
Uncertainty in AI, 1993Deliberation Scheduling for Time-CriticalSequential Decision MakingThomas Dean, Leslie Pack Kaelbling, Jak Kirman, Ann NicholsonDepartment of Computer ScienceBrown University, Providence, RI 02912AbstractWe describe a method for time-critical de-cision making involving sequential tasks andstochastic processes. The method employsseveral iterative re�nement routines for solv-ing di�erent aspects of the decision mak-ing problem. This paper concentrates onthe meta-level control problem of delibera-tion scheduling, allocating computational re-sources to these routines. We provide dif-ferent models corresponding to optimizationproblems that capture the di�erent circum-stances and computational strategies for de-cision making under time constraints. Weconsider precursor models in which all deci-sion making is performed prior to executionand recurrent models in which decision mak-ing is performed in parallel with execution,accounting for the states observed during ex-ecution and anticipating future states. Wedescribe algorithms for precursor and recur-rent models and provide the results of ourempirical investigations to date.1 IntroductionWe are interested in solving sequential decision makingproblems given a model of the underlying dynamicalsystem speci�ed as a stochastic automaton (i.e., a setof states, actions, and a transition matrix which weassume is sparse). In the following, we refer to thespeci�ed automaton as the system automaton. Ourapproach builds on the theoretical work in operationsresearch and the decision sciences for posing and solv-ing sequential decision making problems, but it drawsits power from the goal-directed perspective of arti�-cial intelligence. Achieving a goal corresponds to per-forming a sequence of actions in order to reach a statesatisfying a given proposition. In general, the shorterthe sequence of actions the better. Because the statetransitions are governed by a stochastic process, wecannot guarantee the length of a sequence achieving agiven goal. Instead, we are interested in minimizing

the expected number of actions required to reach thegoal.We represent goals of achievement in terms of an opti-mal sequential decision making problem in which thereis a reward function specially formulated for a partic-ular goal. For the goal of achieving p as quickly aspossible, the reward is 0 for all states satisfying p and-1 otherwise. The optimization problem is to �nd apolicy (a mapping from states to actions) maximiz-ing the expected discounted cumulative reward withrespect to the underlying stochastic process and thespecially formulated reward function. In our formula-tion, a policy is nothing more than a conditional planfor achieving goals quickly on average.Instead of generating an optimal policy for the sys-tem automaton, which would be impractical for anautomaton with a large state space, we formulate asimpler or restricted stochastic automaton and thensearch for an optimal policy in this restricted automa-ton. At all times, the system maintains a restricted au-tomaton. The restricted automaton and correspond-ing policy are improved as time permits by successivere�nement. This approach was inspired by the workof Drummond and Bresina [Drummond and Bresina,1990] on anytime synthetic projection.The state space for the restricted automaton corre-sponds to a subset of the states of the system au-tomaton (this subset is called the envelope of the re-stricted automaton) and a special state OUT that rep-resents being in some state outside of the envelope.For states in the envelope, the transition function ofthe restricted automaton is the same as in the systemautomaton. The pseudo state OUT is a sink (i.e., allactions result in transitions back to OUT) and, for agiven action and state in the envelope, the probabilityof making a transition to OUT is one minus the sumof the probabilities of making a transition to the sameor some other state in the envelope.There are two basic types of operations on the re-stricted automaton. The �rst is called envelope al-teration and serves to increase or decrease the num-ber of states in the restricted automaton. The secondis called policy generation and determines a policy for

1

2

3

4 5

a

0.8
0.2

a
b

b

1.0

a

b0.6

0.4
a

b

b

a
0.3

0.7

0.3

a

0.2

0.8

b 0.2

0.6

2 4

a

a
b

ab

1.0

a

0.6

0.4

0.4

b

a

b 0.2

0.6

OUT

b 1.0

0.8

1.0

1.0

i. ii.

a

0.4

1Figure 1: Stochastic process and a restricted versionthe system automaton using the restricted automaton.Note that, while the policy is constructed using the re-stricted automaton, it is a complete policy and appliesto all of the states in the system automaton. For statesoutside of the envelope, the policy is de�ned by a set ofreexes that implement some default behavior for theagent. In this paper, deliberation scheduling refers tothe problem of allocating processor time to envelopealteration and policy generation.There are several di�erent methods for envelope al-teration. In the �rst method, we simply search fora (new) path or trajectory from the initial state to astate satisfying the goal and add the states traversed inthis path to the state space for the restricted automa-ton. This method need not make use of the currentrestricted automaton. A second class of methods op-erates by �nding the �rst state outside the envelopethat the agent is most likely to transition to using itscurrent policy, given that it leaves the set of statescorresponding the current envelope. There are severalvariations on this: add the state, add the state and then next most likely states, add all of the states in a pathfrom the state to a state satisfying the goal, add all ofthe states in a path from the state to a state back inthe current envelope. Finally, there are methods thatprune states from the current envelope on the groundsthat the agent is unlikely to end up in those statesand therefore need not consider them in formulating apolicy.Figure 1.i shows an example system automaton con-sisting of �ve states. Suppose that the initial state is1, and state 4 satis�es the goal. The path 1 a! 2 a! 4goes from the initial state to a state satisfying thegoal and the corresponding envelope is f1; 2; 4g. Fig-ure 1.ii shows the restricted automaton for that en-velope. Let �(x) be the action speci�ed by the pol-icy � to be taken in state x; the optimal policy forthe restricted automaton shown in Figure 1.ii is de-�ned by �(1) = �(2) = �(4) = a on the states ofthe envelope and the reexes by �(OUT) = b (i.e.,8x 62 f1; 2; 4g; �(x) = b).All of our current policy generation techniques arebased on iterative algorithms such as value iteration[Bellman, 1957] and policy iteration [Howard, 1960].In this paper, we use the latter. These techniques canbe interrupted at any point to return a policy whose

value improves in expectation on each iteration. Eachiteration of policy iteration takes 0(|E|3) where E isthe envelope or set of states for the restricted automa-ton. The total number of iterations until no furtherimprovement is possible varies but is guaranteed to bepolynomial in |E|. This paper is primarily concernedwith how to allocate computational resources to enve-lope alteration and policy generation. In the following,we consider several di�erent models.In the simpler models called precursor-deliberationmodels, we assume that the agent has one opportu-nity to generate a policy and that, having generateda policy, the agent must use that policy thereafter.Precursor-deliberation models include1. a deadline is given in advance, specifying whento stop deliberating and start acting according tothe generated policy2. the agent is given an unlimited amount of time torespond, with a linear cost of delayThere are also more complicated precursor-deliberation models, which we do not address in thispaper, such as the following two models, in which atrigger event occurs, indicating that the agent mustbegin following its policy immediately with no furtherre�nement.3. the trigger event can occur at any time in a �xedinterval with a uniform distribution4. the trigger event is governed by a more compli-cated distribution, e.g., a normal distribution cen-tered on an expected timeIn more complicated models, called recurrent-deliberation models, we assume that the agent period-ically replans. Recurrent-deliberation models include1. the agent performs further envelope alterationand policy generation if and only if it `falls out'of the envelope de�ned by the current restrictedautomaton2. the agent performs further envelope alterationand policy generation periodically, tailoring therestricted automaton and its corresponding pol-icy to states expected to occur in the near futureThe rest of this paper assumes some familiaritywith basic methods for sequential decision making instochastic domains. A companion paper [Dean etal., 1993] provides additional details regarding algo-rithms for precursor-deliberation models. In this pa-per, we dispense with the mathematical preliminaries,and concentrate on conveying basic ideas and empir-ical results. A complete description of our approachincluding relevant background material is available ina forthcoming technical report.2 Deliberation SchedulingIn the previous section, we sketched an algorithm thatgenerates policies. Each policy � has some value with

respect to an initial state x0; this value is denotedV�(x0) and corresponds to the expected cumulativereward that results from executing the policy startingin x0. Given a stochastic process and reward function,V�(x0) is well de�ned for any policy � and state x0.We are assuming that, in time critical applications,it is impractical to compute V�(x0) for a given policyand initial state and, more importantly, that it is im-practical to compute the optimal policy for the entiresystem automaton.In order to control complexity, in generating a pol-icy, our algorithm considers only a subset of the statespace of the stochastic process. The algorithm startswith an initial policy and a restricted state space (orenvelope), extends that envelope, and then computesa new policy. We would like it to be the case that thenew policy �0 is an improvement over (or at the veryleast no worse than) the old policy � in the sense thatV�0 (x0) � V�(x0) � 0.In general, however, we cannot guarantee that the pol-icy will improve without extending the state space tobe the entire space of the system automaton, whichresults in computational problems. The best that wecan hope for is that the algorithm improves in expecta-tion. Suppose that the initial envelope is just the ini-tial state and the initial policy is determined entirelyby the reexes. The di�erence V�0 (x0) � V�(x0) is arandom variable, where � is the reex policy and �0 isthe computed policy. We would like it to be the casethat E[V�0 (x0) � V�(x0)] > 0, where the expectationis taken over start states and goals drawn from some�xed distribution. Although it is possible to constructsystem automata for which even this improvement inexpectation is impossible, we believe most moderatelybenign navigational environments, for instance, arewell-behaved in this respect.Our algorithm computes its own estimate of the valueof policies by using a smaller and computationallymore tractable stochastic process. Ideally, we wouldlike to show that there is a strong correllation be-tween the estimate that our algorithm uses and thevalue of the policy as de�ned above with respect tothe complete stochastic process, but for the time be-ing we show empirically that our algorithm providespolicies whose values increase over time.Our basic algorithm consists of two stages: envelopealteration (EA) followed by policy generation (PG).The algorithm takes as input an envelope and a policyand generates as output a new envelope and policy.We also assume that the algorithm has access to thestate transition matrix for the stochastic process. Ingeneral, we assume that the algorithm is applied inthe manner of iterative re�nement, with more thanone invocation of the algorithm. We will also treat en-velope alteration and policy generation as separate, sowe cast the overall process of policy formation in termsof some number of rounds of envelope alteration fol-lowed by policy generation, resulting in a sequence of

Figure 2: Sequence of restricted automata and associ-ated paths through state spacepolicies. Figure 2 depicts a sequence of automata gen-erated by iterative re�nement along with the associ-ated paths through state space traversed in extendingthe envelope.Envelope alteration can be further classi�ed in termsof three basic operations on the envelope: trajectoryplanning, envelope extension, and envelope pruning.Trajectory planning consists of searching for some pathfrom an initial state to a state satisfying the goal. En-velope extension consists of adding states to the enve-lope. Envelope pruning involves removing states fromthe envelope and is generally used only in recurrent-deliberation models.Let �i represent the policy after the ith round and lettEAi be the time spent in the ith round of envelopealteration. We say that policy generation is inexi-ble if the ith round of policy generation is always runto completion on |Ei|. Policy generation is itself aniterative algorithm that improves an initial policy byestimating the value of policies with respect to the re-stricted stochastic process mentioned earlier. Whenrun to completion, policy generation continues to iter-ate until it �nds a policy that it cannot improve withrespect to its estimate of value. The time spent on theith round of policy generation tPGi depends on thesize of the state space |Ei|.In the following, we present a number of decision mod-els. Note that for each instance of the problems thatwe consider, there is a large number of possible deci-sion models. Our selection of which decision models toinvestigate is guided by our interest in providing someinsight into the problems of time-critical decision mak-ing and our anticipation of the combinatorial problemsinvolved in deliberation scheduling.3 Precursor DeliberationIn this section we consider the �rst precursor-deliberation model, in which there is a �xed deadlineknown in advance. It is straightforward to extend thisto model 2, where the agent is given an unlimited re-sponse time with a linear cost of delay; models 3 and4 are more complicated and and are not considered inthis paper.

3.1 The ModelLet tTOT be the total amount of time from the currenttime until the deadline. If there are k rounds of enve-lope alteration and policy generation, then we havetEA1 + tPG1 + � � �+ tEAk + tPGk = tTOT :Case I: Single round; inexible policy genera-tion In the simplest case, policy generation does notinform envelope alteration and so we might as well doall of the envelope alteration before policy generation,and tEA1 + tPG1 = tTOT . Here is what we need inorder to schedule time for EA1 and PG1:1. the expected value, taken over randomly-chosenpairs of initial states and goals, of the improve-ment of the value of the initial state, given a �xedamount of time allocated to envelope alteration,E[V�1(x0)� V�0 (x0)jtEA1];2. the expected size of the envelope given the timeallocated to the �rst round of envelope alteration,E[|E1|jtEA1]; and3. the expected time required for policy generation,given the size of the envelope after the �rst roundof envelope alteration, E[tPG1 j|E1|].Note that, because policy generation is itself aniterative re�nement algorithm, we can interruptit at any point and obtain a policy, for instance,when policy generation takes longer than pre-dicted by the above expectation.Each of (1), (2) and (3) can be determined empiri-cally, and, at least in principle, the optimal allocationto envelope alteration and policy generation can bedetermined.Case II: Multiple rounds; inexible policy gen-eration Assume that policy generation can prof-itably inform envelope alteration, i.e., the policy afterround i provides guidance in extending the environ-ment during round i + 1. In this case, we also have krounds and tEA1 + tPG1 + � � �+ tEAk + tPGk = tTOT .Informally, let the fringe states for a given envelopeand policy correspond to those states outside the enve-lope that can be reached with some probability greaterthan zero in a single step by following the policy start-ing from some state within the envelope. Let the mostlikely falling-out state with respect to a given envelopeand policy correspond to that fringe state that is mostlikely to be reached by following the policy startingin the initial state. We might consider a very simplemethod of envelope alteration in which we just add themost likely falling-out state and then the next mostlikely and so on. Suppose that adding each additionalstate takes a �xed amount of time. LetE[V�i (x0) � V�i�1 (x0)j|Ei�1| = m; |Ei| = m + n]denote the expected improvement after the ith roundof envelope alteration and policy generation given that

there are n states added to the m states already in theenvelope after round i� 1.Again, the expectations described above can be ob-tained empirically. Coupled with the sort of expecta-tions described for Case I (e.g., E[tPGi j|Ei|]) , onecould (in principle) determine the optimal numberof rounds k and the allocation to tEAi and tPGi for1 � j � k. In practice, we use slightly di�erent statis-tics and heuristic methods for deliberation schedulingto avoid the combinatorics.Case III: Single round: exible policy genera-tion Actually, this case is simpler in concept thanCase I, assuming that we can compile the followingstatistics. E[V�1 (x0)� V�0 (x0)jtEA1 ; tPG1]Case IV: Multiple round: exible policy gener-ation Again, with additional statistics, e.g.,E[V�i(x0)�V�i�1 (x0)j|Ei�1| = m; |Ei| = m+n; tPGi�1];this case is not much more di�cult than Case II.3.2 Algorithms and Experimental ResultsOur initial experiments are based on stochastic au-tomata with up to several thousand states; automatawere chosen to be small enough that we can stillcompute the optimal policy using exact techniquesfor comparison, but large enough to exercise our ap-proach. The domain, mobile-robot path planning, waschosen so that it would be easy to understand the poli-cies generated by our algorithms. For the experimentsreported here, there were 166 locations that the robotmight �nd itself in and four possible orientations re-sulting in 664 states. These locations are arranged ona grid representing the layout of the fourth oor of theBrown University Computer Science department. Therobot is given a task to navigate from some startinglocation to some target location. The robot has �ve ac-tions: stay, go forward, turn right, turn left, and turnabout. The stay action succeeds with probability one,the other actions succeed with probability 0:8, exceptin the case of sinks corresponding to locations thatare di�cult or impossible to get out of. In the mobile-robot domain, a sink might correspond to a stairwellthat the robot could fall into. The reward functionfor the sequential decision problem associated with agiven initial and target location assigns 0 to the fourstates corresponding to the target location and �1 toall other states.We gathered a variety of statistics on how extend-ing the envelope increases value. The statistics thatproved most useful corresponded to the expected im-provement in value for di�erent numbers of statesadded to the envelope. Instead of conditioning just onthe size of the envelope prior to alteration we found itnecessary to condition on both the size of the envelopeand the estimated value of the current policy (i.e., the

value of the optimal policy computed by policy itera-tion on the restricted automaton). At run time, we usethe size of the automaton and the estimated value ofthe current policy to index into a table of performancepro�les giving expected improvement as a function ofnumber of states added to the envelope. Figure 3 de-picts some representative functions for di�erent rangesof the value of the current policy.
7.6 < value <= 8.3

8.3 < value <= 8.8

8.8 < value <= 9.2

9.2 < value <= 9.4

9.4 < value <= 9.6

9.6 < value <= 9.7

9.7 < value <= 9.8

Change in value

States added0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

10.00 20.00 30.00 40.00Figure 3: Expected improvement as a function of thenumber of states n added to initial envelope of size mIn general, computing the optimal deliberation sched-ule for the multiple-round precursor-deliberation mod-els described above is computationally complex. Wehave experimented with a number of simple, greedyand myopic scheduling strategies; we report on onesuch strategy here.Using the mobile-robot domain, we generated 380,000data points to compute statistics of the sort shown inFigure 3 plus estimates of the time required for oneround of envelope alteration followed by policy gen-eration given the size of the envelope, the number ofstates added, and value of the current policy. We usethe following simple greedy strategy for choosing thenumber of states to add to the envelope on each round.For each round of envelope alteration followed by pol-icy generation, we use the statistics to determine thenumber of states which, added to the envelope, max-imizes the ratio of performance improvement to thetime required for computation. Figure 4 compares thegreedy algorithm with the standard (inexible) pol-icy iteration on the complete automaton and with aninterruptable (exible) version of policy iteration onthe complete automaton. The data for Figure 4 wasdetermined from one representative run of the threealgorithms on a particular initial state and goal. Inanother paper [Dean et al., 1993] we present resultsfor the average improvement of the start state underthe policy available at time t as a function of time.4 Recurrent Deliberation4.1 The ModelIn recurrent-deliberation models, the agent has to re-peatedly decide how to allocate time to deliberation,taking into account new information obtained duringexecution. In this section, we consider a particular

inflexible

greedy

flexible

Value

Time (seconds)
0.00

2.00

4.00

6.00

8.00

10.00

0.00 2.00 4.00 6.00 8.00Figure 4: Comparison of the greedy algorithm withstandard (inexible) policy iteration and interruptable(exible) policy iterationmodel for recurrent deliberation in which the agent al-locates time to deliberation only at prescribed times.We assume that the agent has separate deliberationand execution modules that run in parallel and com-municate by message passing; the deliberation modulesends policies to the execution module and the execu-tion module sends observed states to the deliberationmodule. We also assume that the agent correctly iden-ti�es its current state; in the extended version of thispaper, we consider the case in which there is uncer-tainty in observation.We call the model considered in this section the dis-crete, weakly-coupled, recurrent deliberation model. Itis discrete because each tick of the clock corresponds toexactly one state transition; recurrent because the exe-cution module gets a new policy from the deliberationmodule periodically; weakly coupled in that the twomodules communicate by having the execution mod-ule send the deliberation module the current state andthe deliberation module send the execution module thelatest policy. In this section, we consider the case inwhich communication between the two modules occursexactly once every n ticks; at times n; 2n; 3n; . . ., thedeliberation module sends o� the policy generated inthe last n ticks, receives the current state from the ex-ecution module, and begins deliberating on the nextpolicy. In the next section, we present an algorithm forthe case where the interval between communications isallowed to vary.In the recurrent models, it is often necessary to removestates from the envelope in order to lower the compu-tational costs of generating policies from the restrictedautomata. For instance, in the mobile-robot domain,it may be appropriate to remove states correspondingto portions of a path the robot has already traversedif there is little chance of returning to those states. Ingeneral, there are many more possible strategies fordeploying envelope alteration and policy generation inrecurrent models than in the case of precursor mod-els. Figure 5 shows a typical sequence of changes tothe envelope corresponding to the state space for therestricted automaton. The current state is indicated

Find path to the goal

Extend the envelope

Extend and then prune the envelope

tim
e

Extend and then prune the envelope

Find path back to the envelopeFigure 5: Typical sequence of changes to the envelope
intervals during which the system is executing reflexively

falls out of the envelope

0 n 2n 3n 4n

current state happens to be contained in the new envelope

falls out of the envelope again

current state is not in the new envelope

current state is in the new envelopeFigure 6: Recurrent-deliberationby and the goal state is indicated by .To cope with the attendant combinatorics, we raisethe level of abstraction and assume that we are givena small set of strategies that have been determinedempirically to improve policies signi�cantly in vari-ous circumstances. Each strategy corresponds to some�xed schedule for allocating processor time to envelopealteration and policy generation routines. Strategieswould be tuned to a particular n-tick deliberation cy-cle. One strategy might be to use a particular pruningalgorithm to remove a speci�ed number of states andthen use whatever remains of the n ticks to generatea new policy. In this regime, deliberation schedulingconsists of choosing which strategy to use at the begin-ning of each n-tick interval. In this section, we ignorethe time spent in deliberation scheduling; in the nextsection, we will arrange it so that the time spent indeliberation scheduling is negligible.Before we get into the details of our decision model,consider some complications that arise in recurrent-deliberation problems. At any given moment, theagent is executing a policy, call it �, de�ned on the cur-rent envelope and augmented with a set of reexes forstates falling outside the envelope. The agent beginsexecuting � in state x. At the end of the current n-tick

interval, the execution module is given a new policy �0,and the deliberation module is given the current statex0. It is possible that x0 is not included in the enve-lope for �0; if the reexes do not drive the robot insidethe envelope then the agent's behavior throughout thenext n-tick interval will be determined entirely by thereexes. Figure 6 shows a possible run depicting inter-vals in which the system is executing reexively andintervals in which it is using the current policy; for thisexample, we assume reexes that enable an agent toremain in the same state inde�nitely.Let �n(x; �; x0) be the probability of ending up in x0starting from x and following � for n steps. Supposethat we are given a set of strategies fF1; F2; . . .g. Asis usual in such combinatorial problems with inde�-nite horizons, we adopt a myopic decision model. Inparticular, we assume that, at the beginning of eachn-tick interval, we are planning to follow the currentpolicy � for n steps, follow the policy F (�) generatedby some strategy F attempting to improve on � for thenext n steps, and thereafter follow the optimal policy��. If we assume that it is impossible to get to a goalstate in the next 2n steps, the expected value of usingstrategy F is given by2n�1Xi=0i+ 2nXx02X �n(x; �; x0)" Xx002X�n(x0; F (�); x00)V�� (x00)# ;where 0 <= < 1 is a discounting factor, controllingthe degree of inuence of future results on the currentdecision.Extending the above model to account for the possi-bility of getting to the goal state in the next 2n stepsis straightforward; computing a good estimate of V��is not, however. We might use the value of some pol-icy other than ��, but then we risk choosing strategiesthat are optimized to support a particular suboptimalpolicy when in fact the agent should be able to domuch better. In general, it is di�cult to estimate thevalue of prospects beyond any given limited horizonfor sequential decision problems of inde�nite duration.In the next section, we consider one possible practicalexpedient that appears to have heuristic merit.4.2 Algorithms and Experimental ResultsIn this section, we present a method for solvingrecurrent-deliberation problems of inde�nite durationusing statistical estimates of the value of a variety ofdeliberation strategies. We deviate from the decisionmodel described in the previous section in one addi-tional important way; we allow variable-length inter-vals for deliberation. Although �xed-length facilitateexposition, it is much easier to collect useful statisticalestimates of the utility of deliberation strategies if thedeliberation interval is allowed to vary.For the remainder of this section, a deliberation strat-egy is just a particular sequence of invocations of enve-lope alteration and policy generation routines. Delib-

eration strategies are parameterized according to at-tributes of the policy such as the estimated value ofpolicies and the size of the envelopes. The functionEIV (F; V�; |E�|) provides an estimate of the expectedimprovement from using the strategy F assuming thatthe estimated value of the current policy and the sizeof the corresponding envelope fall within the speci-�ed ranges. This function is implemented as a table inwhich each entry is indexed by a strategy F and a set ofranges, e.g., f[minV�;maxV�]; [min|E�|;max|E�|]g.We determine the EIV function o� line by gatheringstatistics for F running on a wide variety of policies.The ranges are established so that, for values withinthe speci�ed ranges the expected improvements havelow variance. At run time, the deliberation schedulercomputes an estimate of the current policy V̂� , deter-mines the size |E�| of the corresponding envelope andchooses the strategy F maximizing EIV (F; V̂�; |E�|).To build a table of estimates of function EIV o� line,we begin by gathering data on the performance ofstrategies ranging over possible initial states, goals,and policies. For a particular strategy F , initial statex, and policy �, we run F on �, determine the elapsednumber of steps k, and compute estimated improve-ment in value,"� k�1Xi=0 i + k Xx02X �k(x; �; x0)V̂F (�)(x0)#� V̂�(x);where the �rst term corresponds to the value of using� for the �rst k steps and F (�) there after and thesecond term corresponds to the case in which we dono deliberation whatsoever and use � forever. As inthe model described in the previous section, we assumethat the goal cannot be reached in the next k steps;again it is simple to extend the analysis to the case inwhich the goal may be reached in less than k steps.Given data of the sort described above, we build thetable for EIV (F; V� ; |E�|) by appropriately dividingthe data into subsets with low variance.One unresolved problem with this approach is exactlyhow we are to compute V̂�(x). Recall that � is onlya partial policy de�ned on a subset of X augmentedwith a set of reexes to handle states outside the cur-rent envelope. In estimating the value of a policy, weare really interested in estimating the value of the aug-mented partial policy. If the reexes kept the agent inthe same place inde�nitely, then as long as there wassome nonzero probability of falling out of the envelopewith a given policy starting in a given state the actualvalue of the policy in that state would be �1=(1�).Of course, this is an extremely pessimistic estimate forthe long term value of a particular policy since in therecurrent model the agent will periodically compute anew policy based on where it is in the state space. Theproblem is that we cannot directly account for thesesubsequent policies without extending the horizon ofthe myopic decision model and absorbing the associ-ated computational costs in o�ine data gathering and

online deliberation scheduling.To avoid complicating the online decision making, wehave adopted the following expedient which allows usto keep our one-step-lookahead model. We modify thetransition probabilities for the restricted automaton sothat there is always a non-zero probability of gettingback into the envelope having fallen out of it. Exactlywhat this probability should be is somewhat compli-cated. The particular value chosen will determine justhow concerned the agent will be with the prospect offalling out of the envelope. In fact, the value is depen-dent on the actual strategies chosen by deliberationscheduling which, in our particular case, depends onEIV and this value of falling back in. We might pos-sibly resolve the circularity by solving a large and verycomplicated set of simultaneous equations; instead, wehave found that in practice it is not di�cult to �nd avalue that works reasonably well.The experimental results for the recurrent model wereobtained on the mobile-robot domain with 1422 possi-ble locations and hence 5688 states. The actions avail-able to the agent were the same as those used to obtainthe precursor-model results. The transition probabil-ities were also the same, except that the domain nolonger contained sinks.We used a set of 24 hand-crafted strategies, which werecombinations of envelope optimization (O) and thefollowing types of envelope alteration;1. findpath (FP): if the agent's current state xcuris not in the envelope, �nd a path from xcur to agoal state, and add this path to the envelope2. robustify (R[N]): we used the following heuris-tic to extend the envelope: �nd the N most likelyfringe states that the agent would fall out of theenvelope into, and add them to the envelope3. prune (P[N]): of the states that have a worsevalue than the current state, remove the N leastlikely to be reached using the current policy.Each of the strategies used began with findpath andended with optimization. Between the �rst and lastphases, robusti�cation, pruning and optimization wereused in di�erent combinations, with the number ofstates to be added or deleted 2 f10; 20; 50;100g; exam-ples of the strategies we used are fFP R[10] Og, fFPP[20] Og, fFP P[20] R[50] 0g, fFP R[100] P[50]0g, fFP R[50] O P[50] 0g.We collected statistics over about 4000 runs generat-ing 100,000 data points for strategy execution. Thestart/goal pairs were chosen uniformly at random andwe ran the simulated robot in parallel with the plan-ner until the goal was reached. The planner executedthe following loop: choose one of the 24 strategies uni-formly at random, execute that strategy, and then passthe new policy to the simulated robot. We found thefollowing conditioning variables to be signi�cant: theenvelope size, |E|, the value of the current state V�,the \fatness" of the envelope (the ratio of envelope

size to fringe size), and the Manhattan distance, M ,between the start and goal locations. We then builda lookup table of expected improvement in value overthe time the strategy takes to compute, �V�=k, as afunction of E, V� , the fatness, M and the strategy s.To test our algorithm, we took 25 pairs of start andgoal states, chosen uniformly at random from pairs ofManhattan distance less than one third of the diameterof the world. For each pair we ran the simulated robotin parallel with the following deliberation mechanisms:� recurrent-deliberation with strategies chosen us-ing statistical estimates of EIV (lookup)� dynamic programming policy iteration over theentire domain, with a new policy given to therobot after each iteration (iter) and only afterit has been optimized (whole)The average number of steps taken by lookup, iterand whole were 71, 87 and 246 respectivelyWhile the improvement obtained using the recurrent-deliberation algorithm is only small it is statisticallysigni�cant. These preliminary results were obtainedwhen there were still bugs in the implementation, how-ever, since we have determined that the strategies arein fact being pessimistic, we expect to obtain furtherperformance improvement using lookup. Recall alsothat we are still working in the comparatively smalldomain necessary to be able to compute the optimalpolicy over the whole domain; for larger domains, iterand whole are computationally infeasible.5 Related Work and ConclusionsOur primary interest is in applying the sequential de-cision making techniques of Bellman [Bellman, 1957]and Howard [Howard, 1960] in time-critical applica-tions. Our initial motivation for this research arosein attempting to put the anytime synthetic projec-tion work of Drummond and Bresina [Drummond andBresina, 1990] on more secure theoretical foundations.The approach described in this paper represents aparticular instance of time-dependent planning [Deanand Boddy, 1988] and borrows from, among others,Horvitz' [Horvitz, 1988] approach to exible compu-tation. Hansson and Mayer's BPS (Bayesian ProblemSolver) [Hansson and Mayer, 1989] supports generalstate space search with decision theoretic control of in-ference; it may be that BPS could be used as the basisfor envelope alteration. Boddy [Boddy, 1991] describessolutions to related problems involving dynamic pro-gramming. For an overview of resource-bounded de-cision making methods, see chapter 8 of the text byDean and Wellman [Dean and Wellman, 1991].We have presented an approach to coping with un-certainty and time pressure in decision making. Theapproach lends itself to a variety of online computa-tional strategies, a few of which are described in thispaper. Our algorithms exploit both the goal-directed,

state-space search methods of arti�cial intelligence andthe dynamic programming, stochastic decision makingmethods of operations research. Our empirical resultsdemonstrate that it is possible to obtain high perfor-mance policies for large stochastic processes in a man-ner suitable for time critical decision making.AcknowledgementsTom Dean's work was supported in part by a Na-tional Science Foundation Presidential Young Investi-gator Award IRI-8957601, by the Advanced ResearchProjects Agency of the DoD monitored by the AirForce under Contract No. F30602-91-C-0041, and bythe National Science foundation in conjunction withthe Advanced Research Projects Agency of the DoDunder Contract No. IRI-8905436. Leslie Kaelbling'swork was supported in part by a National ScienceFoundation National Young Investigator Award IRI-9257592 and in part by ONR Contract N00014-91-4052, ARPA Order 8225. Thanks also to Moises Lejterfor his input during the development and implementa-tion of the recurrent deliberation model.References[Bellman, 1957] Bellman, Richard 1957. DynamicProgramming. Princeton University Press.[Boddy, 1991] Boddy, Mark 1991. Anytime problemsolving using dynamic programming. In ProceedingsAAAI-91. AAAI. 738{743.[Dean and Boddy, 1988] Dean, Thomas and Boddy,Mark 1988. An analysis of time-dependent plan-ning. In Proceedings AAAI-88. AAAI. 49{54.[Dean and Wellman, 1991] Dean, Thomas and Well-man, Michael 1991. Planning and Control. MorganKaufmann, San Mateo, California.[Dean et al., 1993] Dean, Thomas; Kaelbling, Leslie;Kirman, Jak; and Nicholson, Ann 1993. Planningwith deadlines in stochastic domains. In ProceedingsAAAI-93. AAAI.[Drummond and Bresina, 1990] Drummond,Mark and Bresina, John 1990. Anytime syntheticprojection: Maximizing the probability of goal sat-isfaction. In Proceedings AAAI-90. AAAI. 138{144.[Hansson and Mayer, 1989] Hansson,Othar and Mayer, Andrew 1989. Heuristic searchas evidential reasoning. In Proceedings of the FifthWorkshop on Uncertainty in AI. 152{161.[Horvitz, 1988] Horvitz, Eric J. 1988. Reasoning un-der varying and uncertain resource constraints. InProceedings AAAI-88. AAAI. 111{116.[Howard, 1960] Howard, Ronald A. 1960. DynamicProgramming and Markov Processes. MIT Press,Cambridge, Massachusetts.

