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Abstract

We consider the following problem that arises in as-
sembly planning: given an assembly, identify a sub-
assembly that can be removed without disturbing the
rest of the assembly. Solutions to this problem have
been presented when the motions allowed for the sep-
aration are of certain restricted types. In this paper,
we generalize these solutions to allow arbitrary relative
motions between the two subassemblies. The general-
ization is based on a configuration space construction
that makes explicit the spatial interferences between
every pair of parts for every relative motion. Based
on this construction, we can simultaneously determine
(1) the path by which a subassembly can be removed
and (2) the parts contained in the subassembly. While
the algorithms resulting from this construction may in
the worst case require time exponential in the length of
the removal path, the expected complexity for realistic
assemblies is an open question.

Introduction

This paper addresses a geometric problem in assembly
sequencing posed by Wilson [5]: given an assembly
of parts, identify subassemblies that can be removed
from the assembly. That is, identify a subset of the
parts that can be moved (as a single rigid object) to
infinity without disturbing the other parts. This is
the partitioning problem for the assembly. Figure 1
shows a simple example. In this example, the box can
be moved away from the assembly, each screw can be
removed and the subassembly composed of the lid and
the screws can also be removed.

In this paper, we retain the assumptions that the
assembly sequences are binary and monotone, that is,
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Figure 1: Simple assembly example with a directional
blocking graph for one direction of motion [5).

only one group of parts moves at a time, and the mo-
tion completely separates the moved parts from the
rest of the assembly. In other words, no parts are
placed in intermediate positions. For example, Fig-
ure 2(b) is not a monotone, binary assembly.

Wilson solves the partitioning problem when the
disassembly motions are restricted to either (a) in-
stantaneous translations or rotations or (b) un-
bounded translations. The solution involves construct-
ing graphs that identify which parts collide, given
an instantaneous displacement in a given direction.
These graphs are called the directional blocking graphs
(DBGs) for the assembly (see Figure 1). Any sub-
graph of the DBG with no outgoing links represents
a subassembly that is free to move (incrementally) in
the indicated direction. Wilson points out that only
a finite set of DBG’s need to be built. The space of
allowed motions can be partitioned into regions hav-
ing the same graph. This partitioned space of mo-
tions and the associated DBGs constitute the non-
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Figure 2: Examples of assemblies requiring non-

straight-line motions for disassembly. (a) is a mono-
tone binary assembly while (b) is not.

directional blocking graph (NDBG) for the assembly.

The solution proposed by Wilson handles many as-
semblies but does not handle situations where a non-
straight-line path is required to disassemble some parts
or subassemblies. Figure 2(a) shows such an assembly.
In this paper, we describe a construction that, in prin-
ciple, eliminates this restriction.

1 The Interference Diagram

Our solution will involve constructing a somewhat
complicated configuration-space diagram, so we can
illustrate it graphically only in simple examples such
as the one in Figure 2(a). To simplify the presentation,
we will limit ourselves to pure translations. Further-
more, we have drawn the parts with substantial clear-
ances so that each of the relevant C-space regions is
full-dimensional. The construction generalizes to more
general motions and to situations involving contacts.

Since we do not know a priori which parts will be
moving and which are stationary, we must determine,
for every pair (X,Y) of parts, the set of placements
of X in which it intersects with Y. This set of place-
ments is the configuration space (or C-space) obstacle
for the pair of parts [4]. The C-space obstacle for part
A moving with B as an obstacle is labeled A/B while
the C-space obstacle for B moving with A as an ob-
stacle is labeled as B/A. In translation, the C-space
obstacle X/Y is given by

X/Y=YoX={y-z|zeX, yeY}

i.e., the Minkowski difference of the two sets of points
Y and X. Note that B/A is simply A/B rotated by
7 radians or, equivalently, every forbidden translation
z of A has a corresponding forbidden translation —z
of B. Figure 3 shows the 6 C-space obstacles for the
simple example we are considering.
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A crucial point about these C-spaces is that they
are all constructed using the same reference point, in-
dicated by a solid circle in the figure. That is, treat this
point as being rigidly attached to each part in turn.
Then the C-space obstacles represent the positions of
this reference point for which two parts collide.

If we are interested in moving one part away from
the assembly, it is clear that these pairwise C-spaces
give us the information we need to plan these motions.
We can test if part B, for example, can be moved by
examining whether a motion exists in the space outside
the union of B/A and B/C. Similarly, one can test for
legal motions of A relative to the obstacles A/B and
A/C and for motions of C relative to C/A and C/B.

The question is how to deal with the motions of
subassemblies. In principle, we could construct all
subassemblies and compute the C-space obstacles for
them, but there are an exponential number of sub-
assemblies to consider. Interestingly, we can plan the
motions of subassemblies without computing any ad-
ditional C-space obstacles. The reason is that in a sub-
assembly the parts all move rigidly and so the C-space
obstacle of a subassembly relative to a stationary part
is simply the union of the pairwise C-space obstacles
of the parts comprising the subassembly.

Conceptually, we can label the region occupied by
each C-space obstacle with its label, e.g. A/B, indicat-
ing that the placement of A in this region is forbidden
when B is in its original position. Now, since all of the
pairwise C-spaces were computed with the same refer-
ence point, we can simply superimpose all the C-space
obstacles. That is, all these obstacles are embedded
in the same configuration space. This may be a little
confusing if one is used to asking “This is the config-
uration space of what?” If it helps, one can think of
these as a set of parallel C-spaces. Note that any point
in the combined C-space can represent a displacement
of any of the parts in the assembly. The set of super-
imposed C-spaces is called the interference diagram for
the assembly.

Figure 4(a) shows the interference diagram for the
assembly of Figure 2(a), obtained by combining the
pairwise C-spaces. Each region is labeled with the
pairs that collide. Note that the whole diagram has
the expected symmetry: every free displacement z for
a subassembly has a corresponding free displacement
—z for the rest of the assembly.

The interesting question regards the semantics of
the regions in the interference diagram. Clearly, each
region will inherit a set of labels corresponding to the
obstacles that include it. Each label is a constraint on
the subassemblies that may be placed in the region. A
label X/Y means that if part X is in that region, it
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Figure 3: C-space diagrams for each pair of parts in the assembly. The notation X/Y indicates that X collides

with Y in that region.

collides with part Y in its initial position. Therefore,
if a subassembly in that region includes X, it must
also include Y, or the subassembly will collide with
the stationary parts.

For example, consider the region just to the left of
the origin in Figure 4(a) with the labels: A/B, A/C
and C/B. If the reference point of A is placed any-
where in that region, A will collide with B and C.
Similarly, placing C in that region will cause a colli-
sion with part B. Importantly, since the labels B/A
and B/C are missing from the region, B can safely be
placed there. Likewise, since C/A is missing, we can
conclude that C would not collide with A. Finally,
note that we can also conclude that B and C treated
as a subassembly are safe, since neither collides with
the remaining objects, in this case, only A.

In short, the labels in a region define one of Wilson’s

529

blocking graphs. A blocking graph is a directed graph
with a node for each part; a label X/Y in the region
induces a directed arc from node X to node Y in the
graph. If a proper subgraph S of the blocking graph
has no outgoing arcs to the rest of the graph, then S
represents a subassembly that may be placed there. As
we know from [5], such a subgraph exists if and only
if the blocking graph is not strongly connected.! For
the region we considered above, B and C form such a
subgraph and may be placed in the region without col-
lision. Figure 4(b) shows the subassemblies that may
be placed in each of the labeled regions in Figure 4(a).

LA strongly connected component {or strong componeni) of a
directed graph is a maximal subset of nodes such that for any
pair of nodes (n, n2) in this subset, a path connectsn; tonz. A
graph is strongly connected if it has only one strong component.
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Figure 4: (a) The interference diagram for the assem-
bly of Figure 2(a). The small labels indicate all the
C-space obstacles that share that region. (b) Interfer-
ence diagram in which regions are labeled by which
subassemblies are free to be placed within the region.

530

2 Disassembly Paths

To search the interference diagram for a removable
subassembly, we determine the subassembly simulta-
neously with the path it will follow. A path in the
interference diagram is a sequence of regions, each a
neighbor of the previous one. We are interested in
finding a path that connects the initial region (the re-
gion including the origin) to the free, outermost region
of the interference diagram (call this the final region).
In addition, a subassembly must be able to follow the
path without colliding with the rest of the parts. Such
a subassembly must satisfy all the constraints encoun-
tered in regions along the path.

A path is feasible if some proper subassembly can
follow it without collision, and a feasible path connect-
ing the initial to the final region is called a disassembly
path. A subassembly can follow a path exactly when
it is collision-free at every point along the path. This
means that all constraints in regions along the path
must be satisfied by the subassembly. To capture this,
we associate to any path a blocking graph whose arcs
are given by the union of all constraints encountered
in regions along the path. Then clearly a path is fea-
sible exactly when its blocking graph is not strongly
connected.

The search for a disassembly path proceeds by ex-
tending feasible paths from the initial region outward.
The initial region has no constraints, since in any valid
assembly all parts are disjoint in their initial positions.
When a path is extended from a region to one of its
neighbors, the constraints for any C-space obstacles
whose boundaries are crossed are added to the block-
ing graph for the path. If at any point the blocking
graph becomes strongly connected, the path may be
discarded. A feasible path that reaches the final region
1s a disassembly path, and its blocking graph gives the
subassemblies that can be removed along the path.

Figure 5 shows a disassembly path for the assembly
of Figure 2(a), and its blocking graph. The removable
subassembly is composed of parts B and C, which as
required has no outgoing arcs in the blocking graph.

In general a region may be the endpoint of many
feasible paths. For instance, consider the assembly in
Figure 6 consisting of three lettered parts a,b,c and
a large part, call it d, consisting of the (disconnected)
gray regions. Similar assemblies can be built in 3D
of connected parts. Subassembly ac can be moved
through the passage marked 1, and subassembly ab
can be moved through passage 2. Thus the region in
the interference diagram corresponding to point 3 is
reached by at least two distinct paths, one having a
constraint b/d and one having ¢/d. Which of these
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Figure 5: A disassembly path for the assembly in Fig-
ure 2(a) and the blocking graph it induces.

paths is extended determines whether passage 4 or
5 must be followed for disassembly. With additional
parts and passages, the number of paths to a single
region may become very large.

However, not all paths that reach a region must be
extended: some of the paths are subsumed by others.
Consider two paths P, and P ending in the same re-
gion, and their respective blocking graphs G, and Go.
If the arcs of G are a subset of those of G3, then the
constraints accumulated along path P; are a subset
of those along P,. In other words, any subassembly
that could follow P, could also follow P;. Therefore
if a disassembly path begins with P», another could
be constructed by substituting P, for P,. Hence path
P, need not be extended. In fact, let G* denote the
transitive closure of a graph G; then P, can be pruned
whenever the arcs of G} are a subset of those of G3.
Note that this is not the case for the two paths dis-
cussed above for Figure 6.

The search for a disassembly path may follow one
of several strategies, none of which is clearly superior.
Since a single region in the interference diagram may
be the endpoint of many feasible paths, a breadth-
first search would allow maximum use of the above
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Figure 6: An assembly with several paths leading to a
single region in its interference diagram

pruning rules, but the number of blocking graphs in
each region may grow very large. Depth-first search, or
best-first search with an appropriate heuristic, might
be preferable in some situations.

3 Complexity

The complexity of the interference diagram itself is
clearly polynomial in the number of edges of the parts,
and the diagram can be constructed in similar time.
However, the simple search strategies mentioned above
do not immediately yield a worst-case polynomial-time
algorithm to find a disassembly path. This is because
a large number of feasible paths might end in a given
region in some cases, and it is unclear whether they
must all be considered for continuation. This may lead
to a large number of useless paths being extended, or
to a large number of blocking graphs in one region. In
general, the number of paths that must be considered
is exponential in the number of regions each path may
traverse.

In fact, analyzing the complexity of searching the
interference diagram has very recently led to computa-
tional complexity results for the partitioning problem
itself. In [6] Wilson, Latombe and Lozano-Pérez show
that the partitioning problem for assemblies of poly-
hedra is NP-complete, and Kavraki and Latombe [2]
strengthen this result to assemblies of polygons in the
plane. In spite of these hardness results, searching the
interference diagram may well prove practical for typi-



cal industrial assemblies, which do not have the magze-
like qualities of the assemblies constructed in [6, 2].

4 Generalizations

The interference diagram extends directly to more gen-
eral configuration spaces. In particular, generalization
to three-dimensional translations of polyhedra is clear;
the interference diagram is an zyz C-space, and the re-
gions are polyhedra. This is quite manageable in prac-
tice. In general, one can carry out this construction in
arbitrary C-spaces, including the 6-dimensional one of
general motion. In each case the interference diagram
is of polynomial complexity and can be constructed
in polynomial time. However, implementing such con-
structions is difficult.

To allow contacts between parts, the boundaries of
the C-space obstacles are considered separate regions,
in which the two parts do not collide. Then the con-
straint X/Y is only added to the blocking graph for a
path as that path is extended into the interior of the
C-space obstacle X/Y.

The most serious barriers to actual implementation
are numerical accuracy problems. Once we start allow-
ing contacts between the parts, we need to represent
and label all the vertices and edges of the C-space re-
gions. This cannot be done reliably with floating point
arithmetic. This is a problem common to many ge-
ometric algorithms. There has been a great deal of
progress in developing techniques for robust geometric
computations (see for instance [1, 3]), and such meth-
ods could be employed here. Alternatively, one could
shrink the parts to within the inner envelope of their
tolerance so as to ensure that there are no glancing
contacts in the assembly. In either case, this issue re-
quires careful attention.

5 Relation to the NDBG

Wilson’s non-directional blocking graph (NDBG) con-
sists of a partition of the space of incremental (or in-
definitely extended linear) motions each labeled with
a distinct blocking graph. In the framework of this
paper, the NDBG for incremental motions captures
the local topology of the regions immediately border-
ing the initial region in the interference diagram for the
corresponding type of motion. It embodies a necessary
condition on the existence of a disassembly path. Be-
cause it only examines the local properties of the inter-
ference diagram around the initial region, the NDBG
for infinitesimal motions can be constructed and ana-
lyzed in polynomial time [5).
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On the other hand, the NDBG for indefinitely ex-
tended translations represents a central projection of
the interference diagram regions onto a unit sphere
centered at the origin. Each cell on the sphere has a
blocking graph whose arcs are the union of the block-
ing graphs for the regions of the interference diagram
projected onto that cell. This corresponds to lim-
iting the paths through the interference diagram to
straight lines. Again, this restriction on the type of
paths allows a polynomial-time algorithm to analyze
the NDBG [5, 7]. The interference diagram is, there-
fore, a natural generalization of the NDBG.
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