Object Placement as Inverse Motion Planning

Anne Holladay! Jennifer Barry!' Leslie Pack Kaelbling! Tomas Lozano-Pérez!

Abstract— We present an approach to robust placing that
uses movable surfaces in the environment to guide a poorly
grasped object into a goal pose. This problem is an instance of
the inverse motion planning problem, in which we solve for a
configuration of the environment that makes desired trajectories
likely. To calculate the probability that an object will take a
particular trajectory, we model the physics of placing as a
mixture model of simple object motions. Our algorithm searches
over the possible configurations of the object and environment
and uses this model to choose the configuration most likely to
lead to a successful place. We show that this algorithm allows
the PR2 robot to execute placements that fail with traditional
placing implementations.

I. INTRODUCTION

Robotic pick and place operations have been widely
studied, but much of the focus has been on the details
of the pick operation, planning grasps for interestingly-
shaped, deformable, or slippery objects. Classic pick and
place operations use rigid grasps so the place operation is
usually straightforward. Given a goal pose for an object that
is rigidly attached to the robot, we calculate the pose of the
robot’s end effector that will result in a correct placement of
the object and then solve an inverse kinematics problem to
determine the robot’s configuration.

However, this approach to placing has limited applica-
bility. Many robots have thick forearms so that, if the
object is originally grasped too close to its base, the robot’s
forearm will collide with the table during placing. Similarly,
a difference between the object’s relative orientation to the
robot when it is picked and when it is placed can make
the place operation infeasible. Some objects are inherently
difficult to place: wide, flat objects, such as plates or books,
for example, are shaped such that there is only one way to
grasp them, but this grasp leads to collisions during placing.
Some of these failure modes can be seen in Figures 1 and 2.

Humans rarely place objects in such a completely con-
strained manner. Instead, we tend to drop objects or balance
them against other surfaces. Robots, possessing much less
dexterous hands, should use these strategies, if anything,
more often than humans. A robot with two arms should be
able to use its other hand to increase the robustness of a

IMIT CSAIL {holladay, jbarry, lpk, tlp}@csail.mit.edu

This work was supported in part by the NSF under Grants No. 1117325
and No. 1122374. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. We also
gratefully acknowledge support from ONR MURI grant N00014-09-1-
1051, from AFOSR grant FA2386-10-1-4135, from the Angle Research and
Innovation Scholarship, and from the Singapore Ministry of Education under
a grant to the Singapore-MIT International Design Center. We thank Willow
Garage for the use of the PR2 robot as part of the PR2 Beta Program.

Fig. 1: Placing failure modes. (a) The box is grasped too low
on its base resulting in a collision between the forearm and
the table. (b) The only allowable grasp of the plate results
in a collision between the gripper and the table.

place; a robot placing in clutter should be able to reason
about using other objects to constrain the one it places.

In some cases releasing the object above the place surface
and allowing it to fall results in a successful placement of
the object. But in many other cases, the object will slide or
tip after being dropped. In cases where the orientation of the
desired place pose causes difficulties, such as the one shown
in Figure 1b, simply increasing the height does not resolve
the problem. In other situations, there is no way to release
the object so that it will land stably. For example, consider
trying to drop a tall tower upright onto a table. Since the
tower has a relatively small base and high center of mass,
it will tip over if dropped directly onto the table as shown
in Figure 2a. Instead, we must use the environment to guide
the tower into landing in an upright pose.

Inspired by previous work [1], [2], we treat the problem of
robust placement as a problem of inverse motion planning.
Given a desired trajectory or set of trajectories for an object,
we place obstacles in the environment to constrain the
object’s possible motions to that set. This is an inverse of
the ordinary motion planning problem in which the obstacles
are fixed and we find a free path through them.

In this paper, we formalize the general inverse motion
planning problem. We then simplify the problem in the
specific case of placing an object. We provide a simple
search strategy for selecting an appropriate pose of the hand
that is releasing the object, as well as of the robot’s other
hand, which is used to constrain the object’s trajectory as
it is released. Finally, we demonstrate the effectiveness of
this strategy using a PR2 robot to place three objects with
different mass and friction characteristics.

II. RELATED WORK

Because we consider using the environment to create
stable placements, our work overlaps both the prior work on

the pick and place task and also that of the inverse motion
planning problem. In this section, we discuss work from both
areas in more detail.

While there has been a significant amount of work in the
area of pick and place, most of the it has focused on choosing
grasps. Some approach the problem analytically [3], [4],
while others [5], [6] learn grasps by example from human
operators. However, these approaches do not consider con-
straints from placing while choosing a grasp. Other work has
considered the problem of choosing a sequence of grasps
taking into account the geometric constraints from a fixed
environment placement [7], [8], but in all of this work, the
environment has been treated as immutable. In this paper,
we focus on the problem where the grasp is fixed, but we
can manipulate the environment as well as the object during
placement.

Jiang et al. [9] address the problem of learning where in
the environment to place an object. Their algorithm learns
placements for new objects in new environments based on
support, stability and preferred configurations. In contrast,
we focus on problems where the ending pose is specified,
and try to rearrange the environment to result in that pose.

Paolini et al. [10] also approach the problem of placing
using machine learning. They gather statistics about the
possible ways to grasp an object and the subsequent proba-
bility of placing success. Then given an object, a grasp, and
possible different placements for the object, they choose the
place location most likely to succeed. This is similar in spirit
to our work, but we are given a grasp and a placement and
we reason about possible arrangements of the environment.

Our work explores partly “passive” approaches to place-
ment, where we rely on the task dynamics as constraints on
the place operation. The idea of exploiting task dynamics to
achieve precise placements has been explored by Erdmann
and Mason [11], under the name “sensorless manipulation.”
Erdmann and Mason address the problem of starting with
objects in an unknown orientation and finding a sequence
of motions that leave the object’s orientation completely
determined. Although our work is not “sensorless”, the key
idea is also to exploit a (qualitative) characterization of the
task dynamics to choose actions to maximize the probability
of successful placement.

In this work, we use the environment, including the
robot’s other hand, to constrain the possible motions of an
object during placement. We view this as an instance of
the inverse motion planning problem. The inverse motion
planning problem was originally proposed as an approach to
designing orienting devices for vibratory bowl feeders [1],
[2], devices where shape interactions are exploited to filter
out unwanted orientations of objects, preparatory to assembly
or machining operations [12].

ITI. PROBLEM DEFINITION

We begin by providing a general definition of the problem
and then providing a specific example used throughout the
rest of the paper.

A. Inverse Motion Planning Problem

Let C be the joint configuration space of the robot and all
movable objects in the environment. Throughout this paper,
we assume that there is a single object that moves through
the environment. The problem is to arrange the environment,
subject to a set of constraints, so that the object will follow
one of a set of pre-defined trajectories.

Formally, an inverse motion planning problem is charac-
terized by a tuple (cg,0,0n, R, P,T') where: ¢g € C is
the initial configuration of the robot and objects, o is an
object, O) is a set of movable objects (possibly including a
robot), R(c, Opr) C C is a reachability function that returns
the set of configurations that can be reached from c by
moving the elements of Oy, P is a set of desired trajectories
for o, and T'(P | ¢) gives the probability that the object
follows trajectory P assuming that the environment started in
configuration ¢ € C. In this formulation, there is no choice of
action that can affect the object’s path once the environment
is arranged so the initial configuration entirely determines
the probability that the object will follow trajectory P.

The solution to an inverse motion planning problem is the
configuration of the movable objects,

¢’ =ar max I'(P|c 1
g [Te) M)

that has the highest probability of resulting in a goal trajec-
tory. The configuration c* is some configuration the robot
can reach from its starting configuration cy, possibly by
rearranging its environment.

We work with a subset of this problem where R, I', and
‘P have a specific structure.

B. Placement Problem

The placement problem is a specific choice for the type of
goal trajectories and the reachability function R in the defini-
tion of the inverse motion planning problem. We assume that
one of the objects is being held by a robot or is otherwise
poised to be released and that it will fall ballistically through
the environment. We have a specific pose or set of poses at
which we wish it to land. Specifically, a placement problem
is a tuple (cg,0,0p,Op, Ty, G, ®) where cg, o, and Oy
are as described for the inverse motion planning problem. G
is a set of “goal” poses for the object, and for configurations
c1,c2 € C, ®(co | ¢1) is the probability that the system
comes to rest in cp assuming that it started in configuration
c1. G implicitly defines the set of goal trajectories as any
trajectories in which the object ends in a pose in G. Let P(c2)
be the set of trajectories ending in cy. Then @ is related to
T" of the definition of inverse motion planning by

<I>(cz|cl)=/P€P(TPl @)

We also use a specific reachability function. O is a set
of fixed obstacles in the environment that cannot be moved
and 77, is a rigid transformation from the pose of o to some
link L on the robot. R(c,Oys) is now defined implicitly as
the set of configurations ¢’ of that can be reached from c

subject to the constraints that o remains fixed to L and that
some path from ¢’ to ¢ is collision free.

By taking 77, as input, we decouple the solution to the
place portion of the pick and place task from the solution to
the pick portion. Rather than tailor the grasp to the specific
place operation, we attempt to find a place operation that
has some probability of success with whatever grasp was
chosen. Future work could explore choosing grasps when
we can manipulate the environment.

We call placement problems in which the set O contains
only the object and the kinematic chain from which the
object is being released passive placement problems. Passive
placement problems are not trivial; the angle and height of
the end effector can limit the object’s possible trajectories
and should be chosen to ensure the best result.

We call problems that involve moving other objects or
other parts of the robot robust placement problems.

C. Transition model

In this section, we present the transition model ®, which is
an approximation of the actual dynamics. A place operation
consists of two steps:

1) Releasing the held object o and
2) Retracting the robot’s end effector away from o.

The outcome of a place operation is the pose of o after both
of these steps; it is successful if the resulting pose of o is in
goal set G. We assume that there is a single nominal desired
pose g* € G and that the rest of the poses in g are clustered
around ¢*; furthermore, assume that when o is in pose g*, it
is resting on a surface, which we will call the place surface.

To model the transition dynamics, we could use a high-
fidelity physics simulator. However, it is difficult and compu-
tationally intensive to model contact forces, and physics sim-
ulation requires determining coefficients of friction, elastic-
ity, and other parameters that are hard to measure accurately
and tend to change over time. Moreover, as we will show, we
do not require a high-fidelity physics simulator to robustly
place an object. Instead, we simply need an estimate of the
probability of a successful place operation given a starting
configuration and a characterization of the possible failure
modes. For example, a tall, thin object might tip onto its
side after being released. To prevent this, we need to know
to which side the object is most likely to tip, but not its exact
configuration as it tips.

Therefore, we use a coarse, discrete model of uncertainty.
We assume that the behavior of an object during placement
can be characterized in terms of a discrete set of modes
M. In our case, we will consider the modes of: falling
freely into the desired stable configuration, tipping over,
or “sticking” to the end-effector of the robot and being
dragged backward when it retracts. The last two are shown
in Figure 2. Furthermore, we assume that, given the mode,
the result is deterministic. For a starting configuration ¢ € C
and mode m € M, we let f,,(c) € C be the resulting
configuration after the object has come to rest. We can think
of this as a nominal outcome that acts as a proxy for a

possibly noisier distribution of results but that suffices for
planning. We define

D(ey | 1) = Z Pr(cz | c1,m)Pr(m|c1) (3)
meM

= Z Ilca = fr(c1)]Pr(m | 1) (4)
meM

where I is an indicator function that has value 1 if the
contained expression is true and O otherwise. Recall that ¢
is the probability of cy after the object has come to rest.
Therefore ®(co | ¢1) should only be non-zero when ¢z is a
stable resting configuration of the object.

If we only consider a single desired object pose g*, we
can simplify the optimization criterion in Equation 1 to:

Y Ifu(e) € Clo{g" NI Pr(m | c) .

meM
(5)

Assuming that no two modes can result in the same config-
uration, we can instead maximize over modes:

CERI(HC??(()M) ﬂr@ng]\)}‘[[fm(c) € Clo, {g*})} Pr(m | C()6)

Without using physics simulation, it will be impossible to
describe every physical interaction the object could have
with the surfaces of the environment. The idea is to create
enough modes that the configuration chosen using Equation 6
is in fact the best configuration over all possible interactions.
Specifically, we can ignore any interactions that occur with
a small enough probability that they cannot change the
outcome of Equation 6. In practice, we have found that a
very few number of modes are needed to ensure success a
high percentage of the time. The modes we use are discussed
in Section IV.

Our algorithm takes as input the tuple
{c0,0,00,0p, Tr,G,M,). M 1is the set of modes
while U(m | ¢) : M x C — [0,1] returns the probability
that mode m occurs in configuration c. We assume that the
modes completely characterize all possible outcomes, and
have disjoint outcomes, so for any ¢ € C,

> U(m|e)=1. (7)

meM
IV. MODES

We modeled three modes for placing. This model is for
a specific set of objects and does not capture every possible
interaction between those objects and their environment.
However, it serves to illustrate our algorithm and we find
that it works well in practice.

We first ensure that Equation 6 has at least one non-trivial
solution. We do this by assuming that we can always position
the object somewhere above its desired goal location on the
placing surface. The desired outcome is for the object to
fall straight down. (We will consider initial configurations in
which the gripper is partially supporting the object, such
as the one shown in Figure 2b, so that simply opening
the gripper will not cause the object to fall. However, the

c* =arg max

c€R(co,0m)

c* = arg

= '\‘:?lﬂ
(@)

Fig. 2: Failure modes for the different objects. (a) The tower could tip over. (b)-(c) The plates got caught on the gripper

and dragged during retreat.

Pivot

Fig. 3: The tipping mode. The edge highlighted in red should
be on the table, but the object may tip around the —x axis
so that the left edge rests on the table instead. The tipping
angle is the angle at which the center of mass aligns with
the green line. Past this angle, the block will certainly tip.

“place” action is both the act of opening the gripper and then
retracting the gripper. If the gripper retracts without dragging
the object with it, then the object will fall directly down
onto the placing surface.) This gives us the fall mode, m,,
in which the object 0’s center of mass (COM) falls straight
down. For configuration ¢, fy,,(c) is c after gripper retraction
with the COM of o translated directly down onto the placing
surface. We further assume that the only mode that can result
in a successful placement is falling so Equation 6 simplifies
to:

c* = arg max

B 1, (€) € Clon (g™ D] ¥0my | €)

(®)
We do not explicitly model ¥(m,, | c¢). Instead we assume
we know ¥(m | ¢) for all modes m except m, and use
Equation 7 to calculate ¥(my | c).

We also consider two failure modes: the tipping mode,
my, and the dragging mode, my. These modes are shown in
Figure 2. The models we use for these modes are very simple
and were chosen empirically. They work well for our specific
objects, but we hope in the future to learn their parameters
rather than specifying them by hand.

The tipping mode (Figure 2a) models an object falling
to one side after placement. It identifies the edge e of
the bounding box that will be in contact with the place
surface in ¢* and the axis ¢ parallel to the place surface
and perpendicular to e. The result of the tip f,,,(c) is the

configuration in which the object has rotated around . In
Figure 3, e is highlighted in red while ¥ is the x axis. The
direction of rotation is determined by the placement of the
pivot; in Figure 3 it is —z. If the pivot was the other corner
of e, ¥ would be +z. Note that in calculating f,,, (¢) we have
used the fact that f,,,(c) is the resting configuration of the
object after tipping; the object passes through a continuum
of possible configurations during the tip but f,,,(c) only
needs to represent the final stable equilibrium. Moreover,
fm,(c) is only a proxy for a set of possible configurations
that could occur if the object tips over. While the actual
probability of f,,(c) is zero (since the configuration space
is continuous), the probability of the non-zero measure set
near f,,, is very high given that the object is tipping. As we
argued in Section III-C, a coarse idea of the object’s resting
configuration is all that is necessary for robust placement.

An object can only tip when unsupported by the gripper
in the release configuration. As shown in Figure 3, if the
object is unsupported and its center of mass is not over e
then the object will certainly tip. Otherwise, we model the
probability that the object tips as increasing with the height
above the surface and the angle from the (presumably stable)
angle in g*. We let the height of the object in g* be z* and
its angle be 6*. For configuration ¢, let #(c) be the angle of
the object in radians in ¢ and let z(c) be its height in meters.
Then

0 supported by gripper
U(my|c)=¢ 1 past tipping angle
|9(c2)—6*\ + z(c)2—z* else.

©
The length of the robot’s arms constrains z(c) — z* < 1 and
we must have |6(c) — 0*| < m. Therefore ¥(m; | c¢) < 1.
The dragging mode m, (Figures 2b-2¢) models the gripper
dragging an object after nominally releasing it. The state
resulting from a drag, f,,,(c), is ¢ in which the object has
been translated by the retraction of the gripper. Dragging
can only occur when one jaw of the gripper is supporting
the object so

0 unsupported by gripper

[0(c)=0"] | z(c)—2"
— + 5 else.

W(my | o) :{
(10)

Note that the probability of dragging is only non-zero if the
probability of tipping is zero and vice-versa.

The last parts of Equations 9 and 10 are the same, which
may seem counter-intuitive as it seems a lower angle should
result in less dragging. However, we found that with the
grippers of the robot and the objects that we used, a high
angle resulted in the object getting stuck on a gripper pad
and dragged more often.

V. ALGORITHM

Our algorithm for robust placing, illustrated in Figure 4,
takes as input the tuple {(cg,0,O0n, O, Tr, G, M, ¥) and
outputs an approximation to the configuration that maximizes
Equation 8.

Searching over all the configurations ¢ € R(cg,Onr)
for one that maximizes Equation 8 is, for high-dimensional
configuration spaces, a computationally intractable approach.
Therefore, we split the search into two parts. In practice, we
found that the pose of the end effector when releasing the
object had the largest effect on the success of the place.
Thus, we first choose a release configuration assuming the
rest of the environment stays constant. Specifically, we search
for the release configuration r for which r € R(co, Opr),
no elements of Oy, differ from their configuration in cg
except o and its attached kinematic chain, f,,, (1) € G, and
Equation 8 is maximized. Let C'r be the set of all configura-
tions for which no elements of O,; except the object and its
attached chain have moved from their configurations in cg
and for all r € Cr, fm,(r) € G. All configurations in Cr
have the object positioned at or above its goal pose. We want
to choose the configuration r € C'gr N R(co, Opr) for which
U(mg | r) is maximized. We do this by discretizing Cr
into a finite set of configurations {ry,...,r,}, ordering it by
decreasing U(my | r;), and choosing the first configuration
r for which there is a collision free trajectory for the robot
and object to move to r. This is shown in Figure 4a.

Given the release configuration r, the algorithm finds the
configuration of the elements in Ojs other than the object
and its attached kinematic chain in which the place has the
greatest probability of success. We first evaluate f,,(r) for
each mode m besides the fall mode m, and order these
by decreasing probability (Figure 4b). We then place the
movable objects in the environment to prevent the most likely
failure modes. Currently, we calculate the locations for these
objects analytically. For our failure modes m, f,,(c) is either
a pure rotation (tipping) or a pure translation (dragging) of
fm,(c). We identify this axis of rotation or translation and
place objects accordingly. For example, if the object is most
likely to tip around the —x axis, we place a block next to
the object along the 4y axis as shown in Figure 4c. If the
object is likely to drag along the —y axis, we place a block
next to the object along the —y axis.

VI. RESULTS

We implemented the algorithm described in Section V on
the Willow Garage PR2 robot. The PR2 has two arms, each
with seven degrees of freedom, and parallel jaw grippers at

Object Dropping | Passive Placing | Robust Placing

Tower 1/10 0/10 10/10
Plastic Plate 0/10 10/10 10/10
Paper Plate 0/10 2/10 10/10

TABLE I: Success ratios for dropping (benchmark), passive,
and robust placing algorithms. A trial was considered a
success if the object came to rest at or near its goal pose.
Failures occurred when the tower tipped over or the plates
were dragged.

the end of each arm. We modeled the PR2’s empty gripper
as a movable block.

We tested the algorithm using three different objects and
three different placing schemes. The objects used were a
tower of legos, a plastic plate, and a paper plate all shown
in Figure 5. The three placing algorithms we tested were:

e Dropping (Benchmark Algorithm): With the grasps
used, classic placing is unable to find a solution because
the gripper collides with the table as shown in Figure 7.
The classic fix for this problem is to simply raise the
gripper until it is no longer in contact with the table.
Therefore, our benchmark algorithm was simply to drop
the object from S5cm above its goal pose.

e Passive Placing: We planned for a placement using the
algorithm from Section V considering only the object
and the arm holding the object as movable objects in
the environment.

e Robust Placing: We planned for a placement using the
algorithm from Section V considering the object, the
arm holding the object and the robot’s empty gripper as
movable objects in the environment.

The three objects with which we experimented are difficult
to place. The tower tends to tip over if not placed carefully
while the plates get caught on the gripper and dragged during
the retraction. These failure modes are shown in Figure 2. We
ran 10 trials of each placing algorithm for each object and
recorded the number of times the object came to rest at or
near its goal pose. The results are shown in Table 1. Example
release configurations for robust and passive placing are
given in Figure 5. Example trajectories are shown on our
website? and in the accompanying video.

To show that the robust placing does not introduce too
much variance in the final pose, we also show the final pose
after each successful robust place overlaid in Figure 6. The
goal pose was the same each time.

VII. DISCUSSION

The tower and the plate induce two fundamentally dif-
ferent types of failure of classic placing. The tower can be
successfully placed using classic placing when it is grasped
near its middle or top, but not when grasped near its base.
On the other hand, the plate can only fit into the gripper
using the grasp shown in Figure 5. The plate can never be
successfully placed using the classic approach to placing.

2http://people.csail.mit.edu/holladay/placing.
html

Fig. 4: A simple algorithm for robust placing. (a) We first search over release configurations for the configuration with the
highest probability of success. (b) Given the release configuration, we evaluate the outcomes of the failure modes. Tipping
causes a rotation around the —x axis while dragging causes a translation along the —y axis as shown by the red arrows.
We order these by decreasing probability. (c) Given the release configuration r found in step (a) and the order of the failure
mode outcomes found in step (b), we use the movable objects - in this case, the robot’s empty gripper - to block the most

likely failure modes.

Fig. 5: Example release configurations. (a) Passive placing results. (b) Robust placing results. Example trajectories are shown

on our website?.

For both the tower and the plates, just dropping them does
not work. In the case of the tower this is because it is unstable
enough that allowing it to fall almost any distance results in
it tipping over. Thus for the tower, both dropping and passive
placing give very poor results. With robust placing, however,
the tip mode allows us to reason about the possibility of the
object falling over. Tip predicts that the tower will rotate
around the edge that would contact the surface so in this
case it predicts a rotation out of the open gripper. Figure 5
shows the tower tipped in this direction. When analyzing
the possible failure modes, we note this non-zero transition
probability and bring the robot’s other hand to constrain it

(the tower is kept from tipping by the robot’s wrist). By
manipulating the environment, we were able to successfully
place the tower. Note that in our implementation we used
the other hand to constrain the placement, but in theory we
could also use additional objects in the environment.

Both plates are supported by the gripper during placement
and therefore cannot tip. However, this also means that when
the gripper releases the plate, part of the plate is already
resting on the table so that gravity does not cause it to fall
directly out of the gripper. In the case of dropping, this
resulted in the plate being dragged back with the gripper
every time. If the plate was not removed manually from the

i, ~ Gripper tip collides
with table

Fig. 7: The first release configurations considered by the
search for placing the tower or the plate result in collisions
between the gripper and the table. The red gripper shows
that place with the box in its goal location has a collision
between the gripper and the table. The other red spheres
show collisions in other configurations.

gripper it would eventually fall off of the table.

Since the plastic plate was heavier than the paper plate,
angling the gripper slightly was enough to allow the plate
to slide off of the gripper during the retraction. We model
dragging as low probability at small angle and low height
and, for the plastic plate, this was enough that the passive
place was consistently successful.

The paper plate is too light and too high friction to slide
easily off of the gripper. The drag model predicts correctly
that the plate will be dragged by the gripper and brings the
robot’s other hand to block the movement, scraping the plate
off of the gripper as it retracts. The presence of the other hand
allowed us to successfully place in every trial as opposed to
the 20% success rate achieved by passive placing.

VIII. CONCLUSION

The inability to place an object due to a kinematics colli-
sion is a well-known frustration in robotic manipulation. In

this paper, we defined the inverse motion planning problem
and framed robust placing as an instance of this problem.
We proposed a transition model for placing based on this
problem, designed to be easy to learn, and showed that we
could use a small set of simple possible object motions to
significantly increase the probability of successfully placing
difficult objects.

The current weaknesses of our approach include the
limited number of modes and the burden on the user of
specifying ¥ and f,, for every mode. In future work, we
plan to increase the number of modes modeled and to learn
the parameters of the modes.

REFERENCES

[1] T. Lozano-Perez, “Motion Planning and the Design of Orienting
Devices for Vibratory Parts Feeders,” January 1986, unpublished
manuscript. [Online]. Available: http://people.csail.mit.edu/tlp/pdf/
motion_design.pdf

[2] M. E. Caine, “The Design of Shape Interactions Using Motion
Constraints,” in International Conference on Robotics and Automation,
1994.

[3] C. Ferrari and J. Canny, “Planning Optimal Grasps,” in International

Conference on Robotics and Automation, 1992.

J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, and J.-P. Merlet,

“On Computing Four-Finger Equilibrium and Force-Closure Grasps

of Polyhedral Objects,” International Journal of Robotics Research,

vol. 16, 1997.

M. Ciocarlie and P. K. Allen, “Hand Posture Subspaces for Dexter-

ous Robotic Grasping,” International Journal of Robotics Research,

vol. 28, 20009.

K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Grasping POMDPs,”

in International Conference on Robotics and Automation, 2007, pp.

4685-4692.

T. Lozano-Pérez, J. L. Jones, E. Mazer, and P. A. O’Donnell, Handey:

A Robot Task Planner. Cambridge, MA: MIT Press, 1992.

[8] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-

tion Planning with Probabilistic Roadmaps,” International Journal of

Robotics Research, vol. 23, no. 7-8, 2004.

Y. Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning to Place

New Objects,” in RSS Workshop on Mobile Manipulation: Learning

to Manipulate, 2011.

[10] R. Paolini, A. Rodriguez, S. Srinivasa, and M. Mason, “A Data-Driven
Statistical Framework for Post-Grasp Manipulation,” in International
Symposium on Experimental Robotics 2012, 2012.

[11] M. Erdmann and M. T. Mason, “An Exploration of Sensorless Ma-
nipulation,” Journal of Robotics and Automation, vol. 4, no. 4, pp.
369 — 379, August 1988, see also IEEE Transactions on Robotics and
Automation.

[12] G. Boothroyd, Assembly Automation and Product Design. CRC Press,
2005.

[4

=

[5

—_

[6

[t

[7

—

[9

—

