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Abstract— There has been a great deal of work on learning
new robot skills, but very little consideration of how these newly
acquired skills can be integrated into an overall intelligent
system. A key aspect of such a system is compositionality:
newly learned abilities have to be characterized in a form
that will allow them to be flexibly combined with existing
abilities, affording a (good!) combinatorial explosion in the
robot’s abilities. In this paper, we focus on learning models
of the preconditions and effects of new parameterized skills, in
a form that allows those actions to be combined with existing
abilities by a generative planning and execution system.

I. INTRODUCTION

Our overall goal is to design intelligent robots that can
operate flexibly and robustly in complicated, highly variable
domains, from homes to factories to warehouses. Basic
competences, such as the ability to reason about kinematics,
free space, collisions, path planning, visibility, and even basic
manipulation, are critical in almost every domain and can
be carefully engineered into a robot before it is deployed.
But for every new domain or even domain instance, a robot
will need to be able to acquire and use new skills that are
appropriate to that domain.

There has been a great deal of work on learning new
robot skills, but very little consideration of how these newly
acquired skills can be integrated into an overall intelligent
system. A key aspect of such a system is compositionality:
newly learned abilities have to be characterized in a form
that will allow them to be flexibly combined with existing
abilities, affording a (good!) combinatorial explosion in the
robot’s abilities.

In this paper, we focus on learning models of the pre-
conditions and effects of new parameterized skills, in a
form that allows those actions to be combined with existing
abilities by a generative planning and execution system.
We do this in the context of “task and motion” planning
(TAMP) domains, which operate in hybrid (continuous and
discrete state and action). We do not take a position on
how the new skills are acquired: it could be via learning
from demonstration, reinforcement learning, or even hand
programming. We assume that they operate in a closed
loop, mapping sensing to actuation until some termination
condition is reached. They might include operations such as
pouring, pushing, stirring the contents of a bowl, screwing
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in a bolt, etc. In our current implementation we assume that
parameterized skills terminate with all the objects at rest.

In this setting, both the process of learning and the process
of using the learned ability are highly leveraged by existing
competences. When the skill itself or the model is not yet
well learned, the robot can use its existing abilities to put
itself in a position for active learning, for example, by
planning a path and moving around a table to pick up a bottle
to try to pour from. Most importantly, results of learning can
immediately be combined with existing abilities, so once the
robot knows how to pour, it can use that skill in service of
tidying a kitchen or changing the oil in an engine.

Given a new parameterized skill, the objective of this
work is to learn a model of its effects in the world in the
form of an operator description. The operator description
provides a high-level, approximate model of preconditions
and effects of the action for the TAMP planner. Learning
detailed models of these actions, e.g., to predict precise rate
of flow during pouring, would require excessive amounts of
training data. Furthermore, such models tend to be highly
sensitive to physical parameters that would not be accurately
known during planning.

We take a goal-oriented view of operator descriptions:
they are focused on achieving some resulting condition in
the domain, and so we must learn to characterize the world
conditions in which executing the new action will lead to
the desired outcome. These conditions are known as the
pre-image of the result under the action. We use supervised
learning to map features of the starting state, the action, and
the result condition to a Boolean value, which is true if the
starting state is in the pre-image and false otherwise. The
learning process is started with an initial supervised training
set; it is then continued actively, with the robot trying to solve
problems that it encounters, generating what it thinks is an
appropriate action instance, executing it, and then scoring
the result. This actively gathered data is then fed back into
the classifier, which improves the robot’s understanding of
the pre-image of the operation and ultimately its ability to
choose actions effectively in order to achieve its goals.

This paper outlines the framework and learning methods
in detail and presents a simple pilot experiment in which the
robot learns, in simulation, how to use a new pushing skill
to put an object into a relatively small region on the table,
in the presence of unmodeled rotation and slippage.

II. RELATED WORK

There is a huge, and rapidly growing, body of literature
that addresses robot “skill” learning, both from demonstra-
tions [1], [2] and via reinforcement learning [3], [4]. Much



of this work is focused on direct (model-free) learning of
individual motor policies (skills), such as batting a T-ball
or making a pool shot, with little consideration of how to
combine the skills to achieve a larger task. More recently,
there has been progress in learning more modular and com-
posable policies [5], [6], [7], [8], in the form of parameterized
skills, that can work together and apply in a broader range
of contexts. However motor-policy-based methods tend to
be limited in their generalization since they are essentially
modeling closely related classes of robot trajectories. But,
relatively small changes in a task (an object is out of reach or
there is an object in the way) call for fundamentally different
trajectories from the robot (moving around the table, moving
an object out of the way).

Instead of learning policies directly, one can learn models
of the actions and then derive policies via planning [4],
[9]. When feasible, this generalizes much better than model-
free methods but may require more experience to learn an
adequate model.

One approach to model-based robot learning aims to
derive symbolic characterizations of tasks from observing
demonstrations, possibly with the aid of additional annota-
tions from the human [10], [11], [12]. More recent systems of
this type [13], [14] combine task-level planning, perception
and motion-planning. These approaches. however, have been
limited by the inability of existing symbolic planners to deal
with the complexities of geometry and robot kinematics.
In our work, we leverage the BHPN planner [15] which
integrates symbolic planning, motion planning and decision-
theoretic planning, so it can substantially generalize symbolic
task specifications to apply to a wide range of situations.

Instead of relying on demonstrations, in principle one
could learn rules by interacting with the world. One approach
to learning parameterized rules suitable for planning in ob-
servable stochastic domains, although it is limited to discrete
state and action spaces, is that of Pasula et al. [16], which has
served as the basis of subsequent work in learning planning
rules for robotics [17].

A classic objection to approaches based on symbolic
representations is that the symbols must be defined by human
input. Very recently, there has been progress on learning
symbolic representations for continuous domains [18], [19],
[20]. However, this work deals with relatively simple actions
that do not involve parameters.

There is work on learning to aid symbolic planning, both
to speed up planning and to acquire the action models [21],
[22], [23], but the methods generally apply only to discrete
symbolic domains.

III. FRAMEWORK AND METHODS

We assume that a parameterized skill has already been
learned or programmed, and it is our goal to learn a
characterization of its pre-image and effects that can be
used by a task-and-motion planner. A parameterized skill
will, in general, be a closed-loop policy that runs for some
time and then terminates, potentially yielding an observation
characterizing its result.

For the purposes of planning, we describe states of the
world in terms of conditions characterizing particular aspects
of the world state, such as the pose of an object or a
relationship between objects, for example, that one object is
on top of another. Using this same vocabulary of conditions,
we formulate operator descriptions to describe the pre-
images and effects of parameterized skills.

We are committed to operation on a real robot, which
has uncertainty as part of its essence: there is both future-
state uncertainty due to stochastic outcomes of actions and
and current-state uncertainty due to partial observability.
Learning in partially observable domains is very difficult;
we will assume in this work that the relevant aspects of
training examples have been sufficiently well observed to
enable a learning process that operates as if there were no
observation noise. Section IV-D describes how the learned
models are adapted for use in partially observable domains.

A. Pre-image backchaining

Particularly in very high-dimensional domains, it is critical
for planning to be goal-driven, so that the algorithm can focus
on selecting actions that change aspects of the domain that
are relevant to the problem. The goal can affect the planning
process either through a heuristic evaluation function or by
serving as the root node of the search. We pursue the second
strategy, searching “backward” from a node representing the
set of world states that satisfy the goal condition, and repeat-
edly computing the pre-image of the goal under candidate
actions. The form of the learned operators is such, however,
that they could be used in a forward-search-based TAMP
planner, such as FFRob [24] or the system of Lagriffoul et
al. [25].

The pre-image of a set of states G under an action a,
Pre(G, a), is a set of states such that, if action a were
executed in one of those states, the resulting state would be in
the set G. A pre-image backchaining search, then, starts with
the goal as the root of the search and repeatedly computes
the pre-image under sequences of different actions until a
path is found to a set of states that contains the initial state.
That path is a sequence of actions that, when executed from
leaf to root, will move the system from the initial state to a
state in the goal set.

To integrate a new parameterized skill into an overall high-
level pre-image backchaining planning system, we need to
be able to represent and compute action pre-images. In our
domains of interest, operator descriptions are “lifted” in the
sense that they are parameterized by the particular objects
they are intended to operate on. An operator description
comprises:

• a set of variables naming objects over which the oper-
ation is lifted;

• a skill, with parameters that govern the details of its
operation (e.g., how far to move or how hard to grasp);

• a primary result condition, which typically names some
objects and parameter values;

• a pre-image, in the form of a conjunction of conditions



defined on the variables and possibly introducing addi-
tional parameters;

• a possibly complex constraint on the values of all the
parameters that occur in the result, the skill, and the
pre-image conditions; and

• optionally, a set of other “side-effect” conditions that
result from executing this action.

An operator description is correct if and only if, for all
bindings of objects in the world to the variables of the
operator and for all choices of parameters of the pre-image
conditions, result conditions, and parameterized skill satis-
fying the parameter constraint, if the pre-image conditions
hold in a world state and the parameterized skill is executed,
then the result condition will hold in the resulting world state
(and any other changes will be appropriately characterized
in the side effects). In general, we cannot expect to learn
completely correct operators from data; failures introduced
by approximate operators are handled by the execution moni-
toring and replanning mechanisms of BHPN. Any prediction
failures will generate training data that can improve the
model and prevent future failures of that type.

In general, it may be difficult to characterize the entire
pre-image in detail, but it is usually enough to characterize a
subset of the pre-image of an action, as long as it offers a sub-
stantial set of ways to achieve the result condition. Among
correct operator descriptions, we prefer those with larger
(“weaker”) pre-images. Note that it is also not necessarily
critical to model all possible results of all possible actions:
if there are some outcomes that are generally desirable, it is
enough to learn models of actions that will drive the system
into desirable states.

In a hybrid domain, in which operators are parameter-
ized by continous variables, there are an infinite number
of possible instantiations of each operator. We make use
of procedures called generators to sample useful operator
instances. A generator typically takes as input values of
parameters that are bound in the result and produces samples
of parameter values for free variables that occur in pre-
image conditions and in the skill’s parameters. The primary
objective of the generator is to produce parameter values so
that the complete set of parameters (in pre-image conditions,
skill, and result condition) satisfy the pre-image constraint.
For example, picking the hand pose and displacement values
so as to push an object into a target region. A secondary
objective is to produce multiple bindings that are diverse:
they need to differ substantially from one another, if possible,
in case a particular set generates preconditions that are
unachievable (e.g., the robot is unable to make the necessary
space clear, or the energy resources are not available.)

B. Learning operator descriptions

The learning problem we address is: given a parameterized
skill α(θa) and result condition φ(O, θe), where θa and θe
are parameter vectors and O is a vector of object names,
learn one or more operator descriptions with parameterized
action α(θa) and result φ(O, θe) that are as correct and as
weak as possible. We will learn such operator descriptions

from training examples of the form: (p, a, e). The p and e
are detailed descriptions of the world state before and after
the action is executed and a is a parameterized instance of
the operator with known parameters.

Learning an operator description requires determining both
structure and parameters, including:

Relevant objects: Our domains of interest will have
many objects of different types; different training and testing
examples will have different numbers and types of objects,
and it is necessary to determine which ones are relevant for
characterizing the operation. Any object mentioned in the
result is relevant and some aspect of the robot is typically
relevant. In this paper, we limit ourselves to considering just
the robot and those objects named in the result condition,
but more generally, there may be other objects such as tools
that play a role in the pre-image.

Relevant properties and relations: Given the set of
relevant objects, then any properties of or relations among
those objects may be relevant to determining the pre-image.
Determining a relevant subset of these properties and re-
lations can be modeled as a feature-selection problem, and
addressed through any of the wide variety of feature-selection
mechanisms in machine learning. In the particular example
domain we describe in this paper, the set of available features
is very small and there is no need for feature selection, but
we expect this to be an important aspect of future work,
which might be addressed using techniques of relational
learning [26] including those used by Pasula et al. [16].

Constraint on parameters: Learning the constraint in
the pre-image can be framed as a classification problem,
mapping from a vector of values of the parameters charac-
terizing the pre-image, action, and result to a Boolean value.
However, we will want to use the resulting classifier in a
non-standard way. To implement the generator, we need to
be able to, given bindings of some of the parameters, sample
from the set of legal bindings of the other parameters. This is
because we may need to consider many different instances of
this operator when planning, in case some points in the pre-
image of this operator are not achievable, due to obstacles
or other constraints present in the planning problem. The
problem of learning this constraint will be the focus of the
rest of the paper.

C. Learning the constraint from data

Recall that a training example is of the form (p, a, e) and
that the skill is parameterized by θa and the desired result
by θe. Assume we have determined a set of properties and
relations of the relevant objects, and let θp be a vector of
the values of those properties and relations in state p. We
define the constraint χ(θp, θa, θe) to have value +1 if taking
the action defined by θa in a state satisfying the pre-image
conditions parameterized by θp will result in a state that
satisfies the result condition parameterized by θe.

We might, for example, characterize a place parameterized
skill with: θα = τ the trajectory followed by the place
skill; an effect Pose(O, π) so that θe = π is the desired
pose of the object to be placed; and the pre-image as



Conf (c),Grasp(O, g), so that θp = (c, g) specifies the robot
configuration c and grasp g in which it must be holding the
object in order for the place operation to work.

One way to formulate the learning problem would be
to treat it as a regression problem: with the values of the
parameters that are bound during backward chaining as input,
predict, as output, values of the other parameters. In some
circumstances, this strategy could be effective, but it doesn’t
satisfy our general requirements for several reasons. First,
because of the flexible use of operators during planning, it
may not always be that the same subset of the parameters are
bound in each application of the operator. More importantly,
for any given assignment of a subset of the parameters,
there may be a large number of possible assignments of the
other parameters; if this set of feasible assignments is not
convex, then applying standard regression techniques may
fail to generate any valid solution [27]. Finally, the planner
generally requires multiple feasible solutions, in case some
of them result in subgoals that are unachievable for reasons
outside the scope of this operation.

Instead, we address a more general but more difficult
learning problem, in which we train a classification algorithm
to label vectors of input values according to whether or not
they satisfy the constraint. Then the ith training example is
(xi, yi), where xi is the concatenation of (θip, θ

i
a, θ

i
e), derived

from (pi, ai, ei), and yi = χ(θip, θ
i
a, θ

i
e). Intuitively yi is

+1 if the result condition, as parameterized by θie, holds in
state ei. Thus, we have reduced a set of structured relational
training examples to a standard vector-space classification
data set. In the place example from above, χ would classify
tuples (c, g, τ, π) according to whether executing the place
skill with trajectory τ , starting with the robot in configuration
c holding an object in grasp g would result in the object being
placed at pose π.

Next we have to select a learning method. It must be
able to represent set membership given hybrid inputs and
be trainable using positive and negative examples. Critically,
given bindings for a subset of variables (that is, values
for some of the input dimensions) it must enable sampling
over bindings of the other variables that would result in an
overall vector that would be classified as positive. There are
many plausible choices, including decision trees, Gaussian
processes, and even equation learning. Based on some initial
experimentation, we used a feed-forward neural network in
the experiments presented in this paper. However, any other
method fitting this specification would be satisfactory, and
it is an area for further work to experiment more fully with
alternative strategies.

We expect to receive an initial set of labeled training
data, which should have a reasonable balance of positive and
negative examples. It might be generated via demonstration
or through a simulation and sampling process. In addition, we
assume access to a simulation or real robot execution system
that will allow actions to be attempted and their success or
failure at achieving the result condition to be recorded. The
learning process then proceeds as follows:

1) Use the initial data to train the classifier, generating an

initial hypothesis, h0; and set t = 1.
2) Loop, improving performance:

Planning: Plan to solve a problem instance that needs
the result of the learned operator. Bind parameters in
the result condition, θe, and seek an instance of this
operator that will make the result true. Call the learned
generator to produce one or more sample bindings
of the remaining parameters of the operator, θp, θa.
Continue planning until the initial state is reached;
Execution: Carry out the resulting plan in the world
(terminate execution and restart planning if a plan step
does not result in a state in the pre-image of the next
step);
Learning: For the instance of action a, let yt be +1
if the resulting state satisfied the result condition and
−1 otherwise, and let xt = (θp, θa, θe). Add example
(xt, yt) to the training data. Re-train the classifier, on
the augmented data set, to obtain hypothesis ht, and
increment t.

It may be preferable to “batch” the training, and only retrain
the classifier after some number of new samples has been
obtained.

The process of gathering training data during the solution
of actual problems is critically important, because it gener-
ates training examples from an input distribution that reflects
actual problem instances encountered in practice and tends
to explore parts of the space that important and where the
constraint is imperfectly learned.

D. Using learned constraint to generate action instances

Generally, when it is time to apply an operator during
backward search, the desired result condition is known and
it serves to bind the parameters θe; however, there are many
instances of the skill θa and particular preconditions θp that
would guarantee the desired resulting condition.

So, given θe, we need to be able to sample multiple values
of θp and θa. Using a neural network with tanh activation
function to represent the classifier means that we can, in
some sense, run the network backwards, to try to find values
for the unspecified inputs that maximize the output value.
Let h(θp, θa, θe) be the functional form of the feed-forward
neural-network hypothesis. One view of our goal is to find

θ∗p, θ
∗
a = arg max

θp,θa

h(θp, θa, θe) . (1)

We approach this optimization problem by performing gra-
dient descent, because h is a differentiable function.

The result of the local search depends on initialization. We
initialize the search by finding the positive training example
that is most similar along the dimensions of θe,

(θ′p, θ
′
a, θ
′
e) = arg min

{xi|yi=+1}
d(θie, θe) , (2)

where d is a distance metric appropriate to θe. Then we use
(θ′p, θ

′
a) as the initial values for the gradient descent.

To find additional samples of θp, θa values that satisfy the
constraint, we can run gradient descent initialized from other
positive training examples. It may be useful to perform a kind
of “non-maximal suppression,” in which the optimization



criterion for subsequent searches includes a penalty that
pushes the solution away from those already found.

In addition, during early phases of the training process,
when the hypothesis may not be well trained, especially far
away from the training data it has already seen, we may
add a penalty to the optimization to keep the solution from
moving too far from the overall range of the training data.

E. Integration into robot planning framework

The learning process takes place in a somewhat simplified
and idealized version of the domain, which assumes com-
plete observability and abstracts away details of the robot’s
interaction with the domain. Because we assume the ability
to solve inverse kinematics and motion-planning problems,
these aspects of the pre-image need not be learned. It suffices
to learn pre-conditions on the hand or base placement, what
objects are being held in what grasps, etc. The existing
planning infrastructure can be used to find feasible values
for robot configurations and paths, as needed.

Of course, it is possible that the generated hand or base
configurations are kinematically infeasible for the robot,
because of joint limits or permanent obstacles. In that case,
it will be necessary to return to the generator associated
with the learned operator, to sample additional points in the
operator’s pre-image that may be easier to achieve.

Generally, an additional precondition for any action that
requires moving the robot will be that it not collide with any
objects other than those it intends to (e.g., to push out of
the way). Given many executions of a parameterized skill,
it will be possible to characterize an “envelope” of space
that must be free of obstacles, relative to some other salient
object in the operation. Then, existing manipulation abilities
can be brought to bear in order to make that space free (e.g.,
by picking up objects that are in the way and placing them
elsewhere). In our current implementation, this envelope is
determined by hand, but in future work we plan to develop
strategies for learning it from observing the robot’s behavior
as it executes the parameterized skill.

In addition to understanding general robot-motion capabil-
ities, we assume that the planning infrastructure has a built-
in capacity for managing uncertainty. In our implementation,
we use the BHPN framework [15], which explicitly repre-
sents the robot’s uncertainty about aspects of the domain, and
performs motion-planning queries in a “shadow” world that
incorporates the uncertainty of each object’s pose relative to
the robot in a grown shape of the object. Thus, although the
basic operator description is learned and originally articu-
lated under the assumption of complete observability, it is
ultimately modified to operate in belief space, as described
in detail in section IV-D.

IV. IMPLEMENTATION AND EXPERIMENTS

We have implemented this framework for integrated learn-
ing and planning within BHPN, applied to manipulation
problems using a PR2 robot. Built in to BHPN is the ability
to perform pick-and-place operations in uncertain domains; it
includes UKF-based state estimation for the poses of object

and the robot base, task and motion planning in belief space,
and a hierarchical execution and replanning architecture.

A. Learning to plan to push objects

To illustrate our approach, we add an operation to the basic
pick-and-place capabilities of BHPN. We assume that we are
given a very basic pushing skill, which holds the robot’s hand
perpendicular to the surface of a table and moves the hand
linearly in a direction normal to the side face of the hand for
a fixed distance. The object may rotate or bounce or slide a
small amount, in a way that depends on the texture of the
sliding surfaces, making it somewhat difficult to accurately
predict the effects of the action.

We will incorporate this new skill into our planning system
by learning the description of an operator that has the desired
result of pushing an object into a region. We assume it is
known what the relevant objects are: an object to be pushed,
a robot hand, and a region on a horizontal surface. In the
experiments reported below, we assume the object and region
always have the same size and shape, but there is nothing in
the overall framework that requires that restriction.

The parameters that characterize the operator constraint
for the pushing operator include: θe = πr, parameters
of the result condition, which are the pose of the region;
θa = (H, δ), parameters of the action, which are a hand
H ∈ {left, right} and a distance δ; and θp = (πo, πh), the
parameters of the pre-image, which are the pose πo of the
object to be pushed and the pose πh of the robot hand. With
these parameters, we can construct the following preliminary
operator description; it is not yet complete, because it does
not address issues of kinematics and uncertainty, but it does
illustrate the overall structure of an operator and the role
played by the parameters and constraint χ:
PUSH((O,H,R), (πo, πh, πr, δ)):
result: In(O,R)
action: push(δ)
gen: πo, πh, δ
precond: Pose(O) = πo

Pose(H) = πh
Pose(R) = πr
χ(πo, πh, πr, δ)

Because regions are geometric constructs, once the region
has been determined (by binding variable R), its pose πr is
determined. It is appropriate to think of R as denoting the
region object and πr as denoting its pose; unlike the poses
of other objects, the pose of a region cannot be changed.

B. Classifier learning

We must learn the condition χ on the parameters
(πo, πh, πr, δ) that guarantees the correctness of the operator
description. In these experiments, all of the training data is
gathered using a planar pushing simulation based on a nu-
merical approximation of the minimum power principle [28].

The most straightforward representation of an
input consists of three object poses (represented
in a fixed global coordinate frame) and a distance
(xr, yr, θr, xo, yo, θo, xh, yh, θh, δ). Although it is probably



(a) After initial training. (b) After 200 active examples. (c) After 2000 active examples. (d) Bigger feasible region.

Fig. 1: Predictions: yellow indicates predicted failure; blue indicates predicted success.

possible to train a network on this “raw” representation, in
order to speed up learning and exploit underlying structural
knowledge we have of the domain, we applied a fixed
feature transformation that makes the relationships among
the objects more explicit:

(αor, dor, βor, αhr, dhr, βhr, αoh, doh, βoh, δ)

where αab is the angle from the center of object a to the
center of object b, dab is the distance from the center of
object a to the center of object b, and βab is the orientation
of object b relative to object a; o is the object to be pushed,
r is the target region, and h is the robot hand. We apply
one final transformation to this vector, converting all of the
angle features to their sin and cos so that the network does
not have to discover the circular structure of angle space,
yielding a final feature representation of 16 dimensions.

The initial data set is drawn as follows: without loss
of generality, the region is defined to be at pose (0, 0, 0)
(recorded as πr); the object is placed at a random pose on
the supporting surface (recorded as πo); a nominal pose for
the hand is computed by putting the center of the hand on the
line connecting the center of the object and the center of the
region and positioning the hand near, but on the opposite side
of the object from the region; a nominal pushing distance
is set to be equal to the distance from the front surface
of the robot hand to the center of the region, minus the
radius of the object; these nominal values are perturbed
by substantial noise (recorded as πh and δ); the resulting
action is executed in simulation and it is noted whether the
object was fully contained in the region in the resulting state
(recorded as the label y). This process results in substantially
more negative than positive examples; sampling continues
until a data set with balanced class membership of the desired
size is obtained.

The next step is to use this data to train a neural network
classifier. We use a feed-forward neural network with two
hidden layers of 10 units each, with tanh activation functions,
implemented using TensorFlow [29]. We train the neural
network for 1000 epochs. If the network has not achieved
at least 90% training accuracy, we re-start the training up to
5 times and pick the best weights.

C. Generating instances and retraining

Given a working hypothesis for the constraint χ, embodied
in the neural network weights, we can use it to generate

operator instances. For the pushing operator, the object and
target region are specified, so πr and the identity of O are
known. To generate an operator instance, for planning, we
need to sample from χ to generate values for πo, πh, and δ.

It is important to first see whether it is feasible to push the
object starting at its pose in the current world state, in which
case πo is assigned to be the object’s current pose. That
leaves the hand pose and push distance to be determined;
in terms of the optimization problem in equation 1, we
have fixed θe and the part of θp that specifies the object
pose. We perform a local search for optimizing values of
πh and δ, initializing the search in a grid of starting points
centered around the estimate described in equation 2, and
then performing local search using the Nelder-Mead method
implemented in Scipy.This process yields values for the robot
hand pose and push distance.

Figure 1c illustrates this process. There are four de-
grees of freedom in our optimization: xh, yh, θh, and
δ. Letting h(xr, yr, θr, xo, yo, θo, xh, yh, θh, δ) represent the
function embodied in the neural-network structure and
weights, and given a “query” region and object placement
(xqr, y

q
r , θ

q
r , x

q
o, y

q
o, θ

q
o), the figure shows, for each possible

xh, yh pair, the classifier’s output value for the maximizing
values of θh and δ; that is,

f(x, y) = max
θ,δ

h(xqr, y
q
r , θ

q
r , x

q
o, y

q
o, θ

q
o, x, y, θ, δ) .

In this example, the object is at location (x = 0.18, y =
−0.18, θ = −2.0) relative to the region, and we can see that
locations of the hand in the dark areas, near (x = 0.27, y =
−0.025, θ = −2.340] have high output values, meaning there
are values of the hand orientation and push distance for
which they are likely to succeed, but in most other locations,
they will not. The cyan point in the figure indicates the initial
position of the hand and the arrow indicates the direction and
length of the push motion (δ = 0.33). Figure 1d shows the
learned pre-image constraint when the target region is larger;
we can see that the region of good solutions is also larger,
giving the planner more options in case some are infeasible
for other reasons. In this figure, there is an area toward the
upper right that also seems good, but which is not; the active
learning process has not generated training data in that area,
so it has not yet been ruled out, but performance is good
because it has been reliable generating solutions in the good
region in the lower right.



Figures 1a and 1b show earlier states of the classifier, in
which the neural network representing h has not yet been
trained very well; it classifies regions of the hand-position
space as positive that will not result in a successful push.
In general, whatever distribution is used to generate initial
training data will not accurately or adequately represent the
distribution of queries presented in practice; furthermore,
the process of performing optimization on the function
landscape, in order to fill in query parameters, will ”visit”
and require good output values for many parts of the space
that might not naturally be sampled.

For this reason, we adopt an active learning strategy.
Whenever a query is presented and the optimizing comple-
tion is computed, that generated operator instance is tested.
In this case, it means that given a region and object position,
a hand position and push distance are generated. This action
is then actually run (either in simulation, as in the results
reported here, or on a real robot) and the true outcome
is recorded. This example is saved as a new training data
item. Early on, it frequently happens that the neural network
predicts that a particular setting of hand pose and distance
will succeed, when in fact they do not. Such examples are
critical: when added to the training set, they prevent future
versions of the classifier from making the same mistake.

Fig. 2: Learning curves: prediction accuracy vs number of
additional examples beyond initial training.

Figure 2 demonstrates the importance of this active learn-
ing strategy. It contains two learning curves. They both
begin with a classifier trained on 5000 examples drawn from
our training distribution. The Y axis shows how successful
that classifier was, when used to generate values for hand-
pose and distance on new test queries (where the success
of a generated value was measured by actually trying it in
simulation). The X axis measures the number of additional
training examples used in construction of subsequent classi-
fiers. In the random-sampling curve, new training examples
are simply drawn from the original training distribution. In
the active-sampling curve, new training examples are drawn
from the results of the process, described above, of using the
classifier to generate new hand-pose and distance parameters,
given brand new object and region-pose queries and labeling
those completed vectors using the simulator. We can see

that the “active” learning process is critical; simply adding
more data from the original distribution does not significantly
improve performance, but adding the actively gathered data,
particularly representing failures of the generated actions,
causes the performance to improve significantly.

D. Integration with BHPN

Our goal, in learning an operator description, is to be
able to integrate it with a robot task-and-motion planning
system that already has a useful substrate of capabilities. In
order to do so, we need to augment our understanding of
the learned operator with constraints on the robot, with free-
space constraints, and with reasoning about uncertainty.

After learning a classifier to represent the constraint χ
and training actively in simulation, we extend the operator
description to the following form, in which ci is the initial
robot configuration and cf is the robot’s configuration after
finishing the push; we assume the robot returns to its initial
configuration after the push action is completed.
PUSH((O,H,R), (πo, πh, πrr, δ, ci, cf , P, P

′,Σo,∆o,∆c)):
result: Pr(In(O,R)) > P
action: push(δ)
gen: πo, πh, δ, ci, cf , P

′,Σo,∆o,∆c

precond: µ(Pose(O)) ∈ πo ±∆o

Σ(Pose(O)) < Σo
InvKin(H,πh, ci)
InvKin(H,πh + δ, cf )
Conf ∈ ci ±∆c

Pr(FreeDirectPath(ci, cf , [O])) > P ′

Pr(Holding(H) = None) > P ′

Pose(R) = πr
χ(πo, πh, πr, δ)

We have added several parameters and added or modified
some of the preconditions and effects. The result is now
articulated in terms of the robot’s belief that the object is in
the region, asserting that it is greater than some parameter
P . The requirements on the pose of O are articulated in
terms of the mean µ(Pose(O)) and variance Σ(Pose(O))
of the robot’s belief about the object’s pose; the variance
condition is on the distribution of the pose of O relative to
the robot’s base. Because we cannot command a hand pose
directly, we need to reduce that condition to one on the robot
configuration. We use existing inverse-kinematics solvers for
two robot configurations; ci is an initial configuration that
places hand H in pose πh and cf is a configuration for
the end of the pushing action in which hand H has moved
forward (orthogonal to its original orientation) by distance δ.
Then, we require that the initial robot configuration be near
ci (within some fixed tolerance ∆c). In addition, we require
that there be, with high probability, a collision-free direct
path from ci to cf , with the possible exception of object O,
and that hand H be empty, both with probability P ′ derived
from and greater than P . The constraint χ remains the one
learned by the neural network.

This operator description is added to the other standard
operators in BHPN, for moving the robot, picking and
placing objects, and looking at objects to reduce uncertainty.



Fig. 3: Simulated execution of two pushing motions (on the cyan and green blocks), each requiring clearing the target region.

When it is used during planning, the variables O,R, and P
are bound by matching the result condition to some desired
condition in the goal. The region pose πr is a fixed function
of the region R. The generator first (heuristically) tries setting
πo to be the pose of the object in the current belief state
and then uses the neural network representation of χ to find
feasible values for πh and δ given πr and πo. Then we
use standard inverse kinematics routines to generate ci and
cf . Various parameters governing probabilistic conditions
(P ′, Σo, ∆o, ∆c) are computed using reasoning about the
dynamics of a Bayesian belief-update process as described
in our earlier work [15].

Figure 3 shows several frames from a simulated execution
of the resulting system achieving the goal of having each of
the two large objects inside its own specified region on the
table. (A movie of this execution, as well as a number of
others, is available in the companion video.) Note that, in
order to solve this problem, the ability to plan and execute
pushing motions is combined naturally with and significantly
leveraged by the robot’s ability to:
• Perform inverse kinematics and motion planning in

order to move to configurations from which pushing
actions can be successfully executed;

• Plan and execute observation actions, and maintain a
belief distribution over the poses of the objects relative
to one another and to the robot; and

• Reason about the free space necessary for the pushing
actions and move obstacles out of the way.

Additionally, but not demonstrated in this particular example,
the robot can use either hand to execute the push actions, and
can use its ability to push an object into a region to aid in
other high-level goals (e.g., pushing the object into an area
in which it can be washed or painted.)

The integration of learning and planning is essential for
building truly capable robots. The framework presented here
is a step toward using existing competences in planning to
leverage learning to use new sensorimotor skills.
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