Automatic Synthesis of Rules for
Planning in Belief Space

Leslie Pack Kaelbling
MIT CSAIL
Cambridge, MA 02139
Email: Ipk@mit.edu

I. INTRODUCTION

Robots operating in complex, unknown environments have
to deal explicitly with uncertainty. Sensing is increasingly
reliable, but remains inescapably local: robots cannot see,
immediately, inside cupboards, under collapsed walls, or into
nuclear containment vessels. Task planning in household and
disaster-relief domains requires explicit consideration of un-
certainty and the selection of actions at both the task and
motion levels to support gathering information.

We have previously sketched an overall methodology for
hierarchical task and motion planning in uncertain domains,
and demonstrated it on a real robot [5]. A critical foundation of
that methodology is the idea of planning in belief space: that
is, the space of the robot’s beliefs (represented as probability
distributions and other data structures) about the state of its
environment. For planning purposes, the initial state is a belief
state and the goal is a set of belief states: for example, a goal
might be for the robot to believe with probability greater than
0.99 that all of the groceries are put away in an acceptable
location, or that there are no survivors remaining in the rubble.

Our approach is founded on the notion of integrating
estimation, planning, and execution in a feedback loop. A
plan is made, based on the current belief state; the first
step is executed; an observation is obtained; the belief state
is updated; the plan is recomputed, if necessary, etc. This
approach allows planning to be approximate: it is important
that the first step of the plan be useful, but the rest will be re-
examined in light of the results of the first step. For this reason,
we construct plans using a deterministic approximation of the
probabilistic dynamics, which is discussed in detail in [5].

In order to support task planning in belief space, it had
previously been necessary to write down a description of the
domain by articulating the effects of different actions (moving
an object, making an observation) in terms of their effects on
the robot’s belief state. Even experts in both the domain and
in probabilistic reasoning found it difficult to write a correct
and effective specification.

In this paper, we address that problem by providing a
formalism for describing the stochastic transition and obser-
vation models that characterize the domain and an algorithm
for converting those models into rules for planning in belief
space. In addition to simplifying the problem of domain
specification, this conversion process yields additional insight

into conditions under which such a formalism could be correct
and complete. This is a preliminary presentation of the work:
the implementation and detailed solution is currently confined
to discrete underlying state spaces.

A. Related work

There are two main classes of work closely related to
symbolic planning in belief space.

First, is work on lifted, factored, and first-order partially
observed Markov decision processes (POMDPs) [17, 14, 16].
Most of this work focuses on finding exact or near-optimal
solutions in the form of complete policies. A policy maps all
possible belief states to an action. The advantage of a policy is
that it can be computed offline and used for fast look-up during
execution. A disadvantage is that, in large domains, computing
and even simply representing a reaction for every possible
belief state can be wildly computationally intractable. By using
lifted and factored representations, systematic regularities in
the domain can be exploited to achieve some measure of
compactness, but policy sizes still tend to grow very quickly.

Recently Srivastava et al. [15] have applied BLOG models
to specifying POMDPs and have a thoughtful description of
the semantics of observations, with a particular concern for
the meanings of symbols in symbolic observations. In this
work, we avoid those issues, by assuming observations do not
contain quantifiers or designators.

Within the AI planning community, there has been a great
deal of work on planning in a belief space corresponding to
sets of underlying world states [3, 1]; here we concentrate on
approaches that use explicit logical formulation of knowledge
conditions. There is also a history of using logical represen-
tations to formalize knowledge preconditions for planning,
starting informally with [8], then formalized in [10, 11]. This
approach has been implemented in a planning system [13]
and has been recently applied in a real robotic domain [4].
Recently, it has been demonstrated that planning under partial
observability in non-probabilistic domains can be, under some
assumptions, reduced to classical replanning, resulting in an
approach that is very efficient, when it applies [2].

B. Simple example domain

As a running example, we consider a simple discrete domain
that contains n locations numbered 0 through n — 1, and m
objects with names a, b, etc. Each object may be located in

any one of the locations. There are two primitive actions in
this domain. The MOVE action takes two arguments, a source
location and a target location. If there is an object at the
source location, then it is moved, with probability 0.95 to the
target location and with probability 0.05 to location 0. The
LOOK action takes a single argument, which is a location. If
there is an object at that location, then the robot receives an
observation which is the name of that object, with probability
0.9, and observation None with probability 0.1. If there is
no object there, then it observes the name of the object it is
looking for! with probability 0.1, and None with probability
0.9.

Goals in this domain will be conditions on the belief state:
conjunctions specifying that particular objects be believed to
be in particular locations with some probability.

II. MODEL REPRESENTATION

We begin with a factored, lifted representation of the un-
derlying POMDP. For simplicity in this paper, we assume that
actions can either cause a transition in the world or generate an
observation. Of course actions can have both types of effect,
and the models can be generalized to account for that.

A. States and actions
Let

e IR be a set of function symbols

e A be a set of action symbols

e I be a (possibly infinite) set of individuals (objects,
locations, etc.)

e R=r(i,...,i;) for r € R,i, € I, be a set of random
variables, each of which has a finite domain of possible
values

o The set of states S be the set of assignments of values
to all the random variables in R

e A=ua(i1,...,i;) fora € A, i, € I, be a set of primitive
actions.
The value of random variable r(i1,...,7;) may change over

time; we will not always use an explicit time index, but will
refer to these quantities as random fluents to emphasize the
temporal dependence of their values. We will also make a pun
and use a(iy,...,4;) in logical expressions to mean that the
action named by the term was executed by the robot.

In our example domain, we have:

e R={Loc, In, Clear}

o A = {Move, Look}

e I ={a,b,0,1,2,3,4}

The semantics of Loc(Obj) = v is that object Obj, which
ranges over {a,b}, is in the location specified by v, which
ranges over {0,...,4}.

The semantics of In(Obj, Region) = v is that object Obj,
which ranges over {a,b}, is in the one of the locations
specified by Region, which ranges over 2104} (that is,
subsets of locations), if v = True and is not in one of those
locations if v = False.

IThis is a bit like the mirror of Erised.

The semantics of Clear(Region) = v is that Region, which
ranges over 2104} contains no objects, if v = True and
contains at least one object if v = False.

The action MOVE(ly,l3) causes the robot to attempt to
move the object at location [y, if there is an object there, to
location 5. The action LOOK(l1) causes the robot to receive
an observation of the object at location [;.

B. Transition rules

To express the effects of actions on the state of the world, we
use a rule formalism that is similar to the noisy indeterministic
deictic (NID) rules of [12].

We assume that the transition dynamics of the domain are
factored, so that Pr(S;41 | Si, A;) can be written as:

Pr(Siy1 = (v1,...,0n) | St,a¢) =

[T Pre; = v; | se.a0)

PiE€ER

where n = |R/|, the number of possible random fluents.?

Furthermore, we assume that they are liffed, so that the
form of the dependence is the same for all p that share a
function symbol. This is in the style of models described
by probabilistic relational models [7] and Blog [9] among
others. So, for all 1, ..., x;, where the x variables range over
elements of I,

. 7xi)t+l ‘ st7at) =

Pr(r(z1,...,xi)ee1 | (21, ...

Pr(rg(z, ..
7xj)t7 at))

where ¢ (z1,...,2;) € R is a set of random fluents whose
arguments are individuals x1, ..., 2; and possibly some other
related individuals, x;41,...,2;. Generally, we expect these
dependencies to be relatively sparse, so that the value of a
single random fluent at time ¢ + 1 depends on the values of a
relatively small, constant number of random fluents at time ¢.

We assume that the distributions Pr(rg(x1,...,2)e1 |
W(z1,...,2;5),a¢) exhibit significant context-specific inde-
pendence, and so are well described with a rule-based rep-
resentation [6], with the distribution on 7g(z1,...,T;)t+1
being constant over some sets of assignments to its parents

¥(z1,...,%;)). Thus, we express the transition model using
a collection of rules of the form:
V(El, . ,xi.[ﬂxiﬂ, sy Ty
(@, .z =01 A Aem(T1,. ., 25) = U
ANa(zy,...,z5)] —
Pr(r(zi,...,zi)it1) =0 . (1)

where the ¢, € R, a € A, and ¢ is a distribution over the
domain of r(x1,...,x;).

A set of transition rules must have the property that, for
any two rules with the same random fluent symbol r and

2If there are two or more fluents whose dynamics are not well modeled
under this independence assumption, they can be grouped together into a
single factor, with a dependent transition model.

action symbol a, the antecedent conditions must be mutually
exclusive. The conditions need not be exhaustive, however:
We make the STRIPS assumption that if there is no rule for
describing how an aspect of the state changes, then it stays the
same. So, if there is no rule for action a whose consequent is
a random fluent with function symbol r and whose antecedent
is satisfied in an initial state s;, it is assumed that

xj)e) =1 .

In general, there may be transitions that take place indepen-
dent of the particular action being executed by the robot (e.g.,
objects being moved by other agents). An extension to this
model, not addressed in this paper, would be to add another
rule type for such exogenous events. A single action can affect
multiple fluents. We can gather those effects together into a
single action transition rule, by allowing multiple different
random fluents in the effect: thus, we can characterize, either
independently or jointly, the effects of the action on multiple
fluents.

Here is a description of the MOVE operator, in a syntax
that is easier to read, but whose semantics corresponds to the
specification in equation 1.

Pr(r(xy, ..., %) = r(z1, .. 20)e | alzg, ...

MOVE(Obj, lstarta ltarget):
exists: lq1 € Locations \ {liarget }

pre: Loc(obj) = lstar
Clear (sv(lstarts ltarget)) = True

ltarge p.1— E
effect: Loc(obj) = { "9 WP movesTr

0 w.p. moveErr
prim: MOVEPRIMITIVE (Isiar+, Lrarget)

cost: 1

This rule formalism is designed for use in backward chain-
ing, in which case, the target location would be bound when
the rule is applied, but the starting location remains free, which
is why we have shown it as being existentially quantified. Here
sv means “swept volume,” and denotes the range of locations
between the start and target locations, which should be free in
order to move the object to the target location.

C. Observation rules

Actions of some types result in an observation that is
conditionally dependent on the action and the state of the
world. Let the set of possible observations be O. In general,
an observation o € O might have a factored description that
could make the observation model even more compact, but we
do not assume that structure here.

The observation model has to specify Pr(O; | si,a.). We
will specify it using rules, as with the transition model, but
the rules have a slightly different form:

le,...,xi.[ﬂmiﬂ,...,xj.
(1, .z =v1 A Aep(T1, .., %) = U
ANa(zy,...,z5)] —
Pr(Oy=o|r(z1,...,x) 41 =v) = f(z1,...,25,v,0) .

where f is a function mapping rule parameters x1,...,x;,
possible values v of r(x1,...,x;);, and observations o into
values in [0, 1], subject to the constraint that, for all values of
Z1,...,x; and v,

Zf(scl,...7xj,v,o) =1.

This form is particularly useful when there are some phys-
ical conditions, characterized by the ¢ random fluents, under
which an observation can be made that is informative about
random fluent r. For instance, the ¢ conditions might be that
the robot has an occlusion-free view of an object; and f might
then characterize the noise in the observation model under the
assumption that a good view is available.

Here is a description of the observation model for our
exmaple domain. For simplicity we assume that each object
has a string, name(obj), associated with it, and that these
strings can be observed.

To illustrate the role of conditions, we include one asserting
that the lights are on, although it is not actually part of our
example domain.

LOOK(Obj, llook):
pre: LightOn() = True
result: Pr(O = o | Loc(obj) =v) =

0.9 if o = name(obj) and v = ljpok
0.1 if o = False and v = [},,%
0.05 if 0 = name(obj) and v # ljok
0.95 if o = False and v # ;oo

prim: LOOKPRIMITIVE(;o0k)
cost: 1

This rule declares the existence of a LOOK action and says
that, if the lights are on in the current state, and the actual
location of the object in question is the same as the location
the robot is looking at, then with high probability, the robot
will get an observation that is the name of the object being
looked at; otherwise, it will very likely get the observation
False.

This is an approximation of the true model; it is useful for
planning but would not be adequate for filtering. In fact, if
object 0bj is not in the location we are looking at, then the
observation will depend on what other objects might be in that
location.

III. TRANSFORMATION TO BELIEF MODEL

Let the belief state at time t, b, be a probability distribution
over possible states in S. In a POMDP, whenever an action a
is taken and an observation o made, the belief state is updated
using the Bayesian filter equation:

bit1(sj) < Pr(o| a,s;) ZPr(sj | siya)be(s;) -

The process characterizing the evolution of b is a Markov
decision process (MDP) in the space of beliefs. This is the
space in which we wish to plan, and so we provide a method

for translating the factored, lifted transition and observation
models from the previous section into a factored, lifted rep-
resentation of the belief space MDP. This representation is
approximate: it allows for the construction of plans that are
sound, in the sense that they have positive probability of
reaching the goal, and correctly reports an upper bound on
their cost; but it is neither complete nor optimal.

A. Belief fluents

Belief states are points in a what is generally a very high-
dimensional space. Task planning methods are most appro-
priate in discretized spaces, but heedless discretization of
belief space yields an intractably large discrete space. Here we
present an approach that allows a goal-directed discretization
to be constructed. We define a vocabulary of belief fluents
for describing partitions of the belief space, and characterize
the effects of transition and observation actions on the belief
state, using this vocabulary of belief fluents. The vocabulary
is designed to support means-ends reasoning via backward
chaining.

A belief fluent has the form B(p,v,e), where p is a
random fluent, v is a value from the domain of p, and ¢
is a value in [0,1]. It denotes the set of belief states in
which the condition Pr(p = v) > 1 — € holds. We will
not be able to completely characterize an actual belief state
using belief fluents; this situation is analogous to the difficulty
of completely characterizing geometric states using logical
formulations. Goals and their pre-images (constructed during
backward-chaining planning) will be conjunctions of belief
fluents, which have the capacity of expressing a useful class
of distinctions among belief states.

B. Transition rules

Given a rule describing the effects of an action on a class
of random fluents, we can convert it to a set of rules charac-
terizing the effect of that action on an associated belief fluent.
Actions that cause domain transitions, but do not generate an
observation, have deterministic effects on the belief state. We
show the transformation by example on the following rule
template:

TRANSRULE(zx1, ..., x;):
exists: x;q1,...,%;
pre: ¢i(T1,...,2;5) = V1, ., Cn(T1, ..., Tj) = Uy
effect: Pr(r(z1,...,2;) =u1) =p1

Pr(r(z1,...,z;) = ux) = pi
prim: PRIM(z1, ...,z)
cost: c

If there are k possible values for the effect fluent, then we
will construct k belief-space rules, one for each of the possible
outcomes.

BTRANSRULE_L(z1,...,%;,€):
exists: x;1,...,%;
pre: B(cl(xl, . 7ZL'j),U17 61)7 ey

B(cm (1, 525), Um, €m)
effect: B(r(z1,...,2;),u,¢€)
prim: PRIM(z1,...,x;)

cost: c

This rule says that, if the preconditions of the previous rule are
true with probabilities lower-bounded by 1—e¢q, ..., 1—¢g, and
the associated primitive action is executed, then the resulting
fluent will have value u; with probability 1 — e. It remains
only to characterize the relationship between these values.
Assuming that the individual precondition random fluents are
independent, we can show that

Pr(r(zy,...,zi)ir1=v) =1—€ < p H(l — €n)
h=1

We will use this rule for backward chaining, so if we desire to
achieve a belief condition with probability at least 1 — ¢, then
this inequality provides a constraint on the values of the €.
In our current implementation, we set them all to be equal:

N\ (/m)
=1 <1 €>
bi

Given some understanding of which belief conditions might
be easier to achieve than others, it would be reasonable to
do a non-uniform allocation of the uncertainty among the
preconditions.

C. Observation rules

Similarly, we can take an observation rule and generate a
belief-space operator from it. Recall that an observation rule
has this form:

OBSRULE(z1,...,x;):
exists: x;q1,...,%;
pre: ¢i(1,...,25) =V1,...,Cn(T1,...,2j) = U
result: for all o, and v;
Pr(O =oy | r(z1,...,2:) =v) = f(z1,..., 25,0, 0k)

prim: PRIM(z1, ..
cost: ¢

.,xj)

This rule characterizes the likelihood of getting any observa-
tion oy given that the target random fluent has value v;. It can
be used to construct rules that increase the degree of belief
that the target fluent has value v;. The effect of making an
observation action on the belief state is stochastic: it depends
on which particular observation will be received. Our approach
is to construct a deterministic approximation of the stochastic
domain, in which we are allowed to choose any of the desired
results, but pay a cost of — log p for selecting an outcome with
will occur with probability p.

We construct the following belief-space rule from the ob-
servation rule. It has three additional parameters: obs, v, and

€. The values of v and e will be bound during the backward-
chaining planning search; the value of obs is a free variable,
meaning that the operator can be instantiated for any possible
value of the observation.

BOBSRULE(z1, ..., x;, 0bs, v, €):
exists: x;y1,...,%;, 0bs
pre: B(r(z1,...,%:),V, €prev)
B(Cl(l'l, ce ,(Ej),’l)l,ﬁl), ey
B(cm (1, ,25), Um, €m)
effect: B(r(z1,...,2;),v,€)
prim: PRIM(z1,...,x;)

cost: ¢ — wlogpops

The preconditions in this case are the conditions from the
observation rule, as well as a previous condition on the belief
that the target random fluent has the target value. Now, we
need to find a relationship between the e values in order to
guarantee that the effect will hold. Using Bayes’ rule and some
conservative approximation, we find that the consequence will
hold for

€+pc—€ pc(l - po\v,c)
pC(G Do|v,c + (1 - E)poh'u,c)’
where p. = (1 — ¢€,)™ is the probability that all the condi-

tions hold, pojy,c = f(x1,...,2;5,v,0bs) is the observation
probability from the model, and

Eprev =

1 Ti) F)

This last quantity is difficult to compute; we approximate it,
conservatively, with

Pojv,c = Pr(obs | r(xy,...

Pojv,c = max Pr(obs | r(z1,...
’ uF#v

The cost of this operation has two components: the original
cost for executing the operation in the world, c, plus a cost that
is related to the likelihood that the desired outcome will occur.
A weighting factor w trades off cost of execution in the world
against likelihood of plan success. The probability of getting
the desired observation is the product of the probability that the
preconditions are true with the probability that this particular
observation will be obtained in that case:

%5, 0, 008) (1 — €pren) (1

D. Entailment and contradiction

m

Pobs = f(1,.. —€n)

Because we are planning in very large or continuous do-
mains, our symbolic planning formalism does not require add
and delete lists to be enumerated in advance: in fact, the
number of fluents that are potentially made true or false by an
operation is possibly very large or unbounded. For this reason,
we do limited inference inside the planning algorithm, based
on pairwise entailment and contradiction relations among the
fluents.

We are able to automatically derive entailment and contra-
diction relations between belief fluents from user-specified en-
tailment and contradiction relations on the underlying random
fluents. The relationships are these:

o For any two random fluents, if p; = v; entails ps = vo,
and €1 < €9 then B(phvhel) entails B(pQ,UQ,EQ).

o For any two random fluents, if p; = v; contradicts ps =
v, and (1—e1)+(1—e3) > 1 then B(p1,v1, €1) contradicts
B(pg, V2, 62).

IV. EXAMPLE DOMAIN AND RESULTS

A. Remaining model specification

In order to have a set of transition rules that is moder-
ately general for the underlying domain, we have to specify
conditions under which values for Clear and In random
fluents can be achieved. The rules are given below. They are
definitional in the sense that there are no primitive operations
associated with them; they reduce the Clear and In conditions
to conjunctions of Loc fluents, which can be achieved with the
MOVE operation.

MAKECLEAR(region):
pre: V obj. In(obj, region) = False
effect: Clear(region) = True w.p. 1

MOVEOUT(o0bj, region):
exists: [& region
pre: Loc(obj) =1
effect: In(obj, region) = False w.p. 1

Additionally, we specify conditions under which pairs of
Loc, Clear, and In fluents entail or contradict one another.
This is straightforward.

B. Belief rules

The MOVE rule generates two belief rules (one for each
outcome), and the MAKECLEAR, MOVEOUT and LOOK rules
each generate a belief rule, which yields a total of 5 rules.

One additional feature of the belief rules is that they contain
an applicability test. In transition rules, if 1 — e < p, that is,
the desired belief is greater than the accuracy of the transition
being considered, then there is no degree of belief for the
preconditions that will guarantee the desired result and the
rule immediately detects its lack of applicability. Similarly, if
€prev 1N an observation rule is not greater than €, then making
this observation is not increasing our certainty in the associated
fluent, and so the operation need not be considered further.

C. Results

Consider a simple instance of our example domain in which
there are 3 locations and two objects, @ and b. In the initial
belief state, the distribution on the location of a is {0 : 0.85,1 :
0.05,2 : 0.1} and the distribution the location of b is {0 :
0..02,1:0.96,2 : 0.02}. The goal is B(Loc(a),1,0.05); that
is, to believe with probability at least 0.95 that object a is in
location 1.

A partial search tree for this planning problem is shown in
figure 1. Green nodes constitute the plan, found by backward-
chaining A* using the belief-space operators. Let us trace the
plan, backward, from the root to the leaf. Each node describes
a subset of belief space, in which all of the fluents in that

cost=0 h=1
* Blloc[a], 1, 0.080]

}0:L00k0(1 ,a,1,0.080)

cost=2.027 h=1
* B[loc[a], 1, 0.623]

ﬁMoveO(a, 0,1, O.GNZMO\@O(H, 2,1,0.623)

cost=3.027 h=1 cost=3.027 h=2
* B[clear[set([1])], True, 0.319] * B[clear[set([1])], True, 0.319]
B[loc[a], 0, 0.319] * Blloc[a], 2, 0.319]
}O:MakeClearO(set([l]), 0.319) }O:MakeCleexIO(set([l 1),0.319)
cost=3.127 h=1
Blin[a, set([1])], False, 0.131]
* B[in[b, set([1])], False, 0.131]
Blloc[a], 0, 0.319]

cost=3.127 h=2
Blin[a, set([1])], False, 0.131]
* B[in[b, set([1])], False, 0.131]
* Blloc[a], 2, 0.319]

}O:MoveOutO(b, set([1]),0.131) }O:MoveOutO(b, set([1]),0.131)

cost=3.227 h=1
Blin[a, set([1])], False, 0.131]
Blloc[a], 0, 0.319]
* B[loc[b], 2, 0.085]

cost=3.227 h=2
Blin[a, set([1])], False, 0.131]
* Blloc[a], 2, 0.319]
* B[loc[b], 0, 0.085]

}0:Look0(2, b, 2,0.085)

cost=5.298 h=1
Blin[a, set([1])], False, 0.131]
Blloc[a], 0, 0.319]
* B[loc[b], 2, 0.640]

ko:MoveO(b, 1,2,0.640)

cost=6.298 h=0
B[clear[set([2])], True, 0.334]
Blin[a, set([1])], False, 0.131]

Blloc[a], 0, 0.319]

B[loc[b], 1, 0.334]

Fig. 1. Example search tree

node hold. The cost is the cost of the part of the plan that has
been constructed so far, and the heuristic value is simply the
number of fluents that are not true in the initial belief state.
Fluents that are not true in the initial belief state are indicated
with an asterisk.

The root node is the goal. Only a single operation is
applicable to achieving the goal: to look in location 1, hoping
to observe a. The last step cannot be a MOVE action, because
the accuracy of moving is too low. But the regression of the
goal under the LOOK action now only requires a to be in
location 1 with a much weaker degree of belief, which makes
a MOVE action applicable. It has a choice of moving the object
from location O or from location 2, and will find that the
cheaper plan moves it from location 0. However, in order for
the MOVE operation to be sufficiently likely to succeed, we
must believe that location 1 is clear, which, in turn, requires
that both objects a and b be believed not to be in location 1.

The condition is already satisfied for a, but not for b, so a
subgoal of believing that b is in location 2 is established. This
can be achieved most cost-effectively by putting in a LOOK to
verify that b is in location 2, and then a MOVE to put it there.
Read in the forward direction, with only primitive actions, the
final plan is: MOVE(1,2); LOOK(2); MOVE(0, 1); LOOK(1).

If we increase the number of possible locations to 20, the
search is still feasible. The immediate branching factor for
MOVE operations is higher, but most of them are not useful
and don’t get pursued. In larger domains, it will be necessary
to use some stronger heuristic guidance, which can generally
come through the use of generators, which are procedures that
order the choices of bindings for existential variables, so that
we consider values that are heuristically likely to be useful
earlier in the search.

V. REFLECTIONS AND FUTURE WORK

It will be critical to develop a formal characterization of the
conditions under which this approach is correct and complete
and to extend it to apply to a much broader class of problems.
In this section, we briefly address these issues.

This approach is correct, in the sense that if a belief-space
plan is found, then it has a non-zero chance of reaching the
goal. The plans are not necessarily strictly optimal, even ac-
cording to our notion of combined operation cost and negative
log likelihood of success, because we may underestimate the
success probability of some operations.

The approach is definitely not complete, in the sense of
being able to achieve any goal in belief space: we cannot even
articulate, for example, the goal of believing that locations
1 and 2 are nearly equally likely. An important question,
though is whether the approach is complete with respect to
the set of goals expressible as conjunctions of belief fluents.
We conjecture that it is, but we have not yet shown it. An-
other important question is the behavior of the entire system,
consisting of planning, execution, estimation, and replanning:
it will be important to characterize conditions under which the
system can be guaranteed to actually reach a given belief-space
goal.

We believe it will be relatively straightforward to extend the
approach to address continuous-valued random fluents with
Gaussian and possibly other parametric distributions, as well
as to handle factored and continuous observations.

Acknowledgement: This work was supported in part by the
NSF under Grant No. 1117325. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. I also gratefully
acknowledge support from ONR MURI grant N00014-09-
1-1051, from AFOSR grant FA2386-10-1-4135 and from
the Singapore Ministry of Education under a grant to the
Singapore-MIT International Design Center.

REFERENCES

[1] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in
nondeterministic domains under partial observability via symbolic model

[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

checking. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 473-478, 2001.

Blai Bonet and Hector Geffner. Planning under partial observability by
classical replanning: Theory and experiments. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2011.
Daniel Bryce, Subbarao Kambhampati, and David E. Smith. Planning
graph heuristics for belief space search. Journal of Artificial Intelligence
Research, 26:35-99, 2006.

Andre Gaschler, Ronald Petrick, Torsten Kroger, Alois Knoll, and
Oussama Khatib. Robot task planning with contingencies for run-time
sensing. In ICRA Workshop On Combining Task and Motion Planning,
2013.

Leslie Pack Kaelbling and Tomas Lozano-Pérez. Integrated task and
motion planning in belief space. International Journal of Robotics
Research, 2013.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models -
Principles and Techniques. MIT Press, 2009.

Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In
AAAI/IAAI, pages 580-587, 1998.

John McCarthy and Patrick J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463-502. Edinburgh University
Press, 1969.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L.
Ong, and Andrey Kolobov. BLOG: Probabilistic models with unknown
objects. In Proceedings of the International Joint Conference on
Artificial Intelligence, 2005.

Robert C. Moore. A formal theory of knowledge and action. In
Jerry R. Hobbs and Robert C. Moore, editors, Formal Theories of
the Commonsense World. Ablex Publishing Company, Norwood, New
Jersey, 1985.

Leora Morgenstern. Knowledge preconditions for actions and plans.
In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 867-874, 1987.

Hanna Pasula, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. Learning
symbolic models of stochastic domains. Journal of Artificial Intelligence
Research, 29, 2007.

R. P. A. Petrick and F. Bacchus. Extending the knowledge-based
approach to planning with incomplete information and sensing. In
International Conference on Automated Planning and Scheduling, 2004.
Scott Sanner and Kristian Kersting. Symbolic dynamic programming
for first-order POMDPs. In Proceedings of the Association for the
Advancement of Artificial Intelligence, 2010.

S. Srivastava, S. Russell, and A. Pfeffer. First-order models for
pomdps. In UAI Workshop on Statistical Relational Artificial Intelligence
(StarAl), 2012.

Chenggang Wang and Roni Khardon. Relational partially observable
MDPs. In Proceedings of the Association for the Advancement of
Artificial Intelligence, 2010.

Zahra Zamani, Scott Sanner, Pascal Poupart, and Kristian Kersting.
Symbolic dynamic programming for continuous state and observation
pomdps. In NIPS, pages 1403-1411, 2012.

