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Abstract— We define the Diverse Action Manipulation
(DAMA) problem in which we are given a mobile robot, a
set of movable objects, and a set of diverse, possibly non-
prehensile manipulation actions, and the goal is to find a
sequence of actions that moves each of the objects to a
goal configuration. We show that the DAMA problem can
be framed as a multi-modal planning problem and describe
a hierarchical algorithm that takes advantage of this multi-
modal nature. We also extend our earlier forward search
sampling algorithm to a bi-directional version. We give results
on a complicated manipulation domain and demonstrate that
both new algorithms are significantly more efficient than the
original, and that the hierarchical algorithm is usually much
more efficient than the forward or bi-directional searches.

I. INTRODUCTION

Consider a personal robot performing chores in a home.
To put a book away in a bookcase, it must consider the
placement of the book when planning to pick it up, choosing
a grasp that will later allow it to slide the book onto a shelf.
To clear a table, the robot must manipulate plates and platters
that are too flat for grippers to slide under. To remove a toy
from under the couch, the robot must use a stick as a tool.

To behave well in the world, a robot must be able to reason
about manipulation with diverse actions. These actions all
constrain the robot differently, but a later action may depend
on an earlier action. For instance, in order to grasp a plate, a
robot might first push it to the edge of a table. The constraints
on the grasping action had to inform the pushing action.

We give a general formulation of a manipulation problem
with diverse actions. The key aspect of this problem is that
multiple types of possibly non-prehensile manipulation are
available for a single object. We show that this problem is
naturally a multi-modal problem [1], in which the system
moves between a set of modes as well as a set of config-
urations. A mode describes a set of configurations, usually
a low-dimensional subspace of the full configuration space.
We use the multi-modal characterization to automatically
identify subgoals in a manipulation problems.

In this paper, we present our hierarchical algorithm, DAR-
RTH, for the multi-modal manipulation problem. DARRTH
uses as a sub-planner the previously presented DARRT algo-
rithm [2] or a new planner, DARRTCONNECT, that solves
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the problem bi-directionally. We show that in a mobile ma-
nipulation domain, the bi-directional search is significantly
faster than the forward search, and the hierarchical algorithm
is often significantly faster than either search algorithm.

II. RELATED WORK

There is a large body of work on manipulation actions
for us to draw upon. Mason [3] discusses the mechanics
of pushing an object, while Brost [4] and Dogar and Srini-
vasa [5] propose to combine pushing and grasping in a push-
grasp, and Huang and Mason investigate striking or tapping
objects [6]. However, these papers focus on describing and
simulating the dynamics and control of a specific action.
When they address planning, they emphasize planning for
this single action type. We take a different view; we build
on this existing work to model a set of diverse action types
and focus on combining them to generate complex plans.

A related problem is navigation among movable obsta-
cles (NAMO) [7]–[11]. In this problem, there are multiple
movable objects in the world and the robot can move each
of them. Much of the work in this domain assumes that an
object is only moved once and that moving a single object is
an easy task. However, van den Berg et al. [11] relax these
assumptions and solve for a set of paths for each object in
the domain and then for the corresponding robot trajectory.
To ensure that object paths are executable by the robot, they
require that the object remain manipulable along the path. In
their work, an object is manipulable if it has some point in
the current connected component of the robot’s configuration
space. Deciding manipulability is computationally intractable
for high dimensional state spaces. However, we will plan
object-level paths with approximated manipulability before
trying to plan in the full state space (Section V-B).

While the NAMO problem usually assumes rigid grasping
and simple object dynamics, work on moving an object
in clutter focuses on non-prehensile manipulation and the
effects of objects on other objects. Dogar and Srinivasa [12]
consider the problem of trying to move an object in clutter
and have a library of manipulation actions, including non-
prehensile actions, but assume each object or piece of clutter
is moved only once using a single manipulation action.
Cosgun et al. [13] discuss trying to place an object on a
cluttered surface. They assume only the object to be placed
is grasped, but that this object can push other objects out of
the way. Multiple objects can be moved at once, but this still
incorporates only a single type of manipulation action.

The re-grasping problem [14], [15] requires multiple ma-
nipulations for a single object. The framework proposed by
Siméon et al. (2004) breaks the problem into finding transits



for the robot moving alone and rigid-transfers for the robot
and object. They note that any switch between transit and
rigid-transfer must occur in the part of the configuration
space where the object is sitting stably and the robot is
grasping the object, which we will refer to as PG. They
prove the “reduction property” that any two points in the
same connected component of PG can be connected by
a finite number of transits and rigid-transfers. This allows
them to plan for re-grasping tasks by first planning a path
between the connected components of PG and then planning
for each rigid-transfer or transit individually, a method we
will call PG-Map. Although the reduction property relies on
the grasped object being able to move instantaneously in any
direction and does not hold for non-prehensile manipulation,
we will build upon the idea of placing subgoals at the points
where actions can change.

We frame the problem of planning with diverse manipula-
tion actions as a multi-modal planning problem. Hauser [1]
defines a multi-modal planning problem as one in which the
system moves between configurations and also among a set
of modes. The mode space is part of the problem description
and each mode describes a set of configurations that all
satisfy certain mode-specific constraints. In his initial work,
Hauser focused on problems with discrete mode spaces, but
low-dimensional mode transitions. He showed how to create
a two-level roadmap of modes and configurations using
interspersed mode and configuration sampling. Later Hauser
and Ng-Throw-Hing [16] extended this work to domains like
manipulation where the mode space is continuous and were
able to find paths for a walking robot pushing an object
on a table. However, that work required the implementation
of complicated mode samplers and a number of heuristics,
some of which took substantial pre-processing time. Hauser
and Ng-Throw-Hing do not show how to generalize their
problem-specific framework to other manipulation problems
and, as we will show in Section IV, the algorithms proposed
for multi-modal problems are unable to solve some manip-
ulation problems of interest.

III. PROBLEM DEFINITON

We address problems in which we have a robot, a set of
movable objects, and a set of manipulation primitives. We
begin by formally defining a manipulation primitive.

A. DAMA Problem

Definition: A manipulation primitive is a function that
takes an initial configuration of the robot and movable
objects and a displacement of the robot’s configuration and
returns a final configuration of the robot and objects. A
primitive is applicable only to certain configurations and
displacements and an instance of a primitive is an instan-
tiation of the primitive with a specific set of arguments. Any
primitive that moves an object is a transfer primitive.

Any type of manipulation can be represented as a ma-
nipulation primitive provided it is possible to describe the
effect of the primitive on any given configuration of the robot
and objects. For complicated primitives, it is possible that
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Fig. 1: An example world with Transit, Rigid-Transfer and
Push. (a) If the robot can only grasp the plate when it is
at a single point on the edge of the table, this is a zero-
measure subset of the configurations in which the plate is
on the table. (b) An extension from the state shown in the
photograph towards the sample shown with the dashed lines.
Samples specify only partial states; here the sample specifies
a configuration for the plate. The sequence of primitives
shown for the wrist first transits the robot to a pushing
configuration (blue), pushes the plate towards the edge of the
table (yellow), transits the robot to a grasp (blue), and finally
transfers the plate to its sampled configuration (magenta).

this would require computational integration of equations of
motion, but we use simpler primitives. Throughout this paper
we use the following primitives as examples:

• Transit: describes the robot moving alone. Transit is
applicable to any configuration and displacement in
which there is no collision between the robot and any
objects or obstacles in the world.

• Rigid-transfer: describes the robot moving a rigidly
attached object. Rigid-transfer is applicable to any
configuration and displacement in which the robot is
grasping the object and there is no collision between
the robot with the attached object and any other objects
or obstacles in the world.

• Push: describes the robot pushing an object. Push is
applicable to any configuration in which there is two-
point contact between the pushing end-effector and the
pushed object and a collision-free displacement that
moves the end-effector along the line connecting the
end-effector with the center of the object.

A path using these primitives to move a plate off of a table
is shown in Figure 1b. More examples of primitives will be
given in Section VI.

The DAMA problem was informally introduced in Barry
et al. [2], but here we give a formal definition.



Definition: The Diverse Action MAnipulation (DAMA)
problem is a tuple 〈R, {o1, ..., on}, {B1, ..., Bq},
{p1, ..., pm}, cI , G〉 in which R is a robot, {o1, ..., on}
is a set of movable objects, {B1, ..., Bq} is a set of fixed
obstacles, {p1, ..., pm} is a set of manipulation primitives,
cI is an initial configuration, and G is a set of goal
configurations. The goal set may be infinite in size. For
example, in manipulation, goal configurations are often
specified only for objects. The goal set is any configuration
in the combined space in which the objects are in their goal
configurations. The movable components are the robot plus
the set of objects, {R, o1, ..., on}. A solution is a sequence
of primitive instances that takes cI to a configuration in G.

In this paper, we assume that the environment is unclut-
tered enough that it is not necessary to focus on the order in
which to move objects. The problem of rearranging objects in
cluttered environments has been thoroughly addressed [7]–
[11], [17], and is not the focus of this paper. It may be
possible to combine the approaches to NAMO with our
approach to solve a more general manipulation problem, but
that is left for future work.

Having formally defined the DAMA problem, we can now
define its multi-modal counterpart.

B. Multi-Modal DAMA Problem

A multi-modal problem is a tuple 〈C,Σ〉 where C is a
configuration space and Σ is a mode space [1]. Each mode
σ ∈ Σ defines a set of mode-specific constraints that in turn
define a set of configurations that satisfy those constraints.
A state, (c, σ) in a multi-modal problem specifies both the
current configuration c and the mode σ. In general this
formulation is useful when some modes describe lower-
dimensional subspaces of the full configuration space. For
instance, in legged locomotion, the modes are a fixed set of
footfalls. The footfalls constrain the feet to be on the ground,
and walking must transition through these footfalls.

Multi-modal problems were originally formulated for sys-
tems with discrete modes. For adaptation to continuous-
mode problems, such as the DAMA problem, we follow
Hauser [16] and describe the set of continuous modes as a
finite, discrete set of mode families. Mode families partition
a continuous mode set using a co-parameter that varies to
describe each of the different modes. Transitions between
modes within a mode family are disallowed; modes must
first transition out of the family. For instance, in the NAMO
problem, there are n movable obstacles. This problem has
n + 1 mode families: one for each obstacle and one for
the robot moving alone. The modes of each family are the
configurations of all non-moving obstacles.

Definition: Let the DAMA problem be 〈R, {o1, ..., on},
{B1, ..., Bq}, {p1, ..., pm}, cI , G〉. Let primitive pi be able to
manipulate sets of objects {O1, ..., Oj}. For each primitive pi
and each object set Ok, we define one mode family Fik that
corresponds to primitive pi manipulating set Ok. A mode
is a relative configuration of the robot and objects in Ok

and a stationary configuration of the objects not in Ok. The
MM-DAMA problem is the DAMA problem augmented by

this mode space. An MM-DAMA problem instance can be
automatically constructed from a DAMA problem instance.

Consider the example world shown in Figure 1, in which
a robot manipulates a plate using the Transit, Rigid-Transfer
and Push primitives. This world has three mode families,
one for each of the primitives. Within each mode family,
there is a continuum of modes with a set of parameters
that we can vary. For instance, in Transit the robot moves
and the plate remains stationary so the modes of the Transit
family correspond to the different configurations of the plate.
In Rigid-Transfer, the robot and plate both move but the
plate must be grasped so the individual modes correspond to
specific grasps. Similarly, the modes in Push correspond to
different pushing configurations. If there was also a bowl
in the world that could be grasped but not pushed, we
would have four mode families: Transit, Rigid-Transfer-
Plate, Rigid-Transfer-Bowl, and Push-Plate. Note that it is
impossible to transition between modes within the same
family. For instance, to change the grasp (Rigid-Transfer
family), the robot must pass through Transit.

IV. MULTI-MODAL PLANNING

In this section, we first review the explicit multi-modal
planning work [1], [16], showing that it cannot be used
for some manipulation problems, and then discuss using the
multi-modal structure to create hierarchies.

A. Explicit Multi-Modal Planning

Hauser [1] originally proposed the multi-modal framework
and also several sampling-based algorithms for solving multi-
modal problems. Those algorithms require an extra piece of
information specifying not only the modes of the problem
but also a high-level mode graph guiding the possible mode
transitions. This graph may have transitions that cannot occur
in actuality, but it must describe all possible transitions. The
algorithms then rely on the following extension step:

1) Sample a configuration in the intersection of two
modes from the mode-transition graph

2) Plan a collision-free, feasible path within a single mode
to reach this transition

However, because these algorithms randomly sample
mode transitions, they can never find solutions that involve
moving through low dimensional subspaces within the mode
transitions themselves. Manipulation problems often require
moving through these subspaces. For example, consider the
problem shown in Figure 1a. As discussed in Section III-
B, the mode families in this problem are Transit, Push,
and Rigid-Transfer. Transit modes can transition to and
from Push and Rigid-Transfer modes, but Push and Rigid-
Transfer cannot transition to each other because there is
no configuration in which the robot is simultaneously in a
pushing configuration and a grasp. Additionally, assume for
the purposes of this example that there is only a single pose
on the table where the plate can balance on the edge. In
order to transition from Push to Rigid-Transfer, the robot
must push the plate to this point and then Transit to a grasp
as shown in Figure 1a. However, the intersection of Push



and Transit is any configuration in which the plate is on
the table and the robot is pushing it. Therefore, there is
zero probability that a configuration in which the plate is
positioned at a single point on the table edge can be sampled
at random from the intersection of Push and Transit, and
any algorithm that only samples randomly from the mode-
transition graph cannot solve the problem. Other examples
include problems like placing a book on a shelf in which only
one grasp of a continuum can be used or positioning a tool
in a specific way for later use. More generally, manipulation
problems require reasoning about long chains of related
transfer primitives such as Tool-Use and Pick or Push and
Rigid-Transfer. Because transfer primitives almost always
transition only to and from transit primitives, sampling from
the intersection of two modes alone does not capture this
multi-step dependency. Since our focus is on manipulation
problems, we do not use the algorithms initially proposed
for multi-modal problems.

B. Multi-Modal Planning for Manipulation

However, many solutions to specific manipulation prob-
lems rely on the multi-modal nature. For example, in Sec-
tion II, we discussed two manipulation problems: re-grasping
and NAMO. Both of these problems are subsets of the
MM-DAMA problem defined in Section III. For re-grasping,
there are two mode families: Rigid-Transfer and Transit, and
we discussed the modes and mode families of NAMO in
Section III-B. The solutions to these problems discussed in
Section II focus on identifying configurations in which the
mode is likely to change, such as the intersection of grasp
and place or the point at which to change the obstacle being
moved. These are both examples of an idealized algorithm
for solving the MM-DAMA problem:

1) Plan a sequence of modes.
2) Plan for each mode in the sequence.
However, only PG-map and the version of NAMO pro-

posed by van den Berg et al. [11] are actually able to perform
these steps exactly, and both algorithms rely on describing
connected components of the robot’s configuration space.
PG-map is able to use the holonomic robot and rigid-grasp
aspects of the problem to describe PG while van den Berg et
al. assume it is possible to analytically describe all connected
components of the robot’s configuration space. Because we
allow non-prehensile manipulation and have potentially high
dimensional configuration spaces, we will not be able to
apply the same leverage to the problem.

When the connected components of the robot’s configura-
tion space cannot be described, effective solution methods
focus on finding a sequence of mode families in Step 1
rather than a sequence of modes. The difference is that of
knowing the correct primitive to apply rather than knowing
the exact configuration in which to apply it. For example,
if we know that we must find a transition between Transit
and Rigid-Transfer, we know the sequence of mode families.
If, however, we know the specific grasp to use in the Rigid-
Transfer, we know the sequence of modes. We also simplify
the problem in this way, modifying the algorithm to:

1) Plan a sequence of mode families
2) Plan within each mode family

Moreover, in manipulation, transfer mode families are rarely
able to transition to one another because this requires a
configuration that could simultaneously be used for two
different types of transfer. Therefore, we know that a transit
must occur between every type of transfer and the interesting
ordering is within the ordering of transfers. Thus, we simplify
the algorithm even further:

1) Plan a sequence of transfer mode families
2) Plan each set of transfer and transit trajectories
Throughout the rest of this paper we assume a single

object. If the domain is uncluttered, the algorithm can be
repeated for each object. Otherwise, we can combine our
algorithms for manipulation with the NAMO work to first
find a candidate order in which to move objects and then
plan the manipulations for each object individually.

In the next section, we describe a hierarchical algorithm
for solving general DAMA problems.

V. DARRTH ALGORITHM

A common theme in manipulation planning is to plan
a path for the object first and then use information from
that plan to guide the search for a full path [7]–[11],
[17], [18]. In our hierarchical approach to manipulation,
we also first try to identify an object path. We then use
that path to find a sequence of transfer mode families and
adapt that into subgoals. Because we must solve smaller
DAMA problems to achieve each subgoal, we first review
the DARRT algorithm for solving DAMA problems. We
also take this opportunity to present the DARRTCONNECT
algorithm, the bi-directional version of DARRT.

A. DARRT and DARRTCONNECT Algorithms

The Diverse Action Rapidly exploring Random Tree
(DARRT) algorithm has the structure of a rapidly exploring
random tree (RRT) with controls [19]. However, we modify
both the extension and sampling methods to work with
manipulation. These modifications are shown in Algorithm 1.
We summarize them briefly below, but for a full discussion
see Barry et al. [2]. Full pseudo-code for DARRT and
DARRTCONNECT is given in the appendix.

When sampling the space with DARRT, we sample partial
configurations that specify only configurations for objects or
configurations for the robot. This is shown in the SAMPLE
method in Algorithm 1. When extending with DARRT,
instead of using the more usual single-step extension, we
instead try to extend the tree by finding a path all the way
from the state in the tree to some state that satisfies the
partially sampled state. This extension algorithm is shown in
the EXTEND method in Algorithm 1. To make this tractable,
the path found by EXTEND ignores any collisions. We
truncate this path to its first collision and add it to the tree.
Our implementation of the method for finding paths ignoring
collisions is shown in PATH. An example of an extension is
shown in Figure 1b.



Algorithm 1 Functions for DARRT and DARRTCONNECT.
Parameters: M : movable components, robot R and objects
{o1, ..., on}, B: fixed obstacles, A: manipulation primitives

SAMPLE(M)

1 S ← randomChoice
(
{R}, randomSubset({o1, ..., on})

)
2 r ← random configuration for each mi in S
3 return r

EXTEND(c1, c2,M,B,A, F )

// c1 is the state in the tree and c2 is the sampled state.
// F = True when extending forwards, False backwards.

1 if F : e← PATH(c1, c2,M,A)
2 else : e← PATH(c2, c1,M,A)
3 {e1, ..., el} ←Discretize(e)
4 if ¬F : reverse({e1, ..., el}) // Backwards from goal tree
5 for ei, if collision(ei,M,B), return {e1, ..., ei−1}
6 return {e1, ..., el}

PATH(c1, c2,M,A)

1 if c1 = c2: return {}
2 p← randomUsefulPrimitive(c1, c2,M,A)
3 P ← propagate(p, c1, c2,M)
4 c← state after applying P to c1
5 return P ∪ PATH(c, c2,M,A)

Barry et al. presented only the RRT-based DARRT algo-
rithm, but we can modify that into a bi-directional algorithm
based on the RRT-Connect algorithm described by Kuffner
and LaValle [20]. The extension method used for DARRT
lends itself to a bi-directional algorithm as an extension from
configuration c1 towards c2 involves computing a path from
c1 all the way to c2. Therefore, we do not need to work out
a system of inverse control for our primitives. Instead, when
extending “backwards” from an ending state c1 towards a
starting state c2, we simply reverse the order of the arguments
to PATH. PATH returns a path from c2 to c1 that we discretize
and then check for collisions in the reverse order. The result
is a valid path backwards from c1 towards c2. This is shown
in the EXTEND method when F is false.

There is one more subtlety in this modification, however,
because we sample only partially specified states. Therefore
EXTEND expects that c2 may be partially specified but that
c1 is an exact state. When we exchange the order of the
arguments, the reverse will be true. The primitives’ USEFUL
and PROPAGATE functions must be able to accommodate
partial specifications in the source or the goal state. We have
found in practice that this is an easy adaptation [21].

We show in Section VI that DARRTCONNECT is much
more efficient than DARRT. We can use either to solve sub-
problems for DARRTH.

B. Finding an Object Path

van den Berg et al. [11] give a method for planning a valid
object path using two criteria:

1) The path is collision-free for the object.

2) The object is manipulable at all points along the path.
van den Berg et al. define “manipulable” to mean that the
object is adjacent to the robot’s current connected component
in configuration space. However, this definition relies on
the robot being able to grasp the object at any point of
contact and the object being able to sit stably everywhere
in its configuration space. Since we do not make these
assumptions, we must modify the definition of manipulable:

Definition: An object configuration co is manipulable with
displacement do if there is some configuration c in the
robot’s connected component, displacement d and a primitive
applicable at c and d that results in object displacement do.

Using this definition of manipulable, the above criteria for
a valid path still applies.

Exactly calculating valid paths requires characterizing the
connected components of the robot’s configuration space and
the possible applicable primitives at each configuration and
displacement along the path. Even were this computationally
feasible, it would be very likely harder than solving the
original problem. However, we cannot ignore manipulability
entirely because the object paths must obey the constraints
of the manipulation primitives. For instance, in the world
shown in Figure 1, while the plate is on the table, only Push
is applicable. The plate cannot rise straight up off the table;
it must first be pushed to the edge of the table and, since we
are interested in the order of transfer primitives, we want the
path for the object to reflect this constraint.

Thus, we plan object paths using DARRT(CONNECT)
but only checking collisions between the object and the
environment. These paths fulfill the first condition of a
valid path, but only approximately satisfy manipulability.
Although we ensure that there is some configuration for the
robot that can move the object along the path, we do not
ensure that this configuration is collision-free or that it is in
the robot’s current connected component.

C. Manipulation Primitive Subgoals

We use the object path to find a set of subgoals. Because
we use DARRT(CONNECT) to solve for an object path, the
object paths are annotated with the manipulation primitive
used. Therefore, we can convert immediately from an object
path to a sequence of manipulation primitives. Recall from
Section IV that with only one object, the manipulation
primitive used is the same as the mode family. Moreover,
since only transfer primitives move an object, the object path
will consist entirely of transfer primitives.

Therefore, the object path defines a sequence of subgoals
g1, ..., gS corresponding to the transfer primitives p1, ..., pS
used along the path. The subgoal gi is the set of config-
urations for which the primitive pi is applicable for some
displacement. We refer to this as a primitive subgoal.

Analytically describing the set of configurations and dis-
placements in which a primitive pi is applicable is not
necessarily tractable. However, our algorithms do not require
an analytical description. For DARRT, we must just be
able to decide whether or not a primitive is applicable at a
configuration and displacement. Because we can label states



Algorithm 2 Input: M : movable components, robot R and
object o, B: fixed obstacles, A: manipulation primitives, cI :
initial configuration, G: goal for o, N : Max flat tries
Output: A path from cI to a configuration in G

DARRTH(CONNECT)(M,B,A, cI , G)

1 while no solution has been found
// Only check object collisions

2 ω ← DARRT(CONNECT)(M,B,A, cI , G)
3 {π1, ..., πk} ← Manipulation primitives on ω
4 c← cI
5 for g ∈ {π1, ..., πk, G}
6 while no solution and #attempts < N
7 τi ← DARRT(CONNECT)(M,B,A, c, g)
8 c← last configuration along τi
9 return [τ1, ...., τk+1]

with the primitive used in the PATH method, when trying to
achieve subgoal gi, we simply check whether the primitive
used in the state was pi. When using DARRTCONNECT to
achieve a primitive subgoal, we also need to sample from
the goal set. To sample from the set of configurations and
displacements for which primitive pi is applicable, we use
the PATH method to create paths from the starting state of
the current subgoal to a random configuration until we find
a path that uses pi. We then return the state in which pi is
first used along the path.

D. Hierarchical Algorithm

Pseudo-code for DARRTH(CONNECT) is shown in
Algorithm 2. We first generate an object path using
DARRT(CONNECT) but only checking collisions for the
object. We then identify the sequence of transfer prim-
itives used along this path and, for each primitive, run
DARRT(CONNECT) until we achieve a configuration in
which that primitive is applicable. Lastly, we solve for the
final goal set.

Because we only approximate the validity of object paths,
we cannot guarantee that the sequence of transfer mode
families found from the object path is correct. Therefore,
if we are unable to find a solution for a subgoal, we do
eventually restart the entire algorithm. Thus we must specify
two restart conditions: The number of iterations after which
to restart a DARRT(CONNECT) run and the number of
DARRT(CONNECT) runs after which to restart the entire
algorithm. We chose these numbers empirically for each
problem, but found that we rarely required more than one
iteration of DARRTH.

VI. RESULTS

We ran DARRT, DARRTH, DARRTCONNECT and
DARRTHCONNECT on a set of problems in a challenging
manipulation domain on the PR2 robot. We planned for the
PR2’s three degree of freedom holonomic base, one of its
seven degree of freedom arms, and a rigid object for a total of

16 dimensions in our configuration space. In these problems,
the PR2 had to maneuver to a table, push a plate to the edge
of the table, grasp the plate and transfer it to somewhere else
in the domain. The domains are shown in Figure 2 and the
primitives implemented were:

• Base/Arm-Transit: Transit for the arm and base.
• Base/Arm-Rigid-Transfer: Rigid-transfer for the arm

and the base. There were a finite number of grasps.
• Straight-Line-Arm-Transit: Moves the gripper in a

straight line in Cartesian space. Used for approaching,
retreating from and lifting objects.

• Push: The robot can push the plate when its gripper is
in two-point contact with the plate. This primitive is
non-prehensile.

Sample trajectories are shown in Figure 2 and overall planner
results are given in Table I. Videos of trajectories are on our
website2. DARRTH(CONNECT) identified three subgoals in
these domains: Push, Rigid-Transfer and achieving the actual
goal pose. Intuitively, these subgoals correspond to how a
human might break down the problem: 1) Move to the table,
2) Push the plate to the edge of the table, and 3) Grasp
the plate and move it to the goal. The time taken for each
subgoal, as well as the time required for planning the object
path, is shown for the hierarchical planners in Table II.

For comparison’s sake, to show that the planning times are
within the realm of reason, we also found an approximate
lower bound on planning time using a planner for which we
specified the exact modes by hand. For the mode-specified
planner, we give the robot base and arm positions at every
mode switch along the path and then use out-of-the-box
planners to find a plan for the base or arm alone. We
gave the mode-specified planner at least 11 waypoints in
each problem: 1) base position at table, 2) arm position
at approach to pushing, 3) arm position while pushing, 4)
arm position after pushing, 5) arm position at retreat from
pushing, 6) base position for picking up the object, 7) arm
position for approaching the grasp, 8) arm position in the
grasp, 9) arm position after lifting the object, 10) base
position at the goal pose, and 11) arm position at the goal
pose. Note that the base and arm planners are planning
in three and seven dimensional spaces respectively while
the DARRT and DARRTH variants make an entire plan in
sixteen dimensional space. This mode-specified planner is
shown in the last column of Table I. We did not run it on
World 4 as that was a world designed to show a weakness
of the hierarchical planner.

VII. DISCUSSION

The bi-directional planner is always faster than the forward
planner, as expected, and in all but two domains the hierar-
chical planners are faster than their flat counterparts. Except
in World 4, which we will discuss in detail, DARRTHCON-
NECT is not unreasonably slower than the mode-specified
planner, even though the latter has much more information.

2http://people.csail.mit.edu/jbarry/pr2/darrt



Plate

World0-1 Start

World0 Goal

World1-2 Goal

World2 Start

Push

Arm Transfer
Base Transfer

Lift

(a) Worlds 0, 1, and 2 all began or ended in similar places so are grouped in this figure. The shorter trajectory is a trajectory in World 0
while the longer trajectory is a trajectory for World 1 or 2 as the only difference between them is in the starting position of the robot.

Robot Start

Barrier

Subgoal 1: Push

Subgoal 2:  Rigid-Transfer

Goal

(b) World 3. The robot cannot cross the cyan barrier.

Robot Start

Goal

Plate

(c) World 4

Fig. 2: The domains in which we ran the algorithms. There is a plate (cyan cylinder) on a table and the goal is to move it
to somewhere else in the environment. The robot starting state is shown in red and the final trajectory is shown color-coded
by the primitive used. The trajectory is only shown for the plate for visual clarity, but the plans were for robot and object.
The subgoals are labeled in World 3 and were the same for all five problems. Videos of trajectories are on our website2.

Domain DARRT DARRTConnect Mode-Specified
DARRT (s) DARRTH (s) DARRTConnect (s) DARRTHConnect (s) (Lower Bound)

World 0 12 14 11 19 13
World 1 42 25 34 28 14
World 2 142 65 98 36 19
World 3 1004 171 436 61 36
World 4 411 218 165 240 –

TABLE I: Overall planning time (wall time in seconds) averaged over 50 runs. DARRTH is the hierarchical algorithm using
DARRT as a flat planner and DARRTHCONNECT is the hierarchical algorithm using DARRTCONNECT as a flat planner.

Domain DARRTH DARRTHConnect
Object S1 (Transit) S2 (Push) S3 (Rigid-Transfer) Object S1 S2 S3

World 0 5 1 4 5 3 1 12 3
World 1 6 1 4 15 3 1 12 12
World 2 8 9 8 41 4 7 16 9
World 3 7 15 10 140 3 9 8 42
World 4 8 19 59 132 4 32 201 3

TABLE II: Time taken to compute each subgoal. The Object column is the time taken to plan the object path while S1,
S2 and S3 are the times taken to plan the intermediate subgoals using the flat planner. (Times are rounded to the nearest
second so the sum of the results may not exactly equal the total time reported in Table I.)

World 0 is a trivial domain for which a single goal
sample can solve the problem depending on the path chosen.
Although the four sub-problems are also easy, solving them
individually takes more time than solving the single problem.

World 4 was chosen to illustrate a weakness of the hierar-
chical bi-directional planner. In this domain it is possible to
reach a Push configuration from the wrong side of the table.
In this case, the robot’s starting configuration when solving
the second subgoal (pick up the plate) is actually worse than

the original starting configuration. It is clear from the amount
of time taken by DARRTHCONNECT on the second subgoal
(pick up the plate) that it fell into this trap often. Its time for
solving that subgoal alone is greater than DARRTCONNECT
took to solve the entire problem. We expect that situations
like this are rare in practice or could be alleviated by better
goal sampling in DARRTHCONNECT.

From the subgoal breakdown, it is also clear that DAR-
RTH did not face this problem. This is because the feet



of the table make the configurations in which the robot is
on the wrong side of the table difficult to reach. Therefore,
DARRTH does not often find such a configuration. However,
for DARRTHCONNECT, when adding states to the goal tree,
we continue to sample until we find a collision-free state.
Therefore we were actively adding bad pushing configura-
tions to the goal tree. Moreover, the bi-directionality helped
the planner achieve these bad configurations.

Except in the world designed to be difficult for them,
the hierarchical algorithms consistently out-perform their flat
counterparts and DARRTHCONNECT plans only a factor
of about two slower than the mode-specified planner. The
leverage is owing primarily to two factors:

• Nearest Neighbor Calculation: The distance function
for DARRT is costly because it must approximate
manipulation paths. By resetting the tree every time a
subgoal is achieved, DARRTH makes many fewer calls
to the distance function.

• Targeted Restarts: As is common with sampling-based
planners, we restart DARRT(H)(CONNECT) after a
specified time period. With DARRT(CONNECT), we
can do no better than restarting from the starting state.
With DARRTH(CONNECT), however, we restart from
the most recent subgoal. For example, lifting the plate
off of the table is a difficult problem. If the move
from the table to the goal configuration is also difficult,
DARRT(CONNECT) might restart after having solved
for lifting up the plate but before being able to transfer
it to its goal location. DARRTH(CONNECT), however,
by its automatic choice of good subgoals, restarts from
the state in which the plate has been lifted.

The time taken for nearest neighbors is dependent on the
distance function used. It has since been shown that a simpler
distance function than the one used in this work is valid [21].
In this case, the impact of the fewer distance calculations
would be lessened, bringing the hierarchical and the flat
planning times closer together.

VIII. CONCLUSION

In this paper we formally defined the DAMA problem and
its multi-modal counterpart, MM-DAMA. We gave three new
algorithms for this problem (DARRTH, DARRTCONNECT,
DARRTHCONNECT) and showed that all three are signifi-
cantly more efficient than the original DARRT algorithm in
a mobile manipulation domain.
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APPENDIX

For reference the full pseudo-code for DARRT and DAR-
RTCONNECT is reproduced here. This top-level code is
very similar to the RRT [19] and the RRT-Connect [20]
algorithms respectively. The implementation uses the Open
Motion Planning Library [22].

DARRT(M,B,A, cI , G)

1 T ← {cI}
2 while T ∩G = ∅
3 s← SAMPLE(M)
4 t← arg minv∈T Distance(v, s,M,A,True)
5 T ← T ∪ EXTEND(t, s,M,B,A,True)
6 return ExtractPath(T )

DARRTCONNECT(M,B,A, cI , G)

1 Ta ← {cI}, Tb ← {randomState(G)}
2 F ← True // True when extending forwards
3 while True
4 if F : Tb ← Tb ∪ {randomState(G)}
5 s← SAMPLE(M)
6 t← arg minv∈Ta

Distance(v, s,M,A, F )
7 {c1, ..., cl} ← EXTEND(t, s,M,B,A, F )
8 Ta ← Ta ∪ {c1, ..., cl}
9 if l > 0 // Extend Tb towards Ta

10 t← arg minv∈Tb
Distance(v, cl,M,A,¬F )

11 {b1, ..., bq} ← EXTEND(t, cl,M,B,A,¬F )
12 if bq = cl: return ExtractPath(Ta, Tb)
13 swap(Ta, Tb), F ← ¬F


