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Abstract

The reliability of assembly strategies is inherently con-
strained by various forms of uncertainty. Such uncertainty re-
sults from an imperfect knowledge of the parts being assembled,
as well as performance limitations of the devices performing
the assembly. To develop reliable assembly strategies it is nec-
essary to consider a priori the effects of such uncertainty. In
this paper we illustrate the need for planning in assembly and
describe a set of modelling and planning techniques developed
to generate robust force control strategies for a certain class of
assemblies. Specifically, we develop strategies for the chamfer-
less insertion of a planar peg into a hole and the insertion of a
three dimensional rectangular peg into a rectangular hole. The
complexity of applying these techniques in three dimensions is
also discussed.

Introduction

A great deal of analysis has been done on the insertion of a
cylindrical peg into a chamfered hole in the past several years 3,
6, 7, 8. For this task, implementations of assembly strategies
based on the specification of a passive compliance have been de-
veloped [7, 8]. Devices incorporating these strategies, such as
the Remote Center Compliance (RCC), require no a priori spec-
ification of the contact configurations through which the parts
must pass during assembly. In this paper we examine cases
where such strategies are not sufficient to guarantee assembly.
In particular, we examine the chamferless insertion of a planar
peg into a hole, and the chamferless insertion of a three dimen-
sional rectangular peg into a hole. For these cases we develop
strategies that guarantee successful assembly by constraining
the allowable contact configurations between the parts in order
to avoid configurations that will cause the assembly to fail,
The development of the RCC resulted from a planar anal-
ysis of the force interactions between the peg and the hole [8].
Extensions of this kind of analysis to other classes of inser-
tions, specifically parts that lack rotational symmetry about
their major axis, have also been performed [1, 6]. However,
these approaches do not directly consider the effects of uncer-
tainty on the reliability of the resulting assembly strategies.
The dependence of these strategies on the accuracy of modeled
parameters, sensor information, and positioning devices reduces
the likelihood that such strategies may be implemented reliably.
General techniques for synthesizing assembly strategies
that take uncertainty into account directly have been devel-
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oped [2, 4]. The difficulty of using such techniques with ac-
tual physical systems of even moderate complexity have lim-
ited their application. One means of overcoming the difficulties
posed by real-world complexity is to limit the generality of such
approaches by considering simplifications applicable to specific
classes of assembly that are of particular interest. The result-
ing strategies, including the ones described in this paper, have
proved to be useful despite being limited to a narrow class of
assemblies.

The RCC

In describing the analysis underlying the design of the RCC,
Whitney defines four distinct stages of assembly for the peg
and hole: approach, chamfer crossing, one-point contact, and
two-point contact [8]. The last three stages involve contact
between the peg and hole and therefore give rise to contact
forces between them. In the analysis of these contact stages,
the static force and moment equilibrium conditions for the peg
are determined and expressed in terms of the geometry of the
peg and hole and the coefficient of friction.

To illustrate the nature of the contact forces between the
peg and hole, Whitney represented graphically the linearized
force-moment equilibrium expressions in a two dimensional
space as shown in Figure 1. The external forces are assumed
to be applied to the tip of the peg as shown, and the term A
is defined to be A = ﬁ where r is the radius of the peg and
I is the depth to which the peg is inserted into the hole. A
force and moment applied to the peg whose values lie within
the parallelogram shaped region will slide the peg into the hole
regardless of the direction of tilt of the peg, or whether the peg
is in one or two-point contact with the hole.

The existence of such a “sliding region” for arbitrary one
and two-point contacts between the peg and hole is central to
the RCC’s ability to perform insertions reliably. Specifically,
the strategy implicit in the design of the RCC is to ensure that
no configuration that could cause the assembly to terminate
will be encountered.

In terms of the diagram in Figure 1, the lines defining
the boundaries of the sliding region correspond to the sliding
constraints for each of the six possible contact configurations
the peg encounters inside the hole. Because the intersection of
the constraints for all possible configurations exists, an applied
force and moment, or set of forces and moments, chosen from
that intersection region will succeed in sliding the peg into the
hole without jamming. We will see in the next section that it is
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Figure 1: Jamming Diagram for the RCC (from Whitney [8])
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Figure 2: Some Contact Configurations for the Planar Peg and
Hole

the presence of chamfers on the hole that allows such a solution
to be found.

The Planar Peg and Hole Without Chamfers

We begin by considering the set of possible configurations of
contact between a planar peg and a hole without chamfers. If
we restrict ourselves to considering only point contacts there
are 12 possible cases, of which 6 are shown in Figure 2.

Next we follow the approach used by Whitney to examine
the force interactions between the peg and hole. Figure 3 shows
a force and moment applied to the peg and the corresponding
reaction forces at the points of contact with the hole for config-
uration 5. In our models we assume the parts to be infinitely
rigid and massless, and we use the dry Coulomb model to rep-
resent friction. The applied force is represented as a vector F
applied to the top of the peg at an angle o with respect to the
axis of the peg, and the applied moment M has the sense shown.
The resulting equilibrium relations expressed in the coordinates

1The ining six figurations are similar to those shown, but with
the peg tilted in the opposite sense.
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Figure 3: Quasi-Static Equilibrium for Configuration 5

of the peg are:

N F.=0
SN R=0
S M=o

Fsina+ ficos8 — ufisind — f2 (1)

—Fcosa+ fisind+ uficosd+ pfr (2)

M+ pfid+ f2la

—F(g)cosa—FLlina 3)

The above equations assume conditions of quasi-static
equilibrium with the peg in a state of impending motion rel-
ative to the hole. We may reformulate the above equations
into inequalities by introducing a small perturbation § to the
tangential component of each reaction force. Specifically, if we
replace each pf; with ufi +6, the resulting expressions will de-
termine the applied force and moment necessary to balance this
extra tangential component of the reaction force. Solving for
§ > 0 the resulting inequalities will specify the desired sense of
sliding motion.

To maintain the conditions of two-point contact we require
fi and fa > 0. Solutions for either fi or f2 =10 correspond to
one-point contact. Next we solve the resulting expressions for
§, f1 and f; all greater than or equal to zero, and include the
kinematic constraint for the insertion depth I; in terms of the
angle of tilt of the peg 8 as:

_ D —dcos@

I = (4)

sin 0

The result is:

ps8ind — cosd
—_— ) <L < t
arctan (,.coso + sinO) @ arctan

(5)

)

and:

M _ . D(pcosf +sin8) + 4.‘I(L,'l 8in 20 — p cos 26)
— >sina |L - — 3

F 1 — (psin8 — cos 8)

1 — (psin6 — cos 8)? 2 ®
The above inequalities determine the force F, the angle a at
which the force is applied to the peg, and the moment M neces-
sary to achieve sliding in configuration 5. We can derive similar
expressions for the analogous configuration with the peg tilted
in the opposite sense, which we will term configuration 5'.

+eosa [d+ D(usind — cos6) d]
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Figure 4: Applied Force & Moment Constraint Space, configs.
5& 5

Similar to the analysis for the RCC, we may represent the
constraints on the applied force and moment for configurations
5 and 5' graphically in a two dimensional space as shown in
Figure 4. Here we have chosen the axes to be the ratio of the
applied moment M to the applied force F, and the angle of the
applied force a with respect to the axis of the peg. As was true
for the chamfered peg and hole, there is an intersection region
(shaded) representing values of the applied force and moment
that will slide the peg into the hole for either configuration 5
or 5.

Since there are no chamfers to ensure that two-point con-
tact occurs only after the peg enters the hole, another likely
configuration to be encountered is configuration 3 (or 3'), shown
in Figure 5. As before, we may express the quasi-static equilib-
rium relations as:

Y Fo=0 = Fsina-ufi-f (M
ZF,zO = —Fcosa+ fi — uf: (©)]
Y Mo=0 = M-phL- (G -1)

~why - AL 1) ®

The resulting constraint expressions for configuration 3 are:

a > arctan (—l) (10)
m
a > arctan(u) (11)
M . jcosf — sind
7 > sina [L + DW]
d co88 + usind
+cosa [—-2—+DT} (12)

As was done for configurations 5 and 5' we represent the
sliding constraint inequalities graphically as shown in Figure 6.
Unlike the figure for configurations 5 and 5', however, there is
no intersection region valid for both tilts of the peg. In other
words, there is no single force-moment combination that will

474

<L T ’f)f_,://'
‘__: //I
|
2
: /’/ | .
| 1 !
| Ve
4l |
17" £
= '—l% I -

Figure 6: Applied Force & Moment Constraint Space, configs.
3&3

slide the peg into the hole if the peg is allowed to tilt in either
direction. .

Since we cannot reliably predict in which way the peg will
be tilted when it contacts the edge of the hole, a strategy based
on applying an arbitrary force suitable for either configuration
will not succeed. If the hole had chamfers, of course, we would
not face this dilemma since the presence of chamfers signifi-
cantly increases the likelyhood that the peg will enter the hole
before encountering a two-point contact configuration, where
a solution is known to exist. Clearly we must re-examine our
assumption that a successful assembly strategy must satisfy the
constraints imposed by all possible configurations.

Constraining the Configurations: A Solution

Since we cannot find a solution valid for all contact configu-
rations of the peg and hole, a logical step would be to con-
strain the assembly to some allowable subset of configurations
for which a solution can be found. Specifically, by eliminating
the ambiguous initial condition of allowing the peg to be tilted
in either direction, we may relax the sliding constraints on the
applied force and moment. For example, let us assume the peg
to be tilted initially in the positive 8 direction, corresponding
to configuration 3. We further assume that we may restrict the
motion of the peg such that the only other configuration that
will be encountered is configuration 5. If we can ensure that our
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Figure 7: Applied Force & Moment Constraint Space, configs.
3&5até.

strategy meets these new constraints, we may ignore the sliding
constraints for configurations 3' and 5'. The critical point in
this strategy occurs at the transition between configurations 3
and 5, i.e. when the outside corner of the peg just crosses the
top edge of the hole. The angle at which this transition occurs
is given by:

8. = arccos (%) (13)

When we plot the sliding constraints for both configura-
tions 3 and 5 at 6., we obtain the plot shown in Figure 7. The
shaded intersection region represents the set of applied forces
and moments that will slide the peg into the hole from an ini-
tially tilted configuration. Therefore, to guarantee successful
insertion we will constrain the peg to slide in two-point contact
from configuration 3 to configuration 5, avoiding other config-
urations that may cause the insertion to fail.

In summary, a successful strategy for the insertion of a
planar peg into a hole without the aid of chamfers is to tilt
the peg relative to the hole and place the bottom corner of the
peg into the hole. In addition to eliminating the constraints
associated with the ambiguity of the direction of tilt of the peg,
the precision required to start the assembly in this configuration
is reduced [3]. Once the peg is in contact with the hole in a
tilted configuration (config. 3), the peg may be rotated while
maintaining sliding contact with the hole by the application of
the appropriate force and moment as determined from Figure 7.
At some point during this rotation, given by 6., the opposite
corner of the peg will clear the top edge of the hole and the peg
will slide into the hole (config. 5) without jamming. Because
the sliding regions are not sensitive to the position of the peg
in any one configuration, the resulting strategy is not sensitive
to positional uncertainty.

Extending to Three Dimensions

The rotational symmetry of cylindrically shaped parts allows
strategies for such parts to be developed using planar models
similar to the one described above. Since many parts do not ex-
hibit rotational symmetry, and therefore do not lend themselves
to planar analysis, it is necessary to extend the above analysis
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Figure 8: A Suitable Subset of Configurations for the Peg and
Hole

to three dimensions. In this section we will briefly examine such
an extension.

One example of a non-axisymmetric three-dimensional as-
sembly is the rectangular peg and hole shown in Figure 8. As
for the planar peg and hole, we begin by enumerating the set
of possible contact configurations between the peg and hole,
assuming only point contacts.” Expanding over the set of con-
tacts results in 1060 possible configurations between the peg
and the hole [1].

As we saw in the previous section, we must select an appro-
priate set of configurations through which the parts may pass
to reliably perform an assembly. However, given 1060 possible
configurations for even such simple parts, it would be imprac-
tical to completely model and analyze each and every config-
uration in order to find a few with which to characterize an
assembly path. To overcome this, we adopt a set of heuristics
to aid in finding suitable configurations.

From the results of the previous section we found that tilt-
ing the peg relative to the hole simplifies the problem of initially
positioning the peg. For the three-dimensional rectangular case
we select an initial configuration with the peg tilted about all
three axes as shown in Figure 8a. Here the contacts are be-
tween a side edge and two adjacent bottom edges of the peg
and three adjacent top edges of the hole.

We know that the degree of positional uncertainty in a sys-
tem is proportional to the degrees of freedom of that system.
Therefore, choosing a series of configurations that sequentially
reduce the number of degrees of freedom helps to reduce the de-
gree of positional uncertainty present in a system. To improve
the robustness of our strategy in the presence of uncertainty,
we wish to select a set of configurations which are reachable via
sliding motion from the initial configuration a and will reduce
the degrees of freedom of the peg. One such configuration is
shown in Figure 8 b. Here, one of the bottom edges of the peg
that was in contact with a top edge of the hole has slid into

2The point contacts are of the form peg-edge/hole-edge or peg-
vertex/hole-face. See [1] section 3.2.2.




Figure 9: Contact Vectors for Configuration a

contact with the adjacent corner of the hole (hollow circle).
The degrees of freedom of the peg have been reduced from 3 in
configuration a to 2 in configuration b.

Configuration ¢ subsequently reduces the degrees of free-
dom of the peg from 2 to 1. With only 1 degree of freedom
remaining in configuration ¢ the next configuration will be
achieved when one of the three remaining corners of the peg
outside of the hole clears the top edge and the peg enters the
hole. A peg with a nearly square cross section will end up in
configuration d as shown in Figure 8d.

Having chosen a set of configurations through which the
peg is to pass during insertion, we begin the analysis by deter-
mining the kinematic constraints between the peg and hole for
each of the above configurations. Figure 9 shows the points of
contact between the peg and the hole for configuration a. The
contact vectors ﬁ;, R;, and R for the peg, and R‘ll, R;’, and
173’ for the hole, specify the locations of the points of contact
relative to the coordinate frames of the peg and hole respec-
tively. The kinematic constraints between the peg and hole for
configuration a may then be determined by constraining the
corresponding pairs of contact points for both the peg and the
hole to simultaneously remain on their respective edges.

Since we have modeled only configurations a through d, we
must constrain the direction in which the peg slides to guaran-
tee we encounter only those configurations. To do this we spec-
ify a nominal position of the peg P;, within an associated error
bound ¢, in a given configuration. We then specify a range of
goal positions Pyoq1 within the subsequent target configuration.
The range of directions of motion that will reach a point within
Py,a1 are then determined by constructing a velocity error cone
from P; to Pgoai.

After specifying the set of configurations a through d and
determinging the range of sliding motions necessary to reach
only these configurations, we derive the expressions for the cor-
responding quasi-static force and moment equilibrium in each
configuration. With respect to the coordinate frame of the peg
these are of the form:

ZF:O = F,,¢+i(f.-ﬁ.-—pf.-ﬁ.~~6ﬁ.-) (14)
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Figure 10: Representation of Applied Force and Moment

n
ZM =0 = Mect + Z((Rs X fxﬁ-)
i=1

— (R x pfiti) - (R x 88))  (15)
where #; and ¥; are the unit normal and unit velocity vectors,
respectively, of the ith contact point between the peg and hole.
Unlike the planar case, the resulting constraint relations are too
large and complex to be solved manually and were therefore
solved symbolically on a computer using MACSYMA.

We may represent the force to be applied to the peg in
spherical coordinates as a magnitude F' and two angles, a and
B, and the applied moment as three orthogonal components
(M., My, M.) as shown in Figure 10. As in the planar case we
may normalize the components of the moment with respect to
the magnitude of the force F, resulting in five applied force-
moment parameters (—‘%‘-, T n—f,.*,az,,ﬁ).

For visualization purposes we may represent the constraint
expressions for sliding as surfaces in 3 three-dimensional sub-
spaces whose axes are:

M. M, M,
(Ta‘%ﬂ)v(?‘a‘hﬂ%(?ﬂ%ﬁ)

The resulting constraint surfaces for configuration a are shown
in Figure 11. As in the planar case we intersect the sliding con-
straints for each configuration to determine the set of applied
forces and moments that will satisfy the above constraints.

The major limitation of the above approach to finding suit-
able applied forces and moments is that we are not guaranteed
to find a single intersection region in force-moment space valid
for the entire set of configurations chosen. This would indicate
that the configurations chosen may not all be reachable reliably
by the application of a single force and moment vector.

Lacking an intersection region in force-moment space we
are left with two possible courses of action. One is to re-examine
the chosen configurations and select another set. The other
option is to abandon a strategy that relies on only a single force
and moment to complete the entire assembly. In the latter case,
we must determine in what configuration the peg will become
jammed and use that configuration as the starting point for a
subsequent force and moment to be applied.

The second option is undesirable because it requires mul-
tiple forces and moments to be applied, and that we be able
to determine when the assembly has jammed so that the next
force and moment may be applied. Such a multi-step strat-
egy would all but rule out the possibility of implementing the
strategy with a passive, i.e. sensorless, device.
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Figure 11: Sliding Constraints for Config. a.

Conclusions

‘We have seen from the analysis of the insertion of a planar peg
into a chamferless hole that there are cases where an assembly
may not be reliably carried out if the contact configurations
between parts are not constrained. In such cases it is necessary
to a priori specify the configurations through which the assem-
bly must pass, and guarantee that only those configurations are
encountered.

From the analysis for the insertion of a three dimensional
rectangular peg into a chamferless hole we have seen that, for
moderately complex assemblies involving many possible con-
figurations, the specification of a set of configurations through
which parts must pass is considerably more difficult than for
the planar case. However, by considering only a subset of the
possible configurations chosen on the basis of a set of heuristics,
successful assembly strategies can be generated.

The assembly strategies developed for the previous two ex-
amples were implemented and tested. In the planar case a
passive mechanism was developed that successfully performed
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chamferless insertion of a peg into a hole. For the three di-
mensional peg and hole example, a robot operating under force
control was used.
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