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ABSTRACT The determination of struc-
tures of multimers presents interesting new
challenges. The structure(s) of the individual
monomers must be found and the trans-
formations to produce the packing interfaces
must be described. A substantial difficulty
results from ambiguities in assigning inter-
molecular distance measurements (from
nuclear magnetic resonance, for example) to
particular intermolecular interfaces in the
structure. Here we present a rapid and effi-
cient method to solve the packing and the
assignment problems simultaneously given
rigid monomer structures and (potentially
ambiguous) intermolecular distance mea-
surements. A promising application of this
algorithm is to couple it with a monomer
searching protocol such that each monomer
structure consistent with intramolecular con-
straints can be subsequently input to the
current algorithm to check whether it is consis-
tent with (potentially ambiguous) intermolecu-
lar constraints. The algorithm AmbiPack uses
a hierarchical division of the search space and
the branch-and-bound algorithm to eliminate
infeasible regions of the space. Local search
methods are then focused on the remaining
space. The algorithm generally runs faster as
more constraints are included because more
regions of the search space can be eliminated.
This is not the case for other methods, for
which additional constraints increase the com-
plexity of the search space. The algorithm
presented is guaranteed to find all solutions
to a predetermined resolution. This resolu-
tion can be chosen arbitrarily to produce out-
puts at various level of detail. Illustrative appli-
cations are presented for the P22 tailspike
protein (a trimer) and portions of b-amyloid
(an ordered aggregate). Proteins 32:26–42, 1998.
r 1998 Wiley-Liss, Inc.
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INTRODUCTION

The determination of atomic-level structures is of
growing importance in modern chemistry and biol-
ogy. Advances in biophysical techniques result in
data on more ambitious structures being generated
at an ever increasing rate. However, finding struc-
tures that are consistent with these data presents a
number of formidable computational problems. This
paper gives an efficient, systematic algorithm for one
such problem: finding packings of rigid predeter-
mined subunit structures that are consistent with
ambiguous intermolecular distance measurements
from nuclear magnetic resonance (NMR) experiments.

Whereas X-ray crystallography essentially pro-
vides atomic-level information in absolute coordi-
nates, NMR spectroscopy typically provides relative
distance and orientation information through chemi-
cal shifts, coupling constants, and especially dis-
tances estimated from magnetization transfer experi-
ments. In NMR spectroscopy, the identity of an
atomic nucleus is indexed by its chemical shift (in 2D
experiments) and also that of its neighbors (in higher
dimensional experiments). Thus, two atoms that
occupy exactly the same environment (e.g., symme-
try-mates in a symmetric dimer) cannot generally be
distinguished, and distances measured to them can
be ambiguous. For instance, in the symmetric dimer
case, intra- and intermolecular distances are ambigu-
ous. This type of ambiguity can generally be removed
through isotopic labeling schemes. However, for
higher order multimers, in which different types of
intermolecular relationships exist, each intermolecu-
lar distance remains ambiguous. Furthermore, in
solid-state NMR experiments,1 one can obtain unam-
biguous intramolecular distances but generally only
ambiguous intermolecular distances. This kind of
problem is evident with symmetric coiled coils,2 the
trimeric P22 tailspike protein,3 and the fibrils formed
from fragments of the Alzheimer precursor protein.1
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This type of ambiguity is illustrated in Figure 1
with the P22 tailspike protein, which forms a sym-
metric homotrimer. The intermolecular distances
between residues 120 and 124 are short, as are those
between residues 121 and 123. Arrangement A as-
signs the intermolecular distances to the correct
pairs of residues. Arrangement B differs from A by
switching the assignment of residues 121 and 123.
Many experimental techniques cannot distinguish
between residues on different subunits. Thus A and
B are both valid interpretations of the experimental
data. For every intermolecular distance measure-
ment, there are two such possible interpretations.
When multiple ambiguous intermolecular distances
are given, one has to solve the ‘‘assignment prob-
lem’’—for each intermolecular distance, assign the
residue pair to the correct subunits such that a structure
can be generated to match all the distances.

One conceivable solution to the assignment prob-
lem is enumeration. One could attempt to enumerate
all possible assignments and test each one by trying
to generate a structure. Unfortunately, this is imprac-
tical in almost all cases. Consider that each intermo-
lecular distance measurement may be assigned in
two different ways to any pair of subunits and all
combinations of assignments must be explored. (The
first assignment can be made arbitrarily since all
measurements are relative.) This means that, given
n ambiguous intermolecular distances in a symmet-
ric homomultimer, there are at least 2n21 assign-
ments. Furthermore, not all measurements need to
hold between all pairs of subunits, that is, there may
be more than one type of ‘‘interface’’ between the
subunits of a homomultimer (see C-Terminal Pep-
tide of b-Amyloid Protein, below). This further in-
creases the number of combinations that need to be
explored. Since the number of assignments to be
tested grows exponentially with the number of ambi-
guities, this approach is not feasible for realistic
numbers of distances. For example, later we will be
dealing with 43 ambiguous measurements for the
P22 homotrimer. The size of this assignment prob-
lem is 242, which is approximately 4 3 1012; this is
clearly too many combinations to enumerate.

A different approach is to design a potential func-
tion that has the effect of performing a logical ‘‘OR’’
over the possible solutions for the ambiguous con-
straints. For example, this function can be a sum of
terms reflecting a penalty for unsatisfied distance
measurements. Each term can contribute zero when
the corresponding distance is satisfied in any way
consistent with its labeling ambiguity. The penalty
function may increase monotonically with the magni-
tude of the distance violation so that global optimiza-
tion techniques, such as simulated annealing, may
be utilized to search for solutions. If multiple packed
structures exist that are consistent with the measure-
ments, there would be many minima with zero
penalty. Nilges’ dynamic assignment strategy4,5 uses

a smooth function with these properties for ambigu-
ous inter- and intramolecular distances. Dynamic
assignment has the significant advantage of not
assuming a rigid monomer. Instead, the monomer is
assumed to be flexible and restrained by intramolecu-
lar distances. O’Donoghue et al.6 successfully ap-
plied this technique to the leucine zipper ho-
modimers, where the monomer structure is known.
Unfortunately, this approach must contend with the
multiple local minima problem; there are many
placements of the structures that satisfy only a
subset of the distances but such that all displace-
ments cause an increase in the potential. As the
number of ambiguous distances increases, the mini-
mization takes longer to find valid solutions, due to
increasing ruggedness of the potential landscape.
Furthermore, since this approach is a randomized
one, it is not guaranteed to generate all packings
satisfying the constraints. Likewise, if no structure
can possibly match all distances, this method will
not be able to prove that conclusively.

Yet another approach is to sample rigid transforma-
tions systematically,7,8 apply them to the subunit,
and then test whether the resulting structures match
all distances. Since a rigid transformation has six
parameters (three translations and three rotations),
one needs to test n6 transforms where n is the
number of samples for each transformation param-
eter. This will take a great deal of computer time
even for a moderate size n, such as 30, since
306 5 729,000,000). Furthermore, this approach may
miss solutions that are ‘‘between’’ the sampled trans-
formations. So, to have a fair degree of confidence
that no solutions have been missed requires very fine
sampling, that is, a large value of n (generally much
greater than 30).

We have developed a new algorithm, AmbiPack,
that generates packed structures from ambigu-
ous (and unambiguous) intermolecular distances.
AmbiPack is both exhaustive and efficient. It can
find all possible packings, at a specified resolution,
that can satisfy all the distance constraints. This
resolution can be chosen by the user to produce
packings at any level of detail. It gives a null answer
if and only if there is no solution to the constraints.
In our implementation, AmbiPack takes minutes to
run on a problem with more than 40 ambiguous
constraints. (All runs were on a Sun Ultra 1 worksta-
tion.) Its running time does not depend significantly
on the size of the subunits. Furthermore, while most
other techniques run slower when more constraints
are added, AmbiPack generally runs faster with
more constraints because this allows earlier pruning
of a greater number of solutions and requires de-
tailed exploration of a smaller number of solutions.
Therefore, it is quite practical to apply AmbiPack to
a family of NMR-derived subunit structures to ob-
tain a corresponding family of packed structures.
Moreover, it can be used in tandem with a subunit
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generating procedure (which satisfies intrasubunit
distances) to filter out those subunit models incom-
patible with the set of intersubunit distances.

PROBLEM DEFINITION

We now define the packing problem more pre-
cisely; we will start by assuming only two structures
and generalize the definition later.

Two Structures

The inputs to the AmbiPack algorithm are:

1. Two rigid structures (S and S8) that are to be
packed. Without loss of generality, we assume
that S8 is fixed in the input configuration and S
has an unknown rigid transformation relative to
S8. S is the same as S8 for identical structures,
which is frequently the case.

2. A set of constraints on the intermolecular dis-
tances. These constraints specify the allowed
ranges of distances between atoms, e.g., 3 Å ,

PQ8 , 6 Å where P and Q8 are atoms on S and S8,
respectively. The constraints can be specified
ambiguously, i.e., only one of several bounds
needs to be satisfied. Suppose P and Q are atoms
on S while P8 and Q8 are correspondingly atoms
on S8. One ambiguous constraint may be

PQ8 , 6 Å OR QP8 , 6 Å,

which requires only one of the two distances to be
shorter than 6 Å.

In principle, the input constraints to AmbiPack
may have many possible forms; each constraint can
be a boolean combination of an arbitrary number of
inequalities that can put limits on any intermolecu-
lar distances. In practice, experiments usually gener-
ate two types of constraints, called positives and
negatives. They correspond to positive and negative
results from solution or solid-state NMR. A positive
result means that a pair of atoms is closer than some
distance bound. However, due to the labeling ambigu-
ity present in current experiments of this variety, a
positive constraint has the form PQ8 , x Å OR QP8 ,
x Å, which has a twofold ambiguity. The constraint
also need not be satisfied at all between a given pair
of monomers, which introduces additional ambigu-
ity.

On the other hand, a negative experimental result
means that a pair of atoms are farther apart than
some bound. All such intermolecular pairs must
satisfy the requirement. There are no ambiguous
interpretations. A negative constraint has the form
PQ8 . x Å AND QP8 . x Å.

The output ofAmbiPack is a set of rigid transforma-
tions. When any of the output transformations is

applied to the structure S, the resulting complex
with S8 satisfies the specified constraints.

More Than Two Structures

The description above applies to structures with
two subunits, but it can be extended to structures
with more than two identical subunits. There are
two classes of problems involving more than two
structures, depending on whether all of the distance
constraints hold at all interfaces among monomers
or not.

The simpler case is when all of the ambiguous
(positive) distance constraints hold at the interface
between any pair of structures. In this situation,
there is only one type of interface between pairs of
monomers. This case is quite common; it is illus-
trated by the P22 tailspike trimer (Fig. 1), which is
treated in detail in the section P22 Tailspike Protein,
below. For such a symmetric trimer, in which there is
two-fold ambiguity between all intermolecular con-
straints and each intermolecular constraint is satis-
fied at least once between each pair of monomers, the
structure of the trimer can be constructed through
successive application of an output transformation
(T ) to the input structure (S). That is,

S, T(S), T2(S)

together form a candidate trimer packing. The con-
straints should also be satisfied across the T 2(S):S
interface, which needs to be verified for each candi-
date T. A similar approach can be taken for symmet-
ric homomultimers with m subunits, but only one
type of interface.

The more complex case is when the positive dis-
tance constraints are not all satisfied between every
pair of structures. Figure 2 shows a structure of a
C-terminal peptide (b34–42) of the b amyloid protein
(b1–42).1 This infinitely repeating structure forms
an ordered aggregate. There are two types of inter-
faces in this structure. Solid-state 13C NMR experi-
ments have produced 8 positive and 12 negative
constraints. Either interface satisfies all negative
constraints but only a subset of the positive ones.
Together the interfaces satisfy all positive con-
straints. A direct approach to this type of problem is
to enumerate subsets of the constraints that may
hold between different pairs of structures. AmbiPack
can be used to find solutions for each of these subsets
of constraints. A valid multimer can be constructed
from combinations of output transformations, ap-
plied singly or successively, such that each con-
straint is satisfied at least once in the multimer. This
is the strategy illustrated in the section C-Terminal
Peptide of b-Amyloid Protein, below. This strategy is
only feasible when the number of ambiguous con-
straints is relatively small since the number of
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constraint subsets also grows exponentially with the
number of ambiguous constraints. A more efficient
variant of this strategy that exploits the details of
the AmbiPack algorithm is discussed in the Algo-
rithm Extensions section, below.

THE AmbiPack ALGORITHM

We now describe our approach to the packing
problem—the AmbiPack algorithm. For ease of expo-
sition, we first present a simplified version for solv-
ing unambiguous constraints, i.e., constraints with-
out ORs, and a single interface, i.e., all the constraints
hold between the given structures. In the Algorithm
Extensions section, we will generalize this descrip-
tion to ambiguous constraints and multiple inter-
faces.

Algorithm Overview

AmbiPack is based on two key observations:

1. Suppose there is some constraint of the form
PQ8 , x Å, where P and Q8 are atoms on S and S8,

respectively. This constraint specifies the approxi-
mate location of P. Specifically, it describes a
sphere of radius x Å around Q8 in which P must be
found.

2. If we fix the positions of three non-collinear atoms
on S, we have specified a unique rigid transforma-
tion.

These observations suggest that one may ap-
proach the problem of finding a packing consistent
with a given set of (unambiguous) input constraints
as follows:

1. Select three (unambiguous) constraints (PiQ8i , xi

Å, i 5 1, 2, 3) from the input set.
2. For each Pi, uniformly sample its possible posi-

tions inside the sphere with radius xi Å centered
on Q8i.

3. Calculate rigid transformations based on the
positions of Pis. Test whether these transforma-
tions satisfy all the input constraints.

Fig. 1. Two ambiguous intermolecular distances can have two different interpretations. The P22
tailspike protein is shown schematically with two different interpretations (A,B) for the proximity
pairs 120–124 and 121–123.

Fig. 2. Structure of b-amyloid fibril proposed by Lansbury et al.1
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Atwo-dimensional example of this approach is shown
in Figure 3A.

Note, however, that this approach is not guaran-
teed to find a legal packing whenever one exists. In
particular, it misses solutions that would require
placing any of the Pi away from the sampled points.
Of course, by sampling very finely we can reduce the
chances of such a failure, but this remedy would
exacerbate the two other problems with this ap-
proach as it stands. One problem is that the method
needs to test m3 transformations where m is the
number of sampled points in each of the three
spheres. Typically we would sample hundreds of
points in each sphere, and thus millions of transfor-
mations are to be generated and tested. The other,
related, problem is that the finer the sampling, the

greater the number of transformations, many nearly
identical, that will be produced, since the constraints
seldom define a single solution exactly. To alleviate
these latter problems, we want a relatively coarse
sampling.

AmbiPack is similar to the method above, but
instead of sampling points at a fixed spacing within
the spheres, AmbiPack explores the possible place-
ments of the Pi within the spheres in a coarse-to-fine
fashion. To achieve the advantages of exploration
using coarse sampling while maintaining a guaran-
tee of not missing solutions, we replace the idea of
sampling points with that of subdividing the space.
Consider placing the Pi not at fixed points within the
spheres but rather somewhere inside (large) cubes
centered on the sampled points (Fig. 3B). We can
now pose the following question: ‘‘Can we disprove
that there exists a solution in which the Pi are inside
the chosen cubes?’’ If we can, then this combination
of cubes can be discarded; no combination of points
within these cubes can lead to a solution. If we
cannot disprove that a solution exists, we can subdi-
vide the cubes into smaller cubes and try again.
Eventually, we can stop when the cubes become
small enough. Each of the surviving assignments of
points to cubes represents a family of possible solu-
tions that we have not been able to rule out. Each of
these potential solutions is different from every
other in the sense that that at least one of the Pis is
in a different cube. We can then check, by sampling
transformations or by gradient-based minimization,
which of these possible solutions actually satisfy all
the input constraints.

The key to the efficiency of the algorithm, obtained
without sacrificing exhaustiveness, is the ability to
disprove that a solution exists when the three Pi are
placed anywhere within the three given cubes, Ci.
Since the Pis are restricted to the cubes, the possible
locations of other S atoms are also limited. If one can
conservatively bound the locations of other atoms,
one can use the input constraints to disprove that a
solution can exist. AmbiPack uses error spheres to
perform this bounding. For each atom on S, its error
sphere includes all of its possible positions given that
the Pis lie in Cis (Fig. 4). The details of the error
sphere computation are given in the sections Centers
of Error Spheres; and Radii of Error Spheres, below.

Up to this point we have not dealt with ambiguous
constraints. However, we only need to modify the
algorithm slightly to deal with them. Note that once
we have a candidate transformation, checking
whether ambiguous constraints are satisfied is no
more difficult than checking unambiguous con-
straints; it simply requires dealing with constraints
including ORs as well as ANDs. So, the only poten-
tial difficulty is if we cannot select an initial set of
three unambiguous constraints in Step 1 of the
algorithm. If the constraints are ambiguous, we
cannot tell whether the atoms referred to in the

Fig. 3. Two approaches to generating transforms (illustrated
here in two dimensions, where two points are sufficient to place a
structure): (A) matching points Pi from S to sampled points in
spheres centered on Q8i, or (B) placing points Pi from S somewhere
within cubes contained in spheres centered on Q8i. The first of
these may miss solutions that require placing the Pi away from the
sampled points.
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constraints are drawn from S or S8. In that case,
however, we can enumerate the possible interpreta-
tions of the ambiguous constraints and find the
solutions for each one. Assuming that all the dis-
tance constraints hold between the given structures
and since we are dealing with at most three ambigu-
ous measurements, this generally involves a small
number of iterations of the algorithm.

Algorithm Details

AmbiPack is an example of a branch-and-bound
tree-search algorithm.9 During the search, it prunes
away branches that are ruled out by the bound
function. Figure 5 illustrates the algorithm. Initially,
AmbiPack selects three constraints, PiQ8i , xi Å, i 5
1, 2, 3. Each node in the search tree corresponds to
three cubes in space—C1, C2, and C3; the position of
Pi is limited to be inside Ci. At the root of the tree,
each Ci is centered at Q8i and has length 2xi in each
dimension. Thus, all possible positions of Pis satisfy-
ing the constraints are covered. At every internal
node, each Ci is subdivided into eight cubes with half
the length on each side. Each child has three cubes 1⁄8
the volume of its parent. Each parent has 512
children because there are 83 5 512 combinations of
the smaller cubes. At each level further down the
search tree, the positions of Pis are specified at
progressively finer resolution. If one calculates trans-
formations from all nodes at a certain level of the
tree, one systematically samples all possible solu-
tions to the packing problem at that level’s resolu-
tion. The method of computing a transformation for
a node is described below.

The very large branching factor (512) of the search
tree means that an effective method for discarding
( pruning) solutionless branches is required. Other-
wise the number of nodes to be considered will grow
quickly—512d, where d is the depth of the tree—

precluding exploration at fine resolution. AmbiPack
uses two techniques to rule out branches that cannot
possibly satisfy all input constraints.

The first technique is to exploit the known dis-
tances between the Pi, since the monomers are
predetermined structures. Between any pair of at-
oms in S, the distance is fixed because S is a rigid
structure. Suppose C1, C2, and C3 are the cubes
corresponding to a tree node. Let max(C1, C2) and
min(C1, C2) be the maximum and minimum separa-
tion, respectively, between any point in C1 and any
point in C2. A necessary condition for P1 to be in C1

and P2 to be in C2 is

min(C1, C2) # P1P2 # max(C1, C2).

Similarly, for the other two pairs of atoms, we
require min(C2, C3) # P2P3 # max(C2, C3) and
min(C1, C3) # P1P3 # max(C1, C3). If any of the three
conditions are violated, the node can be rejected;
since the Pis cannot be simultaneously placed in
these cubes.

The second pruning technique makes use of the
error spheres mentioned above. For each atom on S,
its error sphere includes all of its possible positions
given that the Pis lie in the Cis. Let E and r be the
center and radius, respectively, of the error sphere of
an atom located at P on S (the computation of E and r
is discussed below). Since we want to discard nodes
that cannot lead to a valid solution, we want to
ensure that no possible position of P (the points
within the error sphere) can satisfy the constraints.
We can do this by replacing all input constraints on P
with constraints on E (the center of the error sphere),
with the constraints ‘‘loosened’’ by the error sphere
radius r. Suppose PQ8 , x is an input constraint.
This pruning technique requires that EQ8 , x 1 r.
Similarly, PQ8 . x will translate into EQ8 . x 2 r.
Given these loosened constraints, we can implement
a conservative method for discarding nodes. We can
compute one transformation that maps the Pi so that
they lie in the Ci; any transformation that does this
will suffice. We can then apply this transform to the
centers of the error spheres for all the atoms of S. If
any of the input constraints fail, when tested with
these transformed error sphere centers and loosened
by the error sphere radii, then the node can be
discarded. Note that if there are more constraints,
this technique will impose more conditions; thus
more nodes will be rejected. This is why AmbiPack is
more efficient if more constraints are given.

The key remaining problem is efficiently finding
the centers and radii of error spheres for the speci-
fied Pis and Cis.

Centers of error spheres

We want to make the error spheres as small as
possible, since this will give us the tightest con-
straints and best pruning. We can think of the center

Fig. 4. The error spheres for points in S when the Pi are
constrained to be somewhere within cubes contained in spheres
centered on Q8i. Illustrated here in two dimensions.
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of the error sphere as defined by some ‘‘nominal’’
alignment of the Pi to points with the Ci. The points
within the error sphere are swept out as the Pi are
displaced to reach every point within the Ci. The
magnitude of the displacement from the error sphere
center depends on the magnitude of the displace-
ment from the ‘‘nominal’’ alignment. This suggests
that we can keep the error sphere small by choosing
a ‘‘nominal’’ alignment that keeps the displacement
of the Pi needed to reach every point in Ci as small as
possible, that is, we want the ‘‘nominal’’ alignment to
place the Pi close to the centers of the Ci.

We find the centers of the error spheres by calculat-
ing a transformation, T, that places the Pis as close
as possible to the centers of the Cis. For every atom P
in S, T (P) is taken as the center of its error sphere.
There are many well-known iterative algorithms for
computing transformations that minimize the sum
of distances squared between two sets of points, e.g.,
Ferro and Hermans.10 However, in our case, since we
are dealing with only three pairs of points, we can
use a more efficient analytic solution.

The points Pi define a triangle and so do the
centers of the Ci. Therefore, we are looking for a
transformation that best matches two rigid triangles
in three-dimensional space. It should be clear that
the best (minimal squared distance) solution has the
triangles coplanar, with their centroids coincident.
Suppose these two conditions are met by two tri-
angles x1x2x3 and y1y2y3 whose centroids are at the
origin. xis and yis are vectors and each xi is to match
yi. Let the yis be fixed but xis be movable. The only
unknown parameter is u, the angle of rotation of xis
on the triangles’ plane about the origin (Fig. 6). The
optimal u can be found by writing the positions of the
xis as a function of u, substituting in the expression
for the sum of squared distances and differentiating

with respect to u. The condition for this derivative
being zero is:

tan u 5

o
i51

3

0xi 3 yi 0

o
i51

3

xi ? yi

With u found, the required transformation that
matches Pis to the centers of Cis is

T 5 T4R3R2T1

where

● T1 translates the centroid of Pis to the origin;
● R2 rotates the Pis about the origin to a plane

parallel to that of the centers of Cis;

Fig. 5. The AmbiPack algorithm ex-
plores a tree of assignments of the three
Pi to three cubes Ci. Illustrated here in
two dimensions.

Fig. 6. When two triangles are coplanar and their centroids are
coincident, there is only one angle of rotation, u, to determine.
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● R3 rotates the Pis about their centroid by the
optimal u;

● T4 translates the Pis centroid from the origin to
the centroid of the Cis centers.

For every atom P in S, T (P) is defined to be the
center of its error sphere.

Radii of error spheres

The radii of error spheres are harder to find than
the centers. For each sphere, its radius must be
larger than the maximum displacement of an atom
from the error sphere center. The sizes of the spheres
depend not only on the Cis, but also the locations of
atoms on S relative to the Pi. The range of motion of
an atom increases with the dimension of the Cis, as
well as its separation from the Pis. For efficiency,
AmbiPack calculates a set of radii for atoms of S
depending on the sizes of the Cis, but not on the Cis
exact locations. Thus all nodes at the same level of
the search tree share the same set of error sphere
radii; it is not necessary to recalculate them at every
node.

Suppose the largest Ci has length d on each side. A
sphere of radius Î3d centered at any point in the
cube will contain it, regardless of the cube’s orienta-

tion. Therefore we can restate the problem of finding
error sphere radii as: Given S and the Pis where each
Pi may have a maximum displacement of Î3d, find
the maximum displacements of all other atoms in S.
These displacements will be used as the radii of the
error spheres. There are two possible approaches to
this problem—analytical and numerical. One can
calculate an analytical upper bound of the displace-
ment of each atom, but it is quite difficult to derive a
tight bound. A loose bound will result in excessively
large error spheres and ineffective pruning. We
choose a simple randomized numerical technique to
find the maximum displacements. A large number
(1,000) of random transformations, which displace
the Pis by Î3d or less, are generated. These transfor-
mations are applied to all atoms on S. For each atom,
we simply record its maximum displacement among
all transformations. Empirically, this technique con-
verges very quickly on reliable bounds. The perfor-
mance data in the next section also show that the
resulting radii are very effective in pruning the
search tree.

Algorithm Summary

Figure 7 summarizes the basic AmbiPack algo-
rithm. Note that for a problem where some solutions

Fig. 7. The AmbiPack algorithm. Search_depth is the limit on the depth of the tree.
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exist, the search tree is potentially infinite. There
will be a feasible region in space for each Pi. If we do
not limit the depth of the tree, it will explore these
regions and will continuously subdivide them into
smaller and smaller cubes. Thus, we have an issue of
choosing a maximum depth for exploration of the
tree. On the other hand, the search tree is finite if a
problem has no solution. As one searches deeper
down the tree, the Cis and error spheres become
smaller. With error sphere pruning, the conditions
on the nodes become more stringent and closer to the
input constraints. Eventually, all nodes at a certain
level will be rejected.

The simplest strategy for using the AmbiPack
algorithm is:

1. Select a desired resolution for the solutions, which
corresponds to a level of the search tree.

2. Search down to the specified level with pruning.
3. If there are no leaf nodes (that is, if every branch

is pruned due to an inability to satisfy the con-
straints), there is no solution to the problem.
Otherwise, calculate transformations from the
leaf nodes and test against the input constraints.
One would typically use a local optimization
technique, such as conjugate gradient, to adjust

the leaf-node transformations so as to minimize
any violation of the input constraints.

4. If some transformations satisfy all constraints,
output them. Otherwise, the resolution chosen in
Step 1 may not be fine enough, or the problem
may not have any solution. Select a finer resolu-
tion (deeper level in the search tree) and go to
Step 2.

This strategy is generally quite successful in deter-
mining whether solutions exist for a given problem.
If solutions exist, it will typically find all of them at
the specified resolution, determined by the maxi-
mum search depth. However, this strategy is not
completely systematic since it is relying on Step 3 to
find a solution if one exists, but this is not guaran-
teed since only one, or at most a few, transformations
will be sampled for each leaf (Fig. 8). Our experience
is that this works quite well in practice. Most of the
results reported in the next section use this simple
strategy.

However, if stronger guarantees are required,
then a more sophisticated variant of this strategy
can be followed. As we discussed in the section
Algorithm Overview, above, there are two meaning-
ful, and conflicting, resolution limits in this type of
problem. One arises from the goal of finding solu-
tions if they exist. There is a minimum resolution
determined by the accuracy of the measurements
below which it makes no sense to continue partition-
ing space in search of a solution. Therefore, there is a
maximal depth in the tree beyond which we never
want to proceed. However, we do not want to expand
all the leaves of the tree to this maximal depth. The

Fig. 8. Solutions will generally be clustered into regions (shown
shaded) in a high-dimensional space, characterized by the place-
ments of the Pi. Each leaf of the search tree maps into some
rectangular region in this space whose size is determined by the
resolution. AmbiPack samples one point (or at most a few) for
each leaf region in this solution space. At a coarse resolution, only
leaves completely inside the shaded solution region are guaran-
teed to produce a solution, e.g., the regions labeled A. As the
resolution is improved, new leaves may lead to solutions; some of
them will be on the boundary of the original solution region
containing A, and others may come from new solution regions not
sampled earlier.

Fig. 9. Illustration of the search using a critical depth and
maximal depth.
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other search limit stems from a desire to avoid
generating too many nearly identical solutions. This
defines a critical depth in the tree beyond which we
want to return at most a single transform if one
exists, rather than returning all the transforms
corresponding to leaves. Therefore, we can modify
the AmbiPack algorithm so that, below the critical
depth and above the maximal depth, it attempts to
find a solution (using minimization) for every node
that is not pruned (Fig. 9). If a solution is found, it is
stored, and search resumes with the next subtree at
the critical depth. In this way, at most one solution is
stored per subtree at the critical resolution, but the
subtree is searched to the maximal resolution.

Algorithm Extensions

Assume that all the specified constraints must
hold between the given structures. In the section
Algorithm Overview, we outlined how the algorithm
above can be extended to cope with ambiguous
constraints. There are two parts of the algorithm in
Figure 7 that need to be changed:

Line 1: Ideally, we select three constraints that
have no ambiguity. If all constraints
are ambiguous, we select the three
least ambiguous ones and enumerate
all possible interpretations of them.
This requires adding an outer loop,
which runs the search a3 times, where
a is the ambiguity in each constraint.
Typical experiments produce con-
straints with twofold ambiguity. They
are solved by AmbiPack efficiently.
However, if each constraint has a large
number of ambiguous interpretations,
AmbiPack may not be appropriate.

Lines 9–12: If some constraints are ambiguous, we
simply add appropriate ORs to the
inequalities derived from those con-
straints. This modification does not slow
execution.

These extensions mean that we may need to run
the search a3 times, which is usually a small number.
If the constraints have some special properties, this
number can be reduced even further. For example, if
S is the same as S8 and all constraints are either
positives or negatives, we need to search only four
instead of eight times. The positives and negatives
are symmetrical. If transformation T is a solution
satisfying a set of inequalities, T 21 is also a solution
satisfying the complementary set of inequalities.
Making use of this symmetry, we choose the interpre-
tation of one positive constraint arbitrarily and,
therefore, only need to calculate half of the solutions.

Because AmbiPack needs to select three con-
straints initially, it is limited to problems with three
or more ‘‘less-than’’ constraints. This is not a severe

restriction because most practical problems have a
large number of ‘‘less-than’’ constraints. On the other
hand, the choice of a particular set of three con-
straints will have a large impact on efficiency. Given
Cis of the same size, atoms on S will have smaller
displacements if Pis are farther apart from each
other. This will lead to smaller error spheres and
more effective pruning. In our implementation, we
select the constraints that maximize the area of the
triangle P1P2P3.

Now, consider the case where all the constraints
need not be satisfied between the given structures.
This may be due to labeling ambiguity or simply to
measurement error. As we mentioned earlier, one
approach to this problem is to enumerate subsets of
the ambiguous constraints and solve them indepen-
dently. The difficulty with this approach is that the
number of subsets grows exponentially with the
number of constraints. An alternative approach is,
instead of requiring that all input constraints be
satisfied, to specify a minimum number of con-
straints that must be satisfied.

Once again, it is Line 1 and Lines 9–12 that need
to be changed. The easy change is that Lines 9–12
can be readily changed from checking that all con-
straints are satisfied into counting the satisfiable
constraints. We reject a node if the count is less than
the minimum number. If we just make this enhance-
ment, without changing Line 1, we can use the
algorithm to constrain ‘‘optional’’ chemical proper-
ties such as the minimum number of feasible hydro-
gen bonds or favorable van der Waal’s contacts in a
structure.

The more difficult problem is what to do when all
the constraints do not need to hold. If one wants to
guarantee that all possible solutions are found, then
one needs to consider all possible triples of con-
straints in Line 1 instead of just choosing one initial
triple. The number of such triples grows roughly as
n3 when there are n ambiguous constraints. This is a
great improvement over the exponential growth in
the number of constraint subsets, but it is still the
limiting factor in applying the AmbiPack algorithm
to problems with large numbers of ambiguous con-
straints and multiple interfaces.

RESULTS AND DISCUSSION

We have carried out two detailed studies using the
AmbiPack algorithm to explore its performance and

TABLE I. Results ofAmbiPack Running on the P22
Tailspike Trimer With Different Values of the

Maximal Resolution (res.) for the Search

Critical
res.

Maximal
res.

No. of
solutions

Avg.
RMSD

Time
(sec)

2.0 2.0 47 0.6078 279
2.0 0.5 743 1.073 3,801
2.0 0.25 827 1.033 11,497
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illustrate its range of applicability. The first study
involves a large protein (the P22 tailspike protein—a
homotrimer involving 544 residues), a large number
(43) of (simulated) ambiguous measurements, and a
single type of interface between three subunits. The
second study involves a nine-residue peptide from
b-amyloid, a small number (eight) of ambiguous
measurements, and two different interfaces between
an indefinitely repeating group of subunits.

In all the tests discussed below, the AmbiPack
algorithm is implemented in Common Lisp,11 run-
ning on a Sun Ultra 1 workstation. All constraints
used involved carbon-carbon distances because they
are commonly measured in solid-state NMR experi-
ments, rather than distances to hydrogen, which are
currently more common in solution NMR spectros-
copy.

P22 Tailspike Protein

The first test of the AmbiPack algorithm is the P22
tailspike protein3 (PDB12 code 1TSP). In its crystal
structure, the positions of 544 residues are deter-

mined. The protein forms a symmetric homotrimer.
Each subunit of the homotrimer contains a large
parallel b-helix. We use AmbiPack to find the rela-
tive orientation of two subunits; the third subunit
can be placed by applying the solution transforma-
tion twice, as discussed in the section Problem
Definition, above.

First, we measured the intermolecular distances
between Ca carbons at the interface of the subunits.
There were 43 Ca–Ca distances less than 5.5 Å (a
typical upper bound for distance measurements in
some NMR experiments), giving 43 positive con-
straints. To be conservative, we specified each con-
straint with an upper bound of 6 Å. For example, one
of the constraints was Ca

120C8a
124 , 6.0 Å OR Ca

124

C8a
120 , 6.0 Å. The 43 ambiguous constraints and the

two identical subunit structures were given to the
algorithm. The constraints have a total of 242 pos-
sible interpretations. Our program solved this prob-
lem in 279 seconds to a maximal resolution where
the Cis are 2 Å on each side. Most of the computer
time was spent in the recursive search procedure.

Fig. 10. The translation components of solutions from AmbiPack running on the P22 tailspike
trimer, ignoring steric clashes, with critical resolution of 2.0 Å and maximal resolution of (A) 2.0 Å,
(B) 0.5 Å, and (C) 0.25 Å. The solution from the crystal structure, (0,0,0), is marked by a cross. The
rotation components are mostly identical for all solutions.
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When the 47 solution transformations were applied
to a subunit, the results had an average root mean
square deviation (RMSD) of 0.6078 Å from the X-ray
structure. The worst solution had an RMSD of 2.853
Å. This error is much smaller than the ranges of
input constraints. The four search trees (arising
from exploring the ambiguous assignments of the
first three constraints chosen, given identical sub-
units) had a total size of 57,425 nodes. The effective
branching factor is 24.3 instead of the theoretical
worst case of 512. The branching factor becomes
smaller as we search deeper because the pruning
techniques become more powerful.

We investigated the effect of using different values
for the maximal resolution during the search, while
leaving the critical resolution at 2 Å (see the section
Algorithm Summary, above). The results are shown
in Table I. Note that there are many more leaves that
lead to a solution when using finer critical resolu-
tions. However, we found that there were no dis-
tinctly different solutions introduced, rather, one
obtains more samples near the boundary of a single

solution region (Fig. 10). The gradual increase in the
average RMSD is consistent with the fact that the
new solutions obtained with improved maximal reso-
lution are from the boundary of a relatively large
solution region.

These solutions are obtained ignoring steric
clashes. Following the suggestion of an anonymous
reviewer, we filtered these structures by steric con-
straints. Figure 11 shows solutions that contain five
or fewer severe steric clashes. We define a severe
steric clash as having two atoms’ van der Waal’s
spheres overlapping by 1 Å or more. These selected
solutions are confined to a small region around the
packing of the crystal structure. This shows that
steric constraints are effective as a filter of packing
solutions. The user would have the choice of provi-
sionally accepting solutions that violate steric and
using refinement methods to relax the structures
while satisfying all constraints, or, alternatively,
filtering out such solutions and requiring the mono-
mer-generating procedure to provide more accurate
structural models. Presumably data-rich problems

Fig. 11. The translation components of solutions from AmbiPack running on the P22 tailspike
trimer, with five or fewer severe steric clashes. The critical resolution is 2.0 Å and the maximal
resolutions are (A) 2.0 Å, (B) 0.5 Å, and (C) 0.25 Å. The solution from the crystal structure, (0,0,0), is
marked by a cross.
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would be amenable to the latter solution and data-
poor problems more efficiently solved with the former.

As one would expect, changes in the maximal
resolution (and therefore the maximal depth of the
search tree) have a substantial impact on the run-
ning time. Subsequent experiments were done with
both the critical and maximal resolution set to 2 Å.

We also used the tailspike protein to investigate
the effect of quantity and type of constraints on
protein structures. We constructed various sets of
constraints and measured the computational re-
sources required to find solutions for each set as well
as the accuracy of structures. Results of the runs are
plotted in Figures 12 and 13. Each data point on the
plots is the average over 25 randomly selected sets of
constraints. Initially, we used different subsets of the
43 positive constraints. These runs produced the
uppermost lines on the plots. Figures 12 shows the
computational resources approximated by the num-
ber of nodes in the search trees. Clearly, the com-
puter time decreases rapidly as more positive con-
straints are added. This reflects the effectiveness of
early pruning in the AmbiPack algorithm. Figure 13
shows the worst RMSD in the solutions. Solutions
improved rapidly in quality with more positive con-
straints. In general, the plots show diminishing
returns when adding positive constraints.

Next we studied the effect of negative constraints.
In the crystal structure, we found more than 100,000
pairs of Cas with distances greater than 7 Å. Thus
there are many more potential negative constraints
than positive ones. We specified each negative con-
straint with a lower bound of 6 Å, e.g., Ca

114C8a
117 . 6.0

Å AND Ca
117C8a

114 . 6.0 Å. However, we found that
these negative constraints had almost no effect on
the computer time or solution quality. We believe
that most negative constraints, whose Ca pairs are
very far apart in the crystal, do not affect the packing
solutions. We randomly selected 500 negative con-
straints whose Ca pairs are farther than 20 Å and
added them to the 43 positive constraints. The size of
search tree and resulting solutions were identical to
those when using only the positive constraints. There-
fore, these negative constraints from far-apart atom
pairs do not contain new information for structure
determination.

To explore the potential impact of well-chosen
negative results, in the later runs, we used only
‘‘near-miss’’ negative constraints from Ca pairs whose
actual distances are just a little above the lower
bound. In the P22 tailspike protein, we found 589
‘‘near-misses’’ from measuring the crystal structure
with an upper bound of 10 Å. These constraints did
affect the computer time and solution accuracy. The

Fig. 12. Computational resources used by various combinations of positive and ‘‘near-miss’’
negative constraints.
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results of runs with ‘‘near-misses’’ are also shown in
Figures 12 and 13. Computational efficiency and
solution quality improved as more ‘‘near-miss’’ nega-
tive constraints were added, although their effect is
not as significant as the same number of positive
constraints. In these simulations, positive con-
straints contain ambiguous information, but they
are more valuable for structure determination than
the unambiguous negative constraints. These re-
sults also suggest that experiments should be de-
signed to obtain negative data close to the boundary
of detection, thus maximizing information on the
structure. For example, if a small set of constraints
is known, we can use the triangle inequality to
establish upper bounds on other distances.13 Further
experiments can be directed toward measurements
with small upper bounds. It should be noted that in
certain circumstances, strategically chosen negative
constraints may be especially useful; the results here
suggest that randomly selected negative constraints
are unlikely to be as useful as randomly selected
positive constraints.

C-Terminal Peptide of b-Amyloid Protein

The second test of the AmbiPack algorithm is a
nine-residue peptide. This peptide (b34–42) is from

Fig. 13. Quality of structures produced by various combinations of positive and ‘‘near-miss’’
negative constraints. The RMSD is measured by applying the computed transforms to one of the
P22 tailspike monomers (from the X-ray structure) and measuring the displacement from this
monomer to the nearby monomer in the X-ray structure.

TABLE II. Results ofAmbiPack Running
With Multiple Subsets of Positive Constraints

Constraint
set size

No. of
sets

Sets with
solutions

Running
time/set

(sec)

8 1 0 63
7 8 1 90
6 28 9 92
5 56 29 106
4 70 50 135
3 56 50 201

TABLE III. The Complete Positive Constraints
and Three Subsets

All positive
constraints A B C

Ca
37, C38 Ca

37, C38 Ca
37, C38 Ca

37, C38

C37, Ca
39 C37, Ca

39

C36, Ca
39 C36, Ca

39 C36, Ca
39 C36, Ca

39

C36, Ca
40 C36, Ca

40 C36, Ca
40

C34, C
a
39 C34, Ca

39 C34, Ca
39

C34, Ca
40 C34, Ca

40 C34, Ca
40 C34, Ca

40

Ca
36, C38 Ca

36, C38 Ca
36, C38 Ca

36, C38

Ca
36, C39 Ca

36, C39 Ca
36, C39
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the C-terminus of the b-amyloid protein (b1–42).
Lansbury et al.1 have applied solid-state 13C NMR to
this peptide and measured intra- and intermolecular
13C–13C distances. Their experiments produced 8
positive and 12 negative intermolecular constraints.
A pleated antiparallel b-sheet was proposed as the
structure that satisfies all constraints, although the
data can only define the structure to a relatively low
resolution. There are two types of interfaces in their
proposed structures. They alternate among the
b-strands in the sheet (Fig. 2). Either interface
satisfies all negative constraints but only a subset of
the positive ones. Together the interfaces satisfy all
positive constraints.

A nine-residue poly-alanine idealized b-strand was
energy minimized subject to the intramolecular back-
bone carbon-carbon distance restraints and used as
the monomer. (Initial experiments had suggested
that the monomer was a bent b-strand due to a cis
peptide bond, but more recent evidence is consistent
with an all-trans structure.) AmbiPack was given the
20 measured constraints and additional constraints
that eliminate steric clashes. The positive con-
straints have very lenient upper bounds of 6.5 Å and
the negatives also have lenient lower bounds of 5.5
Å. Still, AmbiPack could not find any solution to this
problem, meaning that there is no single packing
that satisfies all the constraints; two or more differ-
ent packings are required. This result is consistent
with Lansbury et al.’s1 two-interface structures.

If there are two or more packing interfaces, each
one must satisfy a subset of the positive constraints,
and together they must satisfy all. We ran our

program on all subsets down to three positive con-
straints, which is the minimum requirement for
AmbiPack. Because of the symmetry of the con-
straints, we search only four times for each subset to
a resolution where the Ci are 2 Å on each side. The
results are shown in Table II. There are many
subsets with solutions; we investigate only the larg-
est ones. There is one set with seven constraints (set
A). There are nine sets with six constraints, but
seven of the nine are subsets of A. We call the other
two sets B and C. They are given in Table III. When
given set A plus all negative constraints, our pro-
gram found four solutions (Fig. 14). By symmetry,
there are four other solutions due to the inverse
transforms. They are not shown in the figure. One of
the four solutions is antiparallel to the stationary
strand. Three others are tilted with respect to the
stationary one. AmbiPack found three solutions to
constraint set B (Fig. 15). In this case, one solution is
antiparallel and two are tilted. C gives a single tilted
solution (Fig. 16).

To find the full structure of the peptide, we need to
combine the solutions from A with those from B or C.
A < B or A < C gives the complete set of positive
constraints. Lansbury et al.1 have shown that this
peptide forms a noncrystalline, yet ordered aggre-
gate. The most plausible structure consists of an
infinite number of subunits that ‘‘tile’’ the space in a
regular fashion. Therefore, we try to calculate a
continuous structure with alternating interfaces from
A and B or A and C. First, we focus on A and B.
Suppose T1 and T2, two rigid transformations, are

Fig. 14. 4 packing solutions to constraint set A. Fig. 15. 3 packing solutions to constraint set B.
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solutions to A and B, respectively. Let S be the
subunit. Then

S, T1(S), T1T2(S), T1T2T1(S), T1T2T1T2(S), . . .

is the series that forms a continuous structure from
T1 and T2. The interface between S and T1(S) satis-
fies A, whereas the interface between T1(S) and
T1T2(S) satisfies B, and so forth. There are 4 3 2 3

3 3 2 5 48 such structures possible. Again, by
symmetry of the transformations, we need consider
only half of the structures. 22 of the 24 have steric
clashes among the subunits. The two structures
without steric clashes are shown in Figure 17. Struc-
ture 1 is an antiparallel b-sheet that is compatible
with the hydrogen-bond pattern of Lansbury et al.’s1

model. In this structure the hydrogen-bonding part-
ners of Lansbury et al.’s1 model are properly aligned,
albeit too distant, for good hydrogen bonds. This
structure can be a starting point for structure refine-
ment. Structure 2 is a non-sheet structure that does not
form regular hydrogen bonds. Combining solutions
from A and C, there are four solutions, all non-sheet-
like.

CONCLUSION

The AmbiPack algorithm has been developed to
pack preconformed monomer structures into multim-
ers using interatomic distance constraints. A novel
feature of the approach taken here is that it deals
efficiently and accurately with the labeling ambigu-

ity inherent in symmetric multimers due to a lack of
knowledge about which atom in an intermolecular
distance constraint comes from which monomer. The
branch-and-bound method is applied to a search tree
defined for progressively finer levels of resolution in
the placement of three points on one of the mono-
mers. Efficient pruning dramatically reduces the
branching factor for this tree from a theoretical
value of 512 to values typically 20-fold lower. Im-
proved pruning causes the algorithm to run faster
when more constraints are present. While the algo-
rithm is exhaustive at any desired level of resolution,
we have found that it is generally sufficient to stop
the search at relatively coarse resolution of 2 Å. In
our tests, resolutions down to 0.25 Å did not generate
distinct new solutions. Methods based on this algo-
rithm could be especially useful in instances where it
is important to establish the uniqueness of a packing
solution or to find all possible solutions for a given
set of constraint data.

Fig. 16. A single solution to constraint set C.

Fig. 17. Two continuous structures with alternating interfaces
satisfying A and B, but without steric clashes.
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