (r. ;)7 X7 (X XT)~1 Xr , is a scalar and the fact that
(ro)"Lrq - (r)T Lr g,
for any matrixL, »T Lr = ,
(roa))TLra-(ra)) Lo a,

From equation8 and@, Mg, = 0 =

((Ia, —C(CTC) " CT)@ F) = (r"XT(XXT) "' Xr ® By11(CTC) " By1) = 0. (5)

In the following, we simplify equatioB by first showing thaR (C') = R(Uz,) and then simplifying
rTXT(XXT)"1Xr, FandBpy 41(CTC)" By 1.
Shawing that R(C) = R(Uz.) (following the proof in Baldi-& Hornik, T989: Let Po =
C(CTC)~CT be the projection operator dA(C). We first show thalPc X Pc = X P = PcX.
PeYXPo=Wyir - WiXXTW! - W,

=YXTwi. . . wi,

=YXT( XX 1xyT P,

=3YPco,
where the first line follows Lemni&2, the second line is due to Lema with k = H+1 (i.e.,0 =
Wy Wi Xr & Wy WiXXTWE - WE = YXTWTE ... WE), the third line follows
Lemmal=2, and the fourth line uses the definition Bf Since PoXPc is symmetric,XPc (=
PcYPc) is also symmetric and hencePe = (SP)T = PLET = PoS. Thus, PcXPo =
Y Pc = Pc¥. Note thatPy = UPyroUT asPyre = UTC(CTUUTC)~CTU = UTPU.
Thus,

UPyrcUTUANUT = Po¥ = S P = UNUTUPyr o UT,

which implies thatP;rcA = APyr. Since the eigenvalued\( s, ..., Aq, q4,) are distinct, this
implies thatPyro is a diagonal matrix (otherwiseéyrcA = APyrs impliesA;; = A;; for

i # j, resulting in contradiction). Becausg®;r - is the orthogonal projector of rank(as Pyro =

UT PcU), this implies thatP; - is a diagonal matrix with its diagonal entries being onesnes)
and zerosdy — p times). Thus,

C(CTC)~C" = Po =UPyrcU" = UL, U7,
for some index sef;. This means thak(C) = R(Uz,).
Simplifying r " XT(XXT)~1 Xr:
T XT( XX Xr = (W X - V) XT(Xx X' x(xT(cw)T —vT)
= XXT(ew)T —cw xYT —yXxT(cwy)T + 2
= PoXPo — PoX —XPc + %
=¥ - UpAg, U}

wherePc = C(CTC)~C" = Uz, U7 and the last line follows the facts:

Az, 0 ][I,
PcYPo = Ug, UL UNU UL, U7 = Uz, [I; 0] [ g Az} [5’} Ui, =Uzr,Az,U7,

T T Az, O (g T
PcY = UIﬁUzﬁUAU = Uzﬁ[lﬁ 0] 0 A,I_ U_;, = UZﬁAZpUIﬁy
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and similarly, > Pg = U£ Az,Uz,.

Simplifying F: In the proof of Lemm&Z2, by using Lemma&1 with £ = 1, we obtained that
Wy = (CTO)"CTYXT(XXT)=1 + (I — (CTC)~CTC)L. Also, from Lemm&aZ3, we have that
Xr = 0or By (CTC)=CTC = (CTC(CTC)" B} 1)" = Bus1. If Xr = 0, we got the
statement of the lemma, and so we consider the cagg;of, (CTC)~CTC = By,. Therefore,

By Wy = By (CTC)y" 0Ty xT(xxT)~1.
SinceF = BH+1W1XXTWFB£+1,
F = By (CTC)~CTsC(CTC) By 41

From LemmaZa with k = H + 1, R(B},,) € R(CTC) = R(BH Wi 1Wri1Bry1) C
R(B} 1), which implies thatR(B},,) = R(CTC). Then, we haveR(C(CTC)~ B} ) =
R(C) = R(Uz,). Accordingly, we can write it in the fornG'(C* C)~ B}, ., = [Uz,, 0]G2, where

0 € R%*(1=P) andGy € GLg, (R) (ad; x d; invertible matrix). Thus,

T
uL

_ T

I; O I; O Az. O
} UAUT[Uz,,0]Gs = GT {g 0] A {5’ 0} Gy =GT { o 0] Gs.
Simplifying Bg1(CTC)~ By, From LemmaZ3, CTC(CTC)~Byy1 = Bg.1 (again since
we are done ifXr = 0). Thus,By1(CTC)"By11 = By (CTC)~CTC(CTC)"B};,,. As
discussed above, we wri€(C*C)~ B}, | = [Uz,,0]G,. Thus,

T

BH+1(CTC)_BH+1 == Gg |: 0

I, 0
] [Uz,,01G2 = G5 [(;7 0} Go.

Puttingresults together: We use the simplified formulasiet®? C)~CT, r T XT(XXT)~ 1 Xr, F
andBy1(CTC)~ By in equatiorB, obtaining

(L, — U,UL) © GT {Agp g} Ga) — ((2 ~ UpA7,UT) ® GY ﬁf; 8] GQ> - 0.

Due to Sylvester’s law of inertiazpang 2006 theorem 1.5, p. 27), with a nonsingular matrix

U® G;l (it is nonsingular because eacthSfandG;1 is nonsingular), the necessary condition is
reduced to

_\T Az 0 150 _
<U®G21) (((Idy ~ U, Uf) ® GY gpo] Gz) - <(EUPAIPUI,T)®G§F {5’0} G2>> (U®G21)
AI;; 0 AITP 0

LG IR (R )
RN (AR )

0| 0

Azy — (A—z)11dp 0
= >_ 0’
0 =

0 Az, = (A-z;)(ay-p),(ay-p) 15

which implies that for all(i, j) € {(i,7) | ¢ € {1,...,p}, 7 € {1,...,(dy —P)}}, (Az,)is >
(A_z,)j;- In other words, the index séf; must select the largesgt eigenvalues whatever is.
SinceC(C"C)~C" = Uz, U7 (which is obtained above), we have thiatC” C)~C" = U,Uy in
this case.

Summarizing the above case analysisy&L(W) = 0 at a critical point,C(CTC)~CT = UsU;
or Xr =0. ]
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A.7 Generalized inverse of Kronecker product
(A~ ® B™) is ageneralized inverse ef @ B.

Proof For a matrixM, the definition of a generalized invers&,—, is MM ~M = M. Setting
M := A ® B, we check if(A~ ® B™) satisfies the definition{fA ® B)(A~ ® B~ )(A® B) =
(AA-A® BB~ B) = (A® B) as desired. O

Here, we arenot claiming that(A~ ® B™) is the unique generalized inverse4fx B. Notice that

the necessary condition that we have in our proof (where we need a generalized inversd3pis

for any generalized inverse df® B. Thus, replacing it by one of any generalized inverse suffices to
obtain a necessary condition. Indeed, choosing Me®enrose pseudoinverse suffices here, with

which we know(A ® B)! = (A ® BY). But, to give a simpler argument later, we keep more

generality by choosingA~ ® B~) as a generalized inverse 8f® B.

B Proof of TheoremP3

We complete the proofs of Theoréf®. Since we heavily rely on the necessary conditions of local
minima, we remind the reader of the elementary logic: for a point to be a local minimum, it must
satisfy all thenecessargonditions of local minima, but a point satisfying thecessargonditions

can be a point that is not a local minimum (in contrast, a point satisfyingufieientcondition of

local minimum is a local minimum).

B.1 Proof of TheoremPZ=3 (ii)

Proof By case analysis, we show that any point that satisfies the necessary conditions and the defi-
nition of a local minimum is a global minimum. When we write a statement in the proof, we often
mean that a necessary condition of local minima implies the statement as it should be clear (i.e., we
are not claiming that the statement must hold true unless the point is the candidate wfifocs.).

Casel: rank(Wyg - -- Ws) = p andd, < p: Assume thatank(Wy --- W5) = p. We first obtain a
necessary condition of the Hessian being positive semidefinite at a critical Foirt, 0, and then
interpret the condition. 1t, < p, CorollaryE3 with ¥ = H + 1 implies the necessary condition
that Xr = 0. This is because the other conditipn> rank(Wy 1) > rank(Wpg---Ws) = piis
false.

If d, = p, Lemmal®B with ¥ = H + 1 implies the necessary condition thatr = 0 or
R(Wpg---Ws) € R(CTC). Suppose thaR(Wy ---W,) € R(CTC). Then, we have that
p = rank(Wpg - - - Wy) < rank(CTC) = rank(C). Thatis,rank(C) > p.
From Corollary@3 with k& = 2 implies the necessary condition that

rank(C') > rank(ly,) or XrWgyyq--- W3 =0.
Suppose the latteXrWi 1 - - W3 = 0. Sincerank(Wy 41 - - - W3) > rank(C) > panddy 1 =
d, = p, the left null space oWy - -- W5 contains only zero. Thus,

XrWhir--Ws=0= Xr=0.
Suppose the formerank(C) > rank(1y, ). Becausé, = p, rank(C) > p,andR(C) C R(Y XT)
as shown in the proof of Lemni&B, we have thaR(C) = R(Y XT).
rank(C) > rank(Iy,) = CTCisfullrank = Xr = XYTo(CcTo)~'c” — xyT =,

where the last equality follows the fact thaXr)? = C(CTC)*CTYXT — YXT = 0 since

R(C) = R(Y XT) and thereby the projection & X onto the range of’ is Y X . Therefore, we
have the conditionXr = 0 whend, < p.

To interpret the conditiodXr = 0, consider a loss function with a linear model without any hidden
layer, f(W') = |[W'X — Y |2 whereW’ € R4 4= Letr’ = (WX —Y)T be the corresponding
error matrix. Then, any point satisfying»’ = 0 is known to be a global minimum of by its
convexity? For any values of¥/ - -- W1, there existdV’ such thati’’ = Wirgq -+ Wi (the

Sproof: any point satisfying{r’ = 0 is a critical point off, which directly follows the proof of Lemma
71 Also, f is convex since its Hessian is positive semidefinite for all ifpt,1, and thus any critical point
of f is a global minimum. Combining the pervious two statements results in the desired claim
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opposite is also true whedy < p although we don't need it in our proof). That is, image C
imag€ f) and imagér) C imag€r’) (as functions of¥ andW’ respectively) (the equality is also
true whend, < p although we don't need it in our proof). Summarizing the above, whenever
Xr =0, there existdV’ = Wy --- Wy such thatXr = Xr' = 0, which achieves the global
minimum value off (f*) and f* < £* (i.e., the global minimum value of is at most the global
minimum value ofZ since imagé’l) C |mage(f)) In otherwordsWHH - W1 achievingXr =0
attains a global minimum value gffthat is at most the global minimum value 6f This means that
Wiy1 - - - Wy achievingXr = 0 is a global minimum.

Thus, we have proved that whesnk(Wy - - - W,) = p andd, < p, if V2L(W) = 0 at a critical
point, it is a globaminimum.

Casell: rank(Wy --- W) = p andd, > p: We first obtain a necessary condition of the Hessian

being positive semidefinite at a critical point and then interpret the condition. From L&ngnvee
have thalC(CTC)~CT = UpUl or Xr = 0. If Xr = 0, with the exact same proof as in the case

of d,, < p, itis a global minimum. Suppose tha{C?C')~CT = U,U;. Combined with Lemma
a2 we have a necessary condition:

Wiy1--- W =C(CTC)"CTYXT(XXT)' = U0 Y XT (X XT)™!

From LemmaZ2 with k = H + 1, R(W{ --- W) € R(CTC) = R(CT), which implies that

p = rank(C) = p (sincerank(Wy --- W) = p). Thus, we can rewrite the above equation as

Whir-- Wi = UUY XT(XXT) ™!, which is the orthogonal projection on to subspace spanned
by thep eigenvectors corresponding to théargest eigenvalues following the ordinary least square
regression matrix. This is indeed the expression of a global minindait(& Hornik, T989 Bald]

R L1, 20712).

Thus, we have proved that whemnk(Wy; - -- Ws) = p, if VZL(W) = 0 at a critical point, it is a
globalminimum.

Casélll: rank(Wpg - -- W) < p: Suppose thatank(Wp - -- Wa) < p. Letp = min(p,d,). Then,

if rank(C) > p, every local minimum is a global minimum because of the f0||OWIngp K d,,
rank(Wy --- Wy) > rank(C) > p = p and thereby we have the caserafik(Wy --- W) = p

(since we have that > rank(Wy ---Ws) > p where the first inequality follows the definition

of p). For this case, we have already proven the desired statement above. On the other hand,
if p > d,, we havep £ rank(C) > d,. Thus,Wyyi---W; = UpUTYXT(XXT)™! =

Uuty X ;XXT —1, which is a global minimum. We can see this in various ways. For example,

Xr = XYTUUT — xy7T = 0, which means that it is a global minimum as discussed above.

Thus, in the following, we consider the remaining case whenek(Wy ---W3) < p and
rank(C) < p. In this case, we show that we can hawak(C) > p with arbitrarily small per-
turbations of each entry o814, ..., W1, without changing the loss value. In order to show this,
by induction onk = {1,...,H + 1}, we prove that we can hawenk(W;---W;) > p with
arbitrarily small perturbation of each entry @f;, . . . , W; without changing the value @i (V).

We start with the base case with= 1. For convenience, we reprint a necessary condition of local
minima that is represented by equattbm the proof of Lemma#=2 for an arbitraryl,

= (CTo)y-CcTyxT(xxT)y"t (11— (cTc)y-cTo) 1, (6)

Suppose thatC? ') € R4 is nonsingular. Then, we have thatk(Wy - - - Ws) > rank(C) =
d; > p, which is false in the case being analyzed (the casewdf(Wy - -- W) < p). Thus,CTC
is singular.

If CTC is singular, it is inferred that we can pertur; to haverank(W;) > p. To see this in a
concrete algebraic way, first note that from Lem#ag, R(C) = R(Up) or Xr = 0. If Xr =0,

with the exact same proof as in the previous case, it is a global minimum. So, we consider the
case ofR(C) = R(Up). Then, we can write’ = [U; 0]G; for someG; € GLg4, (R) where

0 € R4 *(d41=P), Thus,

I 0
CTC:GlT[é’ 0] G
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Again, note that the set of all generalized inverse=gf [Ié’ 8} G, is as follows Vhang 2006
p. 41):
—1 I;E Lll =T / / / :
Gy |[7 [r| Gi | Ly, Ly, Ly arbitrary .
2 3
Since equatio must necessarily hold fany generalized inversa order for a point to be a local

minimum, we choose a generalized inverse with= L), = L} = 0 to have a weaker yet simpler
necessary condition. That is,

(CTo) = ay! [Ié’ 8} G

By plugging this into equatioB, we obtain the following necessary condition of local minima: for
an arbitraryL,

1 [UF T Ty-1 1Ly O
Wi =G] B YXH (XX ) 4+ (Ig, — Gy 0 0 G1)Ly

_ :UTYXT XxT)-1 —1 /0 0
_qt | (() ) }Jrcll[o » _]GlLl

UﬁTYXT(XXT)‘l] .

_ 1
=G fapieiLn

@)

Here, [0 I(4,_p»]G1Ly € R@=Pxd s the last §; — p) rows of GiL;.  Since
rank(YXT(XXT)~1) = d, (because the multiplication with the invertible matrix preserves the
rank), the submatrix with the firgt rows in the above have rank Thus,W; has rank at least

p, and the possible rank deficiency comes from the ldst{ p) rows, [0 I(4,_;)]|G1L1. Since
Wty --- W = CWq = [Us 0]G1Wh,

T T Ty—1
UTYXT(xxT)

Wiy Wi = [U 0] { [0 104, ))G1 Ly

] =UUl Y XT(XXT)~h.
This means that changing the values of the ldst{ p) rows ofG1 L (i.e.,[0 (4, —5)]G1L1) does
not change the value @ (). Thus, we consider the perturbation of each entrifgfas follows:

= —1 0 =1 UgYXT(XXT)il

Wl = Wl + €G1 |:Mptb:| - Gl |:[0 I(dl—ﬁ)]GlLl + fMptb .

Here, with an appropriate choice df,,, we can makéV; to be full rank (see footnot for the
proof of the existence of su(‘Mptb).B

Thus, we have shown that we can haxek(1/;) > min(ds, d;) > min(p, d,) = p with arbitrarily
small perturbation of each entry &F; with the loss value being unchanged. This concludes the
proof for the base case of the induction with= 1.

For the inductive stépwith k € {2,..., H + 1}, we have the inductive hypothesis that we can have
rank(Wy_q --- Wy) > p with arbitrarily small perturbations of each entryldf,_+, . .. W, without
changing the loss value. Here, we want to show thatifk(1W;_, --- W;) > p, we can hag

%In this footnote, we prove the existenceedfl,, that makedh; full rank. Although this is trivial since

the set of full rank matrices is dense, we show a proof in the following to be completg’ bep be the rank
o [UTY XT(XXTY !

of Wi. That s, in (0 Ioa, ]G Ly
row vectors, denoted by, ..., by € R'*4= Then, we denote the rest of row vectorsihyws, . . ., Vg, —p' €
R'*% |etc = min(dy — 7, d. — 7). There exist linearly independent vectois s, . . . , 7. such that the set,
{b1,...,by,01,02,...,0.}, is linearly independent. Setting := v; + €v; forall i € {1, ..., c} makesi¥,
full rank sinceew; cannot be expressed as a linear combination of other vectors. Thus, a desired perturbation
matrix e Muwn can be obtained by settird/,w, to consist okv, vz, . . . , €t row vectors for the corresponding
rows andd row vectors for other rows.

"The boundary cases with= 2 andk = H + 1 as well pose no problem during the proof for the inductive
step: remember our notational definitidhy, - - - Wy, £ Iy, if k < k'

, there exisp’ linearly independent row vectors including the fipst
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rank(Wy - - - Wq) > p with arbitrarily small perturbation of each entry Bf;, without changing the
value of £(1V). Accordingly, suppose thaink(Wj_; --- W7) > p. From Lemma&3, we have the
following necessary condition for the Hessian to be (positive or negative) semidefinite at a critical
point: for anyk € {2,..., H + 1},
R(Wy—1---Wa)T) CR(CTC) or XrWiyyy - Wiir =0,
where the first condition is shown to implynk(Wg 41 - - - Wy) > rank(Wy_q - - - W5) in Corollary
B3. If the former condition is truesank(C') > rank(Wy_q --- Wa) > rank(Wy_q ---W7) > p,
which is false in the case being analyzed (i.e., the case whetdC') < p. If this is not the case,
we can immediately conclude the desired statement as it has been already proven for the case where

rank(C) > p). Thus, we suppose that the latter condition is true. Agt= Wy 1 -+ - Wi41. Then,
for an arbitraryL,

0= XrWii1- Wi
SWi--- Wi = (AL Ar) ALY XT(XXT) ™ (1 — (Af Ap) ™ AL Ag) Ly (8)
=Whi1-- Wi = A, (AL AL) ALY XT(XXT)!
=ccro)y 'y XTI (xx") T =UUul Yy XT(XXT) T,

where the last two equalities follow LemméAs2 andZ (since if Xr = 0, we immediately obtain
the desired result as discussed above). Taking transpose,

(XXT)TIXYT AL (Af Ae) Af = (XXT)'XYTURUL,
which implies that
XYT A, (AL AR) Ay = XYTURU,.

SinceXY7 is full rank withd, < d, (i.e.,rank(XY ") = d,), there exists a left inverse and the
solution of the above linear system is uniqug @Y )T XY 1)~ }(XYT)TXYT = I, yielding,

Ay (AL AR) Aw =UpUL (= Up(ULUR)'UT).
In other wordsR(Ay) = R(C) = R(Up).

Suppose thatAZ A;) € Ré*dr is nonsingular. Then, sinc®(A4;) = R(C), rank(C) =
rank(Ax) = di, > p = min(p,d,), which is false in the case being analyzed (the case of
rank(C) < p). Thus, AL A, is singular. Notice that for the boundary case with= H + 1,

AT Ay = I, which is always nonsingular and thus the proof ends here (i.e., For the case with
k = H + 1, since the latter conditionXrWy --- Wiy1 = 0, implies a false statement, the
former conditionrank(C') > p, which is the desired statement, must be true).

If AT A is singular, it is inferred that we can pertui, to haverank(Wy, - - - Wy) > min(p, d,.).

To see this in a concrete algebraic way, first note that sRicé,) = R(U;), we can writed;, =

[Us 0]G}, for someGy, € GLg, (R) where0 € R4 *(4x=P) Then, similarly to the base case with

k =1, we select a general inverse (we can do this because it remains to be a necessary condition as
explained above) to be

_ 1 Iy O] -
(A% Ar) :le{g O} G

and plugging this into the condition in equatiBnfor an arbitraryL,

L [UTYXT(xXT)!

Wi - Wi =Gt |p . 9
S [ [0 I(d,—p)|GrLr ©)
Here, [0 I(4,—p»)Gilr € RUE~P*ds s the last §, — p) rows of GyL,. Since
rank(YXT(XXT)~1) = d,, the firstp rows in the above have rank Thus, W;, ---W; has
rank at leasp and the possible rank deficiency comes from the last(p) rows, [0 (g, —5)|GrLx.

SiﬂCGWH+1 Wy = Aka W = [Up O]Gka - W,

T T T\—1
UryxT(XXT)

Whyr--- Wi = [Up 0] { [0 Ta,—p)|Gr L

} =U,U Y XT(XXT)™,
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which means that changing the values of the ldgt{ p) rows does not change the value®(fi?’).
We consider the perturbation of each entryl®@f as follows. From equatioB, all the possible
solutions ofi¥/;, can be written as: for an arbitrafy,, and Ly,

T T Ty—1
Uy xT(XXxT)

Wi = Gt
= [ s

} B} + LY (I - B,B)).

whereBy, = Wy_1--- W, andB,i is the the Moore—Penrose pseudoinvers&gaf We perturbll/,
as

Wk =Wy + EGlgl |:]Ow:| B};

_ -1 UpTYXT(XXT)—l ; - T
=G [[0 I(dk—ﬁ)}GkLk"‘EM Bk+L0k(I BkBk).

whereM = Myw(BY By,)" Bf By. Then,

WiWy_1 - Wi = Wy By

Uy XT(XXT)"1] s 0] o
0 Ty p)GrLi | BBEF G |enr] BiB
1 [UFYXT(XXT) ! [0 o

-Gy 10 La)CuLs +Gt | | BEBe

[ UIYXT(XxXT)~! }

0 I, )G Ly + eMpo(BY By)! B, Bi]”

=G} !

where the second line follows equati@nand the third line is due to the fact thMB,LBk =
Mptb(B,’ka)TB,’f(BkB,in) = Mpw(BFB)'BFB,. Here, we can construdt/py, such that

. , L . . [UTY XT(XxXT)-1
rank(W}By) > p as follows. Lety’ > p be the rank o, By. Thatis, in| £ ,

0 L(a,—p)|GrLi

there existp’ linearly independent row vectors including the figstrow vectors, denoted by
bi,...,by € R™4= Then, we denote the rest of row vectorsihyvs, . . ., v4, —p € R4, Since
rank(B] By,) > p (due to the inductive hypothesis), the dimensio®¢B; By,) is at leasp. There-
fore, there exist vectors,, Uy, . . ., 15— Such that the segb{, ..., b%, ol 97, ... 7@(7;375,)}, is
linearly independent and’, o7 , ... ,17(7;37’?,) € R(BF By,). A desired perturbation matrik/s, can
be obtained by setting/,, to consist ooy, v, . . ., U35 row vectors for the firstp — p) rows and
0 row vectors for the rest:

M= [0 o 0 0]

Then, Mow(B{ By)' B B, = (B By(B} Br)'Mgp)" = Mpy (sincevf,v3,....005 . €

R(BI By)). Thus, as a result of our perturbation, the original row vecterss, . . . , V(p—p) Are
perturbated as; := v; +€v; foralli € {1,...,p — p'}, which guaranteeﬁmk(VT/kBk) > psince
ev; cannot be expressed as a linear combination of other row veétors (, by andVj # i,7;)
by its construction. Therefore, we have thatk (W} - - - W) > p upon such a perturbation &
without changing the loss value.

Thus, we conclude the induction, proving that we can hawk (W, - -- Wy) > p with arbitrar-

ily small perturbation of each parameter without changing the valug®f). Sincerank(C) >
rank(Wg4q---W1) > p, upon such a perturbation, we have the case wheik(C) > p, for
which we have already proven that a critical point is not a local minimum unless it is a global
minimum. This concludes the proof of the case wheuegk(Wy - - - W3) < p.

Summarizing the above, any point that satisfies the definition (and necessary conditions) of a local
minimum is a global minimum, concluding the prooffieorem =3 (ii) . O
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B.2 Proof of TheoremP23 (i)

Proof We can prove the non-convexity and non-concavity from its Hessian (TheéaBHi)). First,
considerL (V). For example, from CorollarEB with k = H + 1, it is necessary for the Hessian
to be positive or negative semidefinite at a critical point thak (V1) > rank(Wy --- W) or

Xr = 0. The instances off’ unsatisfying this condition at critical points form some uncountable
set. As an example, consider a uncountable set that consists of the point&with= 1W; = 0

and with anyWy, ..., Ws. Then, every point in the set defines a critical point from Leniia
Also, Xr = XY7T # 0 asrank(XY7T) > 1. So, it does not satisfy the first semidefinite condition.
On the other hand, with any instanceldfy - - - W5 such thatank(Wy - - - W5) > 1, we have that

0 = rank(Wg1) # rank(Wy --- Wa). So, it does not satisfy the second semidefinite condition
as well. Thus, we have proven that in the domain of the loss function, there exist points, at which
the Hessian becomes indefinitehis implies TheoremP=3 (i): the functions are non-convex and
non-concave.

O

B.3 Proof of TheoremP=3 (iii)

Proof We now prove Theore3 (iii) : every critical point that is not a global minimum is a saddle
point. Here, we want to show that if the Hessian is negative semidefinite at a critical point, then
there is a increasing direction so that there is no local maximum. From Lé&aBwath & = 1,

_ T
DveC(WlT) (,Dvec(WlT)’C(W)) = ((WH+1 T W2)T(WH+1 T WQ) ® XXT) = 0.

The positive semidefiniteness follows the fact thdty 1 - - - Wa)T (Wx 1 --- W) and X X 7T are
positive semidefinite. Sinc& X7 is full rank, if (Wg 1 - Wo)T (Wy,1--- Ws) has at least one
strictly positive eigenvalug Wy i1 -+ Wo)T (Wgyq -+ - Wa) @ X X7 has at least one strictly pos-

itive eigenvalue (by the spectrum property of Kronecker product). Thus, with other variables being
fixed, if Wg11--- Wy # 0, with respect toll/; at any critical point, there exists some increas-
ing direction that corresponds to the strictly positive eigenvalue. This means that there is no local
maximum if Wy --- Wy #£ 0.

If Wgi1---Ws = 0, we claim that at a critical point, if the Hessian is negative semidefinite (i.e.,

a necessary condition of local maxima), we can midke, , - - - Wy # 0 with arbitrarily small per-
turbation of each parameter without changing the loss value. We can prove this by using the similar
proof procedure to that used for Theor&3 (ii) in the case ofank(Wy ---W3) < p. Suppose
thatWy 1 --- Wa = 0 and thusrank(Wg 11 - - - Ws) = 0. By induction onk = {2,..., H + 1},

we prove that we can hawd’, --- W, # 0 with arbitrarily small perturbation of each entry of

W, . .., Wy without changing the loss value.

We start with the base case with= 2. From Lemma@4, we have a following necessary condition
for the Hessian to be (positive or negative) semidefinite at a critical point: fokany2,..., H +

1},
R(Wi—1---W2)T) CR(CTC) or XrWiyyy - Wipr =0,

where the first condition is shown to implyank(Wgyq---Wy) > rank(Wi_q---Ws) in
Corollary 238, Let Ay = Wpgiq---Wie1. From the condition witht = 2, we have that
rank(Wgyqq---Wa) > dy > 1 or XrWgyy---Ws = 0. The former condition is false since
rank(Wpy - - - W) < 1. From the latter condition, for an arbitrafy,

0= XTWH+1 e 'W3
=SWoW = (AT A)) ATYXT(XXT) ™'+ (I — (AT As)~ AT As) Lo (10)
=Wpy1- W1 = Ay (A As) ALY XT(XxXT)7!
=cCTe)"cTyxT(xxT)-1
where the last follows the critical point condition (Lemi&). Then, similarly to the proof of
TheorenmZ3 (ii),
Ay (AT A5) Ay =cC(CT0)~C".
In other wordsR(As) = R(C).
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Suppose thatank(AZ A5) > 1. Then, sinceR(A,) = R(C), we have thatank(C) > 1, which
is false (or else the desired statement). Thusk(AZ A5) = 0, which implies thatd, = 0. Then,
sinceWpgq--- W1 = A WoW; with As = 0, we can havéV, # 0 without changing the loss
value with arbitrarily small perturbation 6¥.

For the inductive step withk = {3,..., H + 1}, we have the inductive hypothesis that we can
have Wy, --- Wy # 0 with arbitrarily small perturbation of each parameter without changing
the loss value. Accordingly, suppose th&},_, --- W, # 0. Again, from Lemmad3, for any
ke{2,....,H+1},

R(Wi—1---W2)T) CR(CTC) or XrWyy1-- Wiy1 = 0.

If the former is truerank(C) > rank(Wy_1 - -- Wa) > 1, which is false (or the desired statement).
If the latter is true, for an arbitrar,

0=XrWgy1- Wit
=Wy Wi = (AL Ax) ATYXT(XXT) ™'+ (I — (AL Ar)~ AL Ap) Ly
=Wpir- Wi = A, (AF A) ALY XT(XXT)™!
=cCcTe)y 'y XxT(Xxx") ' =U,Uul v XT(XXT)
where the last follows the critical point condition (Lem#a). Then, similarly to the above,
Ap (AL AR) Ay=c(CcTC)~C™.
In other wordsR(Ay) = R(C).

Suppose thatank(Af A;) > 1. Then, sinceR(4;) = R(C), we have thatank(C) =
rank(A4y) > 1, which is false (or the desired statement). Thusk(A} Ax) = 0, which implies
thatA; = 0. Then, sincéVy 1 --- Wy = AWy --- Wy with A, = 0, we can havél --- W7 £ 0
without changing the loss value with arbitrarily small perturbation of each parameter.

Thus, we conclude the induction, proving thallify ; - - - W5 = 0, with arbitrarily small perturba-

tion of each parameter without changing the valu€ (), we can havéVy 1 - - - W5 # 0. Thus,

at any candidate point for local maximum, the loss function has some strictly increasing direction in
an arbitrarily small neighborhood. This means that there is no local maxifmbos, we obtained

the statement of TheoremZ=3 (iii) .

O

B.4 Proof of TheoremP=3(iv)

Proof In the proof of Theoren®3 (i), the case analysis with the casenk(Wy --- Ws) = p,
revealed that whemank(Wy ---Ws) = p, if V2L(W) = 0 at a critical point,JV is a global
minimum. Thus, whemank(Wy --- Wy) = p, if W is not a global minimum at a critical point, its
Hessian is not positive semidefinite, containing some negative eigenvalue. From THEEB(&)n

if it is not a global minimum, it is not a local minimum. From Theor8m (iii) , it is a saddle point.
Thus, ifrank(Wg --- W5) = p, the Hessian at any saddle point has some negative eigenvalue,
which is the statement of TheoreniZ33 (iv).

O

C Proofs of Corollaries?-4 and B2
We complete the proofs of Corollarigd and3=2.

C.1 Proof of Corollary 222

Proof If H = 1, the condition in Theore®3 (iv) reads "ifrank(W; - - - W) = rank(ly,) = d; =

p", which is always true. This is becausés the smallest width of hidden layers and there is only one
hidden layer, the width of which i¢,. Thus, Theorer®=3 (iv) immediately implies the statement of
CorollaryZ4. For the statement of CorollaBzd with H > 2, it is suffice to show the existence of

22



a simple set containing saddle points with the Hessian having no negative eigenvalue. Suppose that
Wy = Wy_1 =--- =Wy = W; = 0. Then, from LemmdL1], it defines an uncountable set of
critical points, in whichWg,; can vary inR%*4# Sincer = YT # 0 due torank(Y) > 1, itis

not a global minimum. To see this, we write

_ 1,— 1
LW) =Sy (W, X) ~ Y[E= §tr(rTr)
1 1 1
= —tr(YY7T) - 5 tr(Wegp1--- Wi XYT) - 3 tr(Wyr - Wi XY )T

1
+3 tr(Wiryr - Wi XXT Wy ---W)T).

For example, itV 1 --- W) = £ U, U Y XT(XX) ™!

LOW) =2 (x(YYT) = tx(UpU, ) — tr(SURU)) + tr(UpU, SULU,))

t\')\»—l w\»—x

(tr(YYT) = tr(UpA1,,U,) ) = ; (tr(YYT) + ZAW> ;
k=1

where we can see that there exists a strictly lower valug&(®F) than the loss value with = Y7,
whichis§ tr(YYT) (sinceX # 0 andrank(X) # 0).

Thus, these are not global minima, and thereby these are saddle points by TEEd{@nand (iii) .

On the other hand, from the proof of Lemia, every diagonal and off-diagonal element of the
Hessianis zeroiWy = Wy_1 = --- = Wy = W; = 0. Thus, the Hessian is simply a zero matrix,
which has no negative eigenvalue.

O

C.2 Proof of Corollary B2 and discussion of the assumptions used in the previous work

Proof Since £z [Y (W, X)] = ap Y01 [Xil ) Ty iy = Yo L(W) = L[| Ez[Y (W, X) —
Yle= $|E2[Y (W, X)] = Y|}= L(W). O

The previous work also assumes the use of “independent random” loss functions. Consider the hinge
0SS, Lhinge(W);,; = max(0, 1-Y; , Y (W, X); ;). By modeling the max operator as a Bernoulli ran-

dom variablet, we can then WriteChinge W) = & — ¢ 3oy Y;.i[Xil (.0 €12 .0 TT1 ! w(] )

Alp then assumes that for aland(j, p), the| Z](M) are Bernoulli random variables with equal
probabilities of success. Furthermore, A5u assumes that the independéfg9f,), Y; :[X:] (j p)»

andwg; ). Finally, A6u assumes that; ;[ X;]; ) for all (j,p) andi are independent. In section
B2, we discuss the effect of all of the seven previous assumptions to see why these are unrealistic.

D Discussion of the 1989 conjecture

The 1989 conjecture is based on the result for a 1-hidden layer networlpwithl, = d, (e.g.,
an autoencoder). That is, the previous wodksidered” = W, W, X with the same loss function
as ours with the additional assumptipn< d, = d,. The previous work denoted = W, and
B2 W,.

The conjecture was expressed®sidi & Hornik (T989 as

Our results, and in particular the main features of the landscape lebld true in
the case of linear networks with several hidden layers.

Here, the “main features of the landscapd&frefers to the following features, among other minor

technical facts: 1) the function is convex in each matti¢or B) when fixing otherB (or A), and 2)
every local minimum is a global minimum. No proof was provided in this work for this conjecture.
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In 2012, the proof for the conjecture corresponding to the first feature (convexity in each matrix
A (or B) when fixing otherB (or A)) was provided in Baldi"& T, 2012 for both real-valued

and complex-valued cases, while the proof for the conjecture for the second feature (every local
minimum being a global minimum) was left for future work.

In (Baldl, T98Y, there is an informal discussion regarding the conjecturei kefl,---, H} be an
index of a layer with the smallest widgh That is,d; = p. We write

A=Wyir--Wipq

B:WZW1

Then, whatA and B can represent is the same as what the origiha= W, and B := Wh,
respectively, can represent in the 1-hidden layer case, assumingthéj = d, (i.e., any element

in R%>P and any element iiR?*?=). Thus, wewould conclude that all the local minima in the
deeper models always correspond to the local minima of the collapsed 1-hidden layer version with
A= WH+1 s Wi+l andB := W, ---W.

However, the above reasoning turns out to be incomplete. Let us prove the incompleteness of the
reasoning by contradiction in a way in which we can clearly see what goes wrong. Suppose that the
reasoning is complete (i.e., the following statement is true: if we can collapse the model with the
same expressiveness with the same rank restriction, then the local minima of the model correspond
to the local minima of the collapsed model). Considéw) = W3WoW; = 2w? + w?, where

Wi =[w w w], Wo =[1 1 w]” andW3 = w. Then, let us collapse the model@as= W3 W,W;

andg(a) = a. As a result, whaff(w) can represent is the same as wiat) can represent (i.e.,

any element irR) with the same rank restriction (with a rank of at most one). Thus, with the same
reasoning, we can conclude that every local minimunf (@f) corresponds to a local minimum of

g(a). However, this is clearly false, g§w) is a non-convex function with a local minimum at

w = 0 that is not a global minimum, whilg(a) is linear (convex and concave) without any local
minima. The convexity fop(a) is preserved after the composition with any norm. Thus, we have a
contradiction, proving the incompleteness of the reasoning. What is missed in the reasoning is that
even if what a model can represent is the same, the different parameterization creates different local
structure in the loss surface, and thus different properties of the critical points (global minima, local
minima, saddle points, and local maxima).

Now that we have proved the incompleteness of this reasoning, we discuss where the reasoning
actually breaks down in a more concrete example. From Lenfmsand@d2, if H = 1, we have
the following representation at critical points:

AB = A(ATA)~ATY XT(x xT)~1,
whereA := W5 andB := Wj. In contrast, from Lemma&TlandZ2, if H is arbitrary,
AB=c((CTo)y-CcTyXT(xxT)~1.

whereA := Wy --- W, andB := W, --- W, as discussed above, antl= Wy --- Wa.

Note that by using other critical point conditions from Lemrdak we cannot obtain an expression
such that” = A in the above expression unless- 1. Therefore, even though whatand B can
represent is the same, the critical condition becomes different (and similarly, the conditions from
the Hessian). Because the proof in the previous work iith= 1 heavily relies on the fact that

AB = A(ATA) - ATY XT (X XT)~1, the same proof does not apply for deeper models (we may
continue providing more evidence as to why the same proof does not work for deeper models, but
one such example suffices for the purpose here).

In this respect, we have completed the proof of the conjecture and also provided a complete analyt-
ical proof for more general and detailed statements; that is, we did not assurpe<thédj = d,,
and we also proved saddle point properties with negative eigenvalue information.
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