
Implicit Belief-Space Pre-images for Hierarchical Planning and
Execution

Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract— We present a method for planning and execution
in very high-dimensional mixed discrete and continuous spaces
in the presence of uncertainty using an implicit, factored

approximation representation of pre-images and extend it to
planning in belief space. We demonstrate the approach in a
mobile-manipulation domain combining pushing with pick-and-
place manipulation with error in sensing and manipulation. We
show empirically that execution monitoring using pre-images
improves computational efficiency over continual replanning,
and that the hierarchical planning method it enables provides
further efficiency improvements.

I. INTRODUCTION

One approach to solving very large, long-horizon, un-
certain planning and execution problems is embodied in
the BHPN [1] system, which uses hierarchical planning,
replanning, and execution to obtain robust behavior with
manageable time requirements. Critical to this strategy is the
ability to describe and manipulate representations of plan
pre-images, which will serve as subgoals for hierarchical
planning and as validity conditions for execution monitoring.

The pre-image of a goal with respect to an action or
plan is a fundamental concept that underlies regression-
based planning algorithms, enables execution monitoring,
and supports goal-based hierarchical planning. A goal � is
a set of system states; the preimage of � under an action
sequence is the set of system states �0 such that executing
that sequence of actions from any state in �0 will cause the
system to transition to a state in �.

The planning algorithm known as pre-image backchaining
in the robotics community [2] and goal regression in the AI
planning community [3] operates by searching in the space of
pre-images: the starting node in the search tree is the goal,
intermediate nodes are the pre-image of their parent node
under some action, and the search terminates when a pre-
image is reached that contains the initial state of the system.

Execution monitoring allows a system to execute plan
steps until a state is reached in which the plan is no longer
valid, and then replan. The pre-image of the goal under any
suffix of the plan is the set of states in which that plan
suffix will achieve the goal. Thus, a straightforward and
effective plan execution and monitoring strategy is to find
the shortest plan suffix whose pre-image contains the current

Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA lpk@mit.edu,
tlp@mit.edu. We gratefully acknowledge support from NSF grants
1420927 and 1523767, from ONR grant N00014-14-1-0486, and from
ARO grant W911NF1410433. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of our sponsors.

Fig. 1: Initial and final state for shelves example.

system state and execute its first action. If no pre-image of
the plan contains the current state, then a new plan must be
constructed and executed with this same monitoring strategy.

Ideas of online execution monitoring can be extended to a
hierarchical planning system [4], [1] that constructs plans in
a hierarchy of abstracted domain models, planning in more
detail only for the first “step” of an abstract plan. Pre-image-
based planning plays two critical roles in this process. First,
the results of abstracted operators cannot be modeled in the
system-state space so we plan via regression using subsets
of the actual preconditions. Second, the pre-images of the
steps in an abstract plan serve as goals for the hierarchical
planner at the next, more concrete, level of abstraction.

In discrete domains, represented using STRIPS or PDDL
operator descriptions, state-sets (including goals and pre-
images) are represented using sets of logical fluents that spec-
ify values of some aspects of the state. Given those symbolic
operator descriptions, the explicit pre-image of a state-set
under an action can be computed very straightforwardly. In
continuous domains, such as robot manipulation planning,
it is difficult both to represent and to compute explicit pre-
images [2], [5].

We construct a method for planning and execution in very
high-dimensional mixed discrete and continuous spaces in
the presence of uncertainty, based on an implicit, factored
approximation of pre-images in continuous spaces and ex-
tend it to apply to the case where the space is actually the
“belief space” of probability distributions over underlying
world states. We provide a planning algorithm that searches
in the space of pre-images in this representation. Finally, we
demonstrate this approach in a mobile-manipulation domain
that combines pushing with pick-and-place manipulation
using actions with motion and sensing error.

The approach presented here is related to our earlier
work on the Hierarchical Planning in the Now (HPN)
system [4], [1], [6]. The two key differences are: (1) the
representation of pre-images by using implicit fluents such

2016 IEEE International Conference on Robotics and Automation (ICRA)
Stockholm, Sweden, May 16-21, 2016

978-1-4673-8026-3/16/$31.00 ©2016 IEEE 5455

as CanReachHome and CanPlace instead of using explicit
representations of swept volumes of particular paths as
obstacles, and (2) the introduction of a general notion of
conditioning in the regression algorithm to handle these
implicit fluents. Together these extensions generalize and
make systematic the pre-image computation approach in
our earlier work. Our contribution in this paper is to show
how to tractably plan using implicit representations of pre-
images in hybrid state-spaces and to demonstrate their use
for hierarchical planning and execution monitoring in real
robot manipulation problems.

We show empirically that execution monitoring using pre-
images provides a substantial improvement in computational
efficiency over continual replanning, and that the hierarchi-
cal algorithm enabled by abstract pre-image backchaining
provides even further efficiency improvements.

II. RELATED WORK

Planning under uncertainty can be done optimally by
making conditional plans offline [7], [8]. For efficiency and
robustness, our approach is to construct a deterministic ap-
proximation of the dynamics, use the approximate dynamics
to build a plan, execute the plan while monitoring the world
for deviations from the expected outcomes of the actions, and
replan when deviations occur. This method has worked well
in control applications [9], [10], [11] as well as symbolic
planning domains [12].

Execution monitoring in robotics has a long history;
see [13] for a survey. In particular, the use of goal-regression
(pre-images) for execution monitoring dates back to Shakey’s
PLANEX [14], although the formalization of this strategy
appears to be much more recent [15]. However, previous
work in this area has been limited to purely symbolic STRIPS
operators where computing pre-images is relatively simple.
Computing pre-images for geometric problems dates back
to the “pre-image backchaining” paper [2]; excellent sum-
maries of subsequent work on planning with uncertainty are
available [16], [17]. However, computing such pre-images
exactly is known to be intractable [5].

Manipulation planning is a hybrid (multi-modal) plan-
ning problem involving both continuous actions and discrete
choices. This type of planning problem can be attacked
using extensions to classic randomized motion planning
algorithms [18], [19], [20], but these approaches tend to
suffer from a lack of goal guidance. Many recent approaches
to manipulation planning integrate discrete task planning
and continuous motion planning algorithms. Many of these
approaches use a motion planner as a way of verifying plans
produced by a task planner [21], [22], [23]. Others combine
the task planner and motion planner more intimately allowing
for the motion planning to influence the task planning and
vice versa [24], [25], [26], [27], [28].

III. FACTORED, CONDITIONAL PRE-IMAGES

In this section we use a sequence of highly simplified
example domains to illustrate the concepts underlying the

implicit representation of pre-images and their role in ana-
lyzing the robustness of plans.

One-dimensional example In the first example, objects
with fixed extent are placed in a one-dimensional space.
Objects cannot overlap with one another. There is a point
robot that may move freely along the line. The robot may
be attached to an object, in which case, it moves when the
robot moves. When the robot is holding an object, it is held
“above” the other objects and so can move past them without
collision. The robot can “pick” any object if the robot’s
configuration (place along the line) is within the extent of
that object. It can “place” an object if it is holding that object
and the part of the line that the object will be placed onto
is “free” (does not contain any other objects). In the case of
a single object, there are two continuous state variables, the
“configuration” c of the robot and the “pose” p of the object
(the position of its center), and a discrete state variable h
indicating whether the robot is holding the object. Both c
and p take real values and h is Boolean.

We begin by considering a problem in which the goal �
is for the object to be at position 5.0; the object starts at
position 2.0 and the robot at position 0.0. The object has
extent 1.0. Because we are in a domain with continuous
actions, there will be, in general, an infinite number of
feasible plans; this makes the planning process complex but
does not impact the analysis of the pre-images of a particular
plan. For concreteness, we will consider the plan (where the
argument to move is a displacement)

Move(1.8);Pick ;Move(3.0);Place

The pre-image for p in this plan has no “volume”: if the
object is not precisely at 2.0 then the plan will not work.
However, because the object may be grasped anywhere
along its length, there is tolerance to variation in the initial
configuration of the robot. It is never sensible for the goal
for a real system to be a point value in real space. Consider
the previous example, but where � is p 2 [4.5, 5.5], where p
is the position of the left edge of the object. Now there will
be larger tolerances on the initial state of the overall plan.
The “grasping” constraint takes the form of a relationship
between the robot and the object, so it is easier to specify
pre-images in terms of p� c and p below.

In general, there will be error in execution of actions. More
robust plans can be obtained by planning with an explicit
model of the error induced by the actions. Let us assume
that whenever the robot attempts to move by u, in fact it
moves by an amount in [u � 0.1, u + 0.1] and, similarly,
that whenever it picks or places an object, the pose might be
perturbed by as much as 0.1 in either direction relative to the
robot, but the robot does not move. Here are the pre-images
of the plan steps, also shown in figure 2a.

Action p� c p h color

Goal [4.5, 5.5] red
Place [�0.5, 0.5] [4.6, 5.4] True orange
Move(3.0) [�0.5, 0.5] [1.7, 2.3] True green
Pick [�0.4, 0.4] [1.8, 2.2] False blue
Move(1.8) [1.5, 2.1] [1.8, 2.2] False purple

5456

-1 1 2 3 4 5 6 c

1

2

3

4

5

6
p

(a) Preimages for 1D domain.

b a

c

R R’

p
2

p1

(b) Two-dimensional domain.

Pose(a)

Pose(c)

Pose(b)

p1

p2

s

(c) Object configuration space

Fig. 2: Illustrative examples.

The final pre-image has volume, but it is considerably
smaller than it would have been in a domain with perfect
actions.We can also see that if there had been more steps
in the plan with similar error, the pre-image would have
collapsed, rendering the plan invalid. Taking errors explicitly
into account when planning also means that a plan with a
different structure but less cumulative error might be selected
by the planner.

In most cases, it is impossible even to bound the error of
a physical system, with complete certainty. More generally,
we will have a distributional model of the system’s errors.
In many such cases, it is possible to provide a bound on
the error of any given action, with some probability p.
Generally, there will be a trade-off: a smaller error bound can
only be guaranteed with a smaller probability. A reasonable
criterion for selecting the sizes of error intervals is to select
a plan with maximum success probability (the product of the
probabilities associated with each of the actions in the plan)
such that the pre-image contains the actual initial world state.
This criterion will put larger intervals places that makes the
entire plan as likely as possible to succeed.

Factored representation of intervals In more complex
domains, with many objects and subtle interactions, the
geometric descriptions of the pre-images become increas-
ingly complex as they are propagated backward through
action sequences. Simple linear constraints are insufficient to
represent them exactly and algorithms for computing them
are difficult. Our approach will be to trade approximation for
representational and computational tractability.

One step of representational simplification is to factor
the descriptions of pre-images into conjunctions of interval
constraints on individual variables. For example, consider the
set from our simple example: p 2 [4.5, 5.5], p�c 2 [�.5, .5].
In p, c space, it does not form a rectangle, so it cannot be
exactly represented in the form p 2 i1, c 2 i2. In order
for a regression-based planner to be correct, it is enough to
compute approximate pre-images that are subsets of the true
pre-images. These conditions are sufficient to guarantee that
the plan will execute correctly but not necessary: the might
be correct in states that are not in the approximate pre-image.

There are many rectangles that can be inscribed in the
shape characterized by p 2 [4.5, 5.5], p � c 2 [�.5, .5]; we
would like the largest one, but even that is not uniquely speci-
fied. We will generally use the largest axis-aligned hypercube

whose center is the same as the center of the exact pre-image.
In our example, that is defined by p 2 [4.75, 5.25], c 2
[4.75, 5.25]. In domains where the errors in actuation are
asymmetric, for example, we might wish to select a hyper-
rectangle that has more tolerance in some dimensions than
others. In realistic high-dimensional domains, many variables
will be irrelevant and, hence, completely unconstrained.

Implicit representation and conditioning The previous
example domain involved only conditions on individual
dimensions of the configuration space or simple relations
between them. In interesting manipulation-planning prob-
lems, the combined configuration space of the robot and all
the objects is very high-dimensional and the important con-
straints may involve all the variables. Consider the domain
shown in figure 2b. It shows a two-dimensional workspace
containing a robot with three degrees of freedom (x, y,
rotation) at its initial (home) position R; three movable
obstacles (a, b, and c) each also with three dof; and a desired
final configuration of the robot, R0. The dark rectangles are
immovable obstacles. The green region is the swept volume
of an example of a possible path for the robot from R to R0.

The overall configuration space of this domain is 12-
dimensional so we can only visualize it abstractly. Consider
the pre-image of a collision-free motion of the robot from its
initial (home) configuration R to R0. That pre-image is the
set of possible joint placements of a, b, and c such that there
exists a path between R and R0. It is nearly impossible to
characterize its shape exactly and explicitly. Our approach to
pre-image backchaining relies on an implicit representation
of these sets and limited computations on them.

Figure 2c shows a “cartoon” drawing of the combined
configuration space of objects a, b, and c; each dimension
in this diagram represents the three-dof pose of one of the
objects, and the dimensions corresponding to the robot are
not represented. The interior of the dark black outline rep-
resents the set of object configurations that collectively have
the property that the robot can reach its home configuration
R from R0 via a collision-free path; we will denote this set
as CRH(R0) (CRH stands for CanReachHome). The current
world state, denoted s, is not inside the black contour, which
means no collision-free path is available. This is something
that we can detect (with high probability) via the failure of
a motion-planning query.

It is not immediately clear how to do regression-based

5457

planning in this situation, because no individual operation
can drive the objects into a configuration that satisfies
CRH(R0). Assume that the robot is able to move individual
objects to new poses. We might consider moving object a
to a new pose, p1. This suggestion can be arrived at by
finding a pose of a that does not overlap the swept volume
of some robot path that allows obstacle collisions, but tries
to minimize the number of collisions [29], [30]. We could
then rewrite CRH(R0) to a conjunction
Pose(a) 2 (p1 ± �) & CRH(R0, {Pose(a) 2 (p1 ± �)})

The first term asserts that the pose of a is near p1, which is
shown as the vertical pink stripe in the figure. The formula
CRH(R0, {Pose(a) 2 (p1 ± �)}) is a conditional expression:
it asserts that if a were near pose p1 and everything else
was the same as it is in a state s, then CRH(R0) would hold
in s. This set consists of the two horizontal blue bands in
the figure: in any combined object configuration in those
regions, if we were to set the pose of a to be near p1, then
the state would be in the set satisfying CRH(R0). So, the
intersection of the blue set and the pink set (shown in purple)
represents the conjunction of the two conditions, which is a
subset of the pre-image of the goal (robot at R0) under the
plan Move(R0); the blue set is the pre-image of the goal
under the plan Place(a, p1);Move(R0).

The initial state is not yet in the blue set (which we can
check via another motion planning query in a hypothetical
world where a is at pose p1). However, we can expand the
pre-image of the whole plan by adding an operation to move
b near to pose p2; this pose can be suggested by avoiding
the swept volume of a path that reaches R0 in a world where
we ignore collisions with b but have a at pose p1. Then, we
can rewrite the formula CRH(R0, {Pose(a) 2 (p1 ± �)}) to

Pose(b) 2 (p2 ± �) &

CRH(R0, {Pose(a) 2 (p1 ± �)&Pose(b) 2 (p2 ± �)})
The first term represents the small horizontal stripe within the
blue region, aligned with p2 on the vertical axis; the second
term represents any point that is vertically above or below
the blue region, which in this case is the whole plane (for
this particular value of Pose(c)); this second set contains the
initial state.

The process we have followed is one of regression.
Assume the current state is s = (s

a

, s
b

, s
c

) where each
component is a pose for an obstacle. Table I illustrates
the regression process. The first column shows the ultimate
goal, and then the sequence of pre-images of that goal
under actions in the plan; subsequent columns point out the
relevant aspects of the figure, show the geometric query for
membership in the pre-image, indicate how the parameters
of an action are generated, and show the action that will be
taken to achieve the goal on that line. In general, there must
be a search in the space of orderings of these operators, as
only some orderings will result in feasible plans.

This demonstrates pre-image backchaining in a hybrid
space without an explicit characterization of the pre-images.
It is only necessary to test whether the initial state is in

the pre-image (a motion planning query in a hypothetical
world) and to suggest actions that expand the pre-image
(for example, moving an objects out of the way). The
conditioning process tracks the assumptions that are needed
to construct the relevant hypothetical worlds.

IV. REPRESENTATION

In order to build a planner that searches in the space of pre-
images, we need a representation for pre-images and for the
dynamics of the domain. We will use ideas from classical
AI planning, augmented to apply to hybrid domains with
mixed discrete and continuous state and action spaces. These
representations are general-purpose and can be applied to
state space or belief space.

Fluents: In order to plan in domains with large (or possi-
bly unbounded) numbers of objects, rather than enumerating
the set of state variables that describes the domain, e.g. for
the pose of each object, we use logical expressions, called
fluents because their distributional values change over time,
to name them. A fluent is made up of a symbolic predicate
and one or more symbolic arguments. When constant values
(denoting objects, regions of space, robots, etc.) are supplied
as arguments to a fluent, it is called a ground fluent and
it denotes a state variable. Fluents may have discrete or
continuous values. Every ground fluent has a single value
in a state; we will write V (�, s) to stand for the value of
fluent � in world state s. So, the statement � = v holds in
world state s if and only if V (�, s) = v. We define three
types of fluents.

Primitive fluents directly characterize state variables in
the underlying domain; the union of all possible primitive
fluents provides a complete specification of a world state.
The semantics are straightforward. We can think of s as
being a (possibly indeterminate length) vector of values
and any primitive fluent � as being an “index” into that
vector, so that V (�, s) = s

�

. Implicit fluents characterize
aspects of the underlying state, about which we might wish
to make assertions; their values are functions of values of the
primitive fluents. The CanReachHome fluent is an example.
Associated with each implicit fluent � is a function f

�

that maps the state into a value, so that V (�, s) = f
�

(s).
Conditional fluents are implicit fluents with an additional
argument that consists of a list of primitive fluents with
assigned values, which must not be in contradiction (that
is, specify conflicting values for the same fluent). Intuitively,
the semantics is that the implicit fluent would hold in the
state if it were modified just in the dimensions required by
the primitive fluents. A conditional fluent has the form
Q(a1, . . . , an;�1 = v1, . . . ,�k = v

k

), where Q is the
predicate, a

i

are the arguments of the fluent, and �
j

= v
j

are the fluent values being conditioned on.
Define C(s;�1 = v1, . . . ,�k = v

k

) to be a hypothetical
world state, in which s

�i = v
i

for i 2 1, . . . , k. Then,

V (Q(a1, . . . , an;�1 = v1, . . . ,�k = v
k

), s) =

V (Q(a1, . . . , an), C(s;�1 = v1, . . . ,�k = v
k

))

5458

Goal Visual Geometric query Gen Action

Conf = R0 robot at R0 R = R0
Move(R,R0)

CRH(R0) black contour path(R,R0) in (sa, sb, sc) p1 so a can be avoided Place(a, p1)
CRH(R0, {Pose(a) 2 (p1 ± �)}) blue region path(R,R0) in (p1, sb, sc) p2 so b can be avoided Place(b, p2)
CRH(R0, {Pose(a) 2 (p1 ± �),Pose(b) 2 (p2 ± �)}) slice with sc path(R,R0) in (p1, p2, sc)

TABLE I: Regression planning process

where we assume a function f
Q(a1,...,an) that can supply the

unconditional value of fluent Q(a1, . . . , an) in a state.
Operator descriptions: We assume that system has a

finite set of primitive action types, each of which may
have zero or more discrete and/or continuous parameters.
The dynamics of these actions is described using operator
descriptions, which are parametrized so as to offer a com-
pact representation of the effects of infinitely many action
instances on domains of arbitrary size.

A critical assumption underlying this strategy for
describing world dynamics is that each individual action
instance only affects the values of small set of fluents and
that the rest are unchanged or that, if they are changed,
those changes can be relatively systematically specified. An
operator description has the form:
NAME(✓, ✓0):
result: �1(✓) = v1, . . . ,�k(✓) = v

k

gen: ✓01 2 g1(✓), . . . , ✓0
m

2 g
m

(✓, ✓01, . . . , ✓
0
m�1),

precond: 1(✓, ✓0) = u1, . . . , l

(✓, ✓0) = u
l

The ✓ and ✓0 arguments are vectors of variables; the �
i

and

i

are fluents that may have constants or elements of ✓, ✓0
as arguments; the v

i

, u
i

are either be constants or elements
of ✓, ✓0. The operator is implicitly universally quantified
over values of the variables ✓. When an operator is applied
during the search, variables in ✓ are bound by matching
the operator’s results to fluents in the goal. There may be
additional variables in ✓0 that are not yet determined; these
represent the variety of ways in which the operation can be
carried out to obtain the same result.

Although the operator is defined for any binding of values
to the variables in ✓0, most choices of bindings will result in
an operation that is unhelpful or or incompatible with other
aspects of the system’s goals. So, an operator description
includes generators, g

i

: given a vector of values of variables
that were bound in the operator application or by previous
generators, a generator g is capable of generating one or
more possible values of a parameter in ✓0, such as a grasp,
object placement, or path; formally, it behaves like a function
that can be called multiple times to obtain multiple values,
until it is exhausted.

Implicit fluents and conditioning: In most planning
formalisms, the preconditions of each action in a plan must
be established by matching them to result fluents of other
actions in the plan, or to fluents that are true in the initial
state. In our domains of interest, there are fluents such as
In(o, r) asserting that an object is in some region of space
or CanReach(c1, c2), asserting that the robot can move from
configuration c1 to configuration c2 without collision.

It would be impossible to assert all possible fluents that
change value as a result of taking an action. These implicit

fluents appear as preconditions, but not as results of actions.
To allow pre-image backchaining to succeed, we must make
a connection between implicit fluents occurring in a goal
and operations that can possibly achieve them. We do this
by introducing inferential operators, which have implicit
fluents as a result, and primitive fluents as preconditions.
We might have a situation in which a CanReach(c1, c2)
fluent is in the goal, but is not true in the initial state,
because an object x is in the way. An inferential operator is
shown below: ACHCANREACH(C1, C2, O, P,X,X 0):
result: CanReach(C1, C2, X) = True
gen: (O,P) 2 AchCanReachGen(C1, C2, X)

X 0 2 AddCondition(X,Pose(O) = P)
precond: CanReach(C1, C3, X

0) = True
Pose(O) = P

The result of this operator is a conditional CanReach
fluent, which has two configurations as arguments, as well
as a list of conditions X . A generator, AchCanReachGen ,
considers both the arguments and the initial state and sug-
gests that if object O were at pose P , the CanReach fluent
would become true or would at least become easier to make
true. The preconditions of the inferential operator are that
the object be at the suggested pose and that the CanReach
fluent be true, conditionally, if O were in location P .

Conditional fluents are a representational mechanism for
the techniques in table I that allow us to specify pre-images
implicitly without characterizing them explicitly in terms
of huge (or infinite) disjunctions of conjunctions of prim-
itive fluents (the set of arrangements of objects that allow
configuration c1 to be reached from c2 is very complex).
In addition, they enable inferential operators to make the
connection between implicit preconditions and operators that
can help achieve them, by making selective aspects of those
preconditions explicit in terms of primitive fluents.

V. PLANNING ALGORITHM

Planning takes place in the context of the BHPN sys-
tem [1], which performs hierarchical planning and execution,
based on a regression planner. Pre-images computed during
the regression at one level are used as subgoals for lower
levels of hierarchical planning, as well as to select the
next plan step for execution, or even to decide to abandon
the current plan entirely and re-plan at a higher level of
abstraction.

The regression planning algorithm takes an initial domain
state s

o

, which may be have any representation, as long as
each fluent can be tested to see if it holds in that state, a
set of operator descriptions and a goal as input and returns
a plan. It searches in the space of pre-images, which are
conjunctions (represented as sets) of fluents. It uses the A⇤

5459

algorithm, with the domain goal as the initial state of the
search process, and terminates when it reaches a G0 such
that for all fluents (�

i

= v
i

) 2 G0, V (�
i

, s0) = v
i

.
To compute the successors of a state in the search we

compute the pre-image of subgoal G under each applicable
operator O. The procedure REGRESS (slightly simplified
pseudo-code is shown below) does this; G is a conjunction
of fluents in the goal, O is an operator that can have as its
effect at least one fluent in G and has some of its parameters
already bound to match that effect, and s0 is the initial
world state. If successful, it returns o, an instance of O
with all parameters bound and pre-image G0. It begins by
“discharging” any fluents in G that are made true by O.
In addition, it adds the result fluents to the conditions of
any conditional fluents; if these conditions already contain a
value for a result fluent, then the existing value is retained.
Next, it calls the generators O.gen to get a set of bindings
for the remaining unbound variables O.✓0, and applies those
(application is denoted by the \ symbol) to operator O to get
an operator instance o with all of its variables bound. The
preconditions of o are added to G0, which is then subjected
to some simple tests for inconsistency and infeasibility. If it
passes, then G0 is the pre-image of G under o and the pair
(o,G0) is returned.

In the high-level search, each goal G is returned to the
search agenda after expansion, with a record made of which
ground operator instances have been applied to it; to retain
completeness of the search in infinite action spaces, it may
be re-extracted and re-expanded using new bindings for ✓0.

REGRESS(G,O, s0) :

1 G0 = {� 2 G | not O.result implies �}
2 for � 2 G0:
3 for r 2 O.result : �.addCondition(r)
4 o = O\GETBINDINGS(O.✓0, O.gen, G0, s0)
5 G0 = G0 [o.preCond
6 if G0 is inconsistent: return None
7 return (o,G0)

If a precondition is inconsistent with G0, then the regres-
sion step fails, which slows down the search. Generators
should yield values ✓0 that produce operator instances o that:
do not make the conditional fluents in G0 infeasible when
their results are added to the conditions; have preconditions
that are consistent with all fluents in G0; and, preferably,
have preconditions that are easy to achieve from s0.

The factored structure of the goal representation is also
critical for efficient computation of a domain-independent
heuristic, which efficiently computes an estimated cost by
considering elements of a conjunction independently.

VI. MOBILE MANIPULATION DOMAIN

We applied this planning algorithm to a domain in which a
PR2 robot manipulates boxes in an environment with tables
and shelves. The robot is uncertain about the poses of the ob-
jects, and the robot’s base motions introduce substantial new
uncertainty. An object detector, operating on point clouds
from a Kinect sensor, produces noisy estimates of the object

poses. We employ a state estimator that, whenever the actual
robot takes an action and receives an observation, performs
a Bayesian update on a representation of a distribution
representing the agent’s current belief about the underlying
state of the world. The planning is carried out by pre-image
backchaining in belief space.

We use operator descriptions to describe this POMDP,
but not as it is typically done. Rather than specifying the
stochastic transition dynamics of the world-state process and
the observation model, we directly describe the dynamics of
the belief-state process itself. We model the entire “plant”,
including the state estimator, that takes actions as inputs and
generates belief states as outputs. The goal of the overall
system is to select actions to drive the system into a belief
state in the goal set. Actions without observation, such as
moves, are deterministic in belief space even if stochastic in
state space. Observations are stochastic in belief space; we
plan in a deterministic approximation that assumes the most
likely observation will be obtained.

Pre-images in belief space Pre-images in belief space
are sets of belief states; we characterize these sets using a
conjunction of constraints, each articulating a condition on
the distribution of a random variable.

The primitive fluents for the mobile manipulation domain
correspond to the configuration of the robot, the poses of
objects, and the pose of grasped objects in the gripper.
We define belief fluents that describe constraints on the
distributions of an underlying primitive fluent, �. Belief
fluents for continuous-valued fluents specify a probability p,
a variance � and a tolerance �. Such fluents are satisfied by
any Gaussian mixture distribution of � in which there is a
component with mixture weight � p, mean 2 [v � �, v + �],
and variance �2. This idea can be extended to multi-
variate Gaussians and to Gaussians in tangent space to
handle quantities such as rotations. These fluents are written
B(�, v,�, �, p) For discrete variables, the belief is specified
by a value v and a probability p. Such fluents are satisfied
by distributions that assign a probability � p to the event
that the condition has value v. These fluents are written
Bd(�, v, p); for binary-valued fluents, we drop the v, and
assume v = True.

We use beliefs over implicit conditional fluents to repre-
sent the existence of a collision-free path from a given robot
configuration to a “home” configuration (CanReachHome);
the existence of a collision-free path between configurations
that share a base location (CanReachNB); the feasibility
of picking or placing an object at a given pose from a
given robot configuration (CanPick , CanPlace); and the
feasibility of pushing an object to a given pose from a given
robot configuration (CanPush).

Generators Implementing the planning algorithm for the
mobile manipulation domain requires constructing generators
that instantiate the free variables in the operator specifica-
tions. In this domain, the generators (a) plan robot paths, (b)
draw from a precomputed set of grasps, (c) sample poses
for objects and (d) sample robot configurations where an
object is in view of the Kinect sensor. In all cases, these

5460

choices must avoid collisions with immovable objects and
minimize collisions with movable objects. Since the locations
of objects are not precisely known, the choices of poses and
robot configurations take into account this uncertainty by
avoiding, when possible, moving too near uncertain objects.

An example Consider the environment in figure 1 where
uncertainty is shown by a translucent “shadow” centered at
the mean of object poses and whose boundaries extend out
two standard deviations. The goal is to place the red object
(A) currently on the table onto the shelf, currently occupied
by the green object (B) and the blue object (C). There isn’t
enough free space on the shelf for the robot to reach in
with A in its hand, since the robot’s hand is very wide.
Also A cannot be grasped from above without colliding with
the shelves and cannot be grasped from the front without
colliding with the cyan object (D) on the table.

To simplify the presentation, we start out with relatively
low uncertainty on the location of the objects; this is evident
in figure 1 since the shadows are relatively small. The planner
constructs a 17-step plan (inferential operations elided for
space) to achieve the goal.
1 : Move(C(0.00, 0.00), C(0.59, -0.10))
2 : Pick(objC, left, 0, P(1.30, 0.10, 1.17))
3 : Move(C(0.59, -0.10), C(0.45, -0.60))
4 : Place(objC, left, 4, P(1.16, -0.30, 0.68))
5 : Move(C(0.453, -0.60), C(0.49, 0.47))
6 : Pick(objD, left, 0, P(1.10, 0.47, 0.68))
7 : Move(C(0.49, 0.47), C(0.50, 0.09))
8 : Place(objD, left, 4, P(1.10, 0.09, 0.68))
9 : Move(C(0.50, 0.09), C(0.51, 0.22))
10 : LookAt(objA, P(1.15, 0.35, 0.68))
11 : MoveNB((0.51, 0.22))
12 : Pick(objA, right, o, P(1.15, 0.35, 0.68))
13 : Move(C(0.51, 0.22), C(0.58, 0.36))
14 : Place(objA, right, 4, P(1.32, 0.19, 1.17))
15 : Move(C(0.58, 0.36), C(0.00, 0.00))
16 : LookAt(objA, P(1.32, 0.19, 1.17))
17 : AchIn(objA, shelf2)

For compactness, we denote the robot configuration as
C(x, y), representing the position of the base center and we
denote object poses as P (x, y, z). In actuality, 21-dof robot
configurations are used; object poses are represented by an
integer denoting a support face and a 4-dof (x, y, z, ✓) pose.

The planning starts with the goal condition:
x* Bd[In[objA, shelf2], 0.950]

An * before a fluent indicates that it is not true in the
current belief state; an x indicates that it is chosen for
regression. This fluent is regressed (by action 17) to a goal
of placing the object at a pose chosen so that it is within the
shelf region; the choice of pose is subject to backtracking.
The commitment to the object pose is dependent on a
commitment on the pose distribution of the shelves.

B[Pose[shelves], P(1.35, 0.03, 0.68), 0.005, 0.01, 0.97]
x* B[Pose[objA], P(1.32, 0.19, 1.17), 0.005, 0.01, 0.97]

At this point, instances of Place, Push , or Look can achieve
a Pose distribution; Place and Push affect the mean and
LookAt affect the variance. The variance on the pose of A
that is required to achieve In is too tight to be achieved by
a Place or Push and so a LookAt is chosen. This means
that the last action in this plan is a sensing operation that
verifies the placement succeeded. If during execution, the

result of the look shows that the placement did not succeed,
then replanning happens.

Regressing the chosen fluent via action 16 , we get a new
pre-image that requires the robot to be at (with a tolerance of
0.001) a configuration where the object is visible, in this case,
the choice of configuration is the robot’s configuration in the
start state, but with the head pointed towards the object. We
represent all uncertainties relative to the base of the robot and
we assume that the proprioception error on the robot joints
is negligible. Thus, the Conf fluent is a primitive fluent.

B[Pose[shelves], P(1.35, 0.03, 0.68), 0.005, 0.01, 0.97]
Bd[CanSeeFrom[C(0.00, 0.00), objA, []], 0.90]
* B[Pose[objA], P(1.32, 0.19, 1.17), 0.03, 0.01, 0.77]
x* Conf[C(0.00, 0.00), 0.001]

Importantly, the distribution on the pose of A in this pre-
image is much broader (variance is 0.03 instead of 0.005);
this provides a feasible target for a later placing operation.

We next choose to achieve the robot configuration; this
is achieved with a Move (action 15). One precondition of
this action is that the target configuration be reachable via
a collision-free path from the (arbitrarily chosen) “home”
configuration (CanReachHome is true). By requiring that
all motions be able to connect to a home configuration,
we simplify the planning, at some small loss of generality.
Another precondition for this action is that the robot be at
the starting configuration, however, we do not commit to a
particular configuration at this point, since it is completely
unconstrained. The value will be filled in after a more
specific operation is chosen.

B[Pose[shelves], P(1.35, 0.03, 0.68), 0.005, 0.01, 0.97]
Bd[CanSeeFrom[C(0.00, 0.00), objA, []], 0.90]
x* B[Pose[objA], P(1.32, 0.19, 1.17), 0.03, 0.01, 0.77]
Bd[CanReachHome[C(0.00, 0.00), []], 0.80]
Conf[?C, 0.001]

Now, we tackle the object pose via a Place operation
(action 14). This achieves the desired pose given that the
object is grasped appropriately, the robot is in a suitable
starting configuration and a suitable set of paths (approach
with no object, depart with object) exist. The CanPlace
fluent is a test on that relatively complex set of conditions.

B[Pose[shelves],(1.35, 0.03, 0.68), 0.005, 0.01, 0.97]
Bd[CanSeeFrom[C(0.00, 0.00), objA, [COND]], 0.90]
Bd[CanReachHome[C(0.00, 0.00), [COND]], 0.80]
* B[Grasp[objA, right, 0], 0.005, 0.009, 0.79]
* Bd[Holding[right], objA, 0.79]
* Bd[CanPlace[objA, right, P(1.32, 0.19, 1.17), []], 0.90]
* Conf[C(0.58, 0.36), 0.001]

In this pre-image, the pre-existing conditional fluents
CanSeeFrom and CanReachHome are now conditioned
with the resulting fluents from the Place operator. [COND]
stands for:

[B[Pose[objA], P(1.32, 0.19, 1.17), 0.03, 0.01, 0.77],
Bd[Holding[right], none, 0.79]]

That is, the robot must be able to reach home and see A
in a belief state that is like the starting belief, but modified
so that the distribution for A’s pose is as specified in the
condition and the hand is empty.

The regression process proceeds until a pre-image is found
where every fluent it satisfied by the starting belief.

5461

Fig. 3: Left: Initial state; Right: sample final state.

VII. EXPERIMENTS AND CONCLUSIONS

We tested the planner in 4 simulated scenarios, see fig-
ure 3; the size of the “shadows” reflect the uncertainty
in poses. The examples involve: (1) place an object at
the left end of the table, (2) place an object anywhere
on another table, (3) place two objects anywhere at the
left end of the table, and (4) push a block, too large to
grasp, to the left end of the table; this requires moving
a blocking object out of the way. The simulation includes
simple models for error in each of the actions, so that an
open-loop plan is unlikely to succeed. We evaluated four
settings for the planner. Hier/Flat indicates whether the
planner was hierarchical or not. Monitor/Replan indicates
whether we monitor and replan as needed or we replan after
every action. The running times (in seconds) are shown in
the table below; they represent averages over 5 executions.
Each execution involves a random draw from the initial pose
distribution for each of the object poses. The empty entries
exceeded the maximum allowed running times of 1000 secs.

Test Hier/Mon Hier/Replan Flat/Mon Flat/Replan

1 87 152 198 377
2 132 249 389 718
3 146 440 — —
4 172 552 — —

These results support the fact that (a) hierarchical planning
is effective in these types of problems and (b) that exploit-
ing pre-images to replan only when necessary provides a
substantial time savings. In the flat setting, for tests 1 and
2, constructing the first complete plan takes 84 secs. That
is nearly the full running and execution time in hierarchical
mode. For continual replanning, test 1 and 2 construct an
average of 10.2 and 14.5 (flat) plans per trial respectively,
corresponding to the average length of the plans. When
replanning only as needed in tests 1 and 2, 4.2 and 7.0
(flat) plans are constructed on average. The time to create
subsequent plans drops quickly, both because the length of
the plans decrease and due to geometric caching.

The construction of explicit pre-images enables hierarchi-
cal planning and execution monitoring, thus supporting a
“determinize and re-plan” style of planning under uncertainty
and enabling teh solution of complex manipulation planning
problems with real uncertainty.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” IJRR, vol. 32, no. 9-10, 2013.

[2] T. Lozano-Pérez, M. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” IJRR, vol. 3, no. 1, 1984.

[3] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning: Theory
and practice. Elsevier, 2004.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011.

[5] J. F. Canny and J. H. Reif, “New lower bound techniques for robot
motion planning problems,” in FOCS, 1987.

[6] M. Levihn, L. P. Kaelbling, T. Lozano-Pérez, and M. Stilman, “Fore-
sight and reconsideration in hierarchical planning and execution,” in
IROS, 2013.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, 1998.

[8] D. S. Weld, “Recent advances in AI planning,” AI Magazine, 1999.
[9] R. Platt, R. Tedrake, L. P. Kaelbling, and T. Lozano-Pérez, “Belief

space planning assuming max. likelihood observations,” in RSS, 2010.
[10] T. Erez and W. Smart, “A scalable method for solving high-dimen.

continuous POMDPs using local approximation,” in UAI, 2010.
[11] N. E. du Toit and J. W. Burdick, “Robotic motion planning in dynamic,

cluttered, uncertain environments,” in ICRA, 2010.
[12] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for

probabilistic planning,” in ICAPS, 2007.
[13] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics

and Autonomous Systems, vol. 53, no. 2, 2005.
[14] R. Fikes, P. E. Hart, and N. J. Nilsson, “Learning and executing

generalized robot plans,” Artificial Intelligence, vol. 3, no. 1-3, 1972.
[15] C. Fritz and S. A. McIlraith, “Monitoring plan optimality during

execution,” in ICAPS, 2007.
[16] J. Latombe, Robot Motion Planning. Kluwer, 1991.
[17] S. M. LaValle, Planning Algorithms. Cambridge U. Press, 2006.
[18] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation

planning with prob. roadmaps,” IJRR, vol. 23, no. 7–8, 2004.
[19] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion

planning for a humanoid robot manip. task,” IJRR, vol. 30, 2011.
[20] J. Barry, L. P. Kaelbling, and T. Lozano-Perez, “A hierarchical

approach to manipulation with diverse actions,” in ICRA, 2013.
[21] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,

“Semantic attachments for domain-independent planning systems,” in
ICAPS, 2009.

[22] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning for robotic manipulation,” in ICRA, 2011.

[23] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric backtrack-
ing,” in IROS, 2012.

[24] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” IJRR, vol. 28, 2009.

[25] E. Plaku and G. Hager, “Sampling-based motion planning with sym-
bolic, geometric, and differential constraints,” in ICRA, 2010.

[26] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in ICRA, 2014.

[27] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in WAFR, 2014.

[28] ——, “Backward-forward search for manipulation planning,” in IROS,
2015.

[29] M. Stilman and J. J. Kuffner, “Planning among movable obstacles with
artificial constraints,” in WAFR, 2006.

[30] K. K. Hauser, “The minimum constraint removal problem with three
robotics applications,” I. J. Robotic Res., vol. 33, no. 1, pp. 5–17, 2014.
[Online]. Available: http://dx.doi.org/10.1177/0278364913507795

5462

