Deadlock-Free and Collision-Free Coordination of Two Robot
Manipulators

Patrick A. O’Donnell and Tom4s Lozano-Pérez

MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA., 02139

Abstract

This paper describes a method for coordinating the trajec-
tories of two robot manipulators so as to avoid collisions be-
tween them. We assume that the robots’ environment is known
and so the robots’ paths can be planned in advance, but that
there may be significant variations in the execution time of
some of the path segments. These assumptions are good mod-
els of many tasks. Our goal is to allow the motions of each
manipulator to be planned nearly independently and to allow
the execution of the path segments to be asynchronous. The
coordination is achieved by introducing explicit coordination
commands into the paths. The key problems in coordinating
trajectories are to avoid collisions between the two robots and
to avoid deadlock, that is, situations where each manipulator is
waiting for the other to proceed.

The problem

Whenever multiple robots must operate in close proximity to
each other, the potential for collision must be taken into ac-
count in specifying the robot trajectories. In this paper, we
address the problem of coordinating two robot manipulators so
as to avoid collisions between them, while guaranteeing that
the trajectories will reach their goals. We will call this the
trajectory coordination problem.

First a word on terminology. We will use the term path
to refer to the shape of a motion, that is, the shape of the
curve in the robot’s configuration space. The term irajectory
will denote the time history of positions along a path, that is,
a curve through the robot’s state space. There are infinitely
many trajectories possible for a given path, each differing in
the time history of velocities along the path.

In this paper, we assume that the manipulators are loosely
coupled, that is, they share a common workspace and may actu-

ally transfer parts between them. This is in contrast to tightly-

coupled manipulators that are coupled dynamically, typically
through a common load that is too heavy for a single robot.
We will be particularly interested in the problem of co-
ordinating the trajectories of robot manipulators working in
known, predictable environments. We assume that the paths
of the manipulators can be planned off-line to avoid collisions
with all the objects in the environment, except the other robot.
There are no unforseen obstacles. This is true of most industrial
tasks. We also assume that, although the robots’ paths are pre-
dictable, their trajectories are less predictable. One example of

CH2750-8/89/0000/0484$01.00 © 1989 IEEE

484

this is arc welding where the speed may be adjusted in response
to observed weld parameters. Or, when one of the steps in the
task may involve a sensor-based operation of varying duration.
There are other, simpler reasons for unpredictable trajectories,
such as unavoidable error in the controller.

We have the following goals for our trajectory coordinator:

o It should be possible to plan the path for each manipulator
essentially independently.

o The resulting trajectories should guarantee that the ma-
nipulators will reach their goals.

o It should be possible to execute the trajectories without
precise time coordination between the manipulators.

o The safety of the manipulators should not depend on ac-
curate trajectory control of individual manipulators.

Previous approaches

There are several existing approaches to trajectory coordination
of multiple manipulators. They can be classified into global and
local approaches. The global methods construct complete tra-
jectories for all the robots that guarantee, or attempt to, that
all the robots reach their goals safely. [1] describes how to con-
struct the configuration space/time for several planar manip-
ulators, each with two revolute joints. The trajectories of the
manipulators are planned one at a time, using the swept vol-
ume, in gpace/time, of the previous trajectories as obstacles.
[2] describe an algorithm for finding collision-free trajectories
for two planar manipulators, with one prismatic and one revo-
lute joint, by characterizing the combinatorial structure of the
configuration space of the two arms.

One problem with these global methods is that they de-
pend on carefully controlled trajectories. As we mentioned ear-
lier, there are many applications where this lock-step coordi-
nation is not practical and/or efficient. Also, the methods are
computationally intensive since they have to consider, either
explicitely or implicitely, both space and time.

There has also been work [4, 8, 9] on the closely related
problem of planning trajectories for multiple moving objects,
not manipulators. These studies have shown that this problem
is PSPACE-hard, that is, one expects the time to achieve co-
ordination to grow exponentially with the number of moving
objects. This is not surprising; it has been shown repeatedly
that the complexity of motion planning grows exponentially
with the number of degrees of freedom of the task. There has



R ol

also been work in the less directly relevant area of planning
the motions of a single object in the presence of other moving
objects whose trajactories are known [5].

Local methods for collision-avoidance and coordination
make decisions at each instant of time as to what the trajectory
for each robot should be. [3] develops a controller that coor-
dinates multiple planar manipulators, with one prismatic and
one revolute joint, by incorporating collision constraints into
the control system of the robots. [10] describes a technique for
coordinating multiple moving objects, including manipulators,
by defining separating planes at each moment and ensuring that
the objects stay on opposite sides of them.

These local algorithms are based on actual measurements
of the robots’ positions and thus can accomodate unexpected
variations in trajectories or unexpected obstacle. But, in the
general case, local methods cannot guarantee that each robot
will reach its goal. They may reach a deadlock, where one robot
is blocking the other. Furthermore, because these local methods
rely on changing paths to avoid collisions they are not suited
to situations where the paths are tightly constrained.

Local methods for coordinating multiple robots are related
to local methods for avoiding collisions, notably the potential
field methods originally developed in [6].

One key difference between our method and previous coor-
dination methods is that our method attempts to decouple the
path specification step from the trajectory specification step.
Therefore, all collisions are avoided by using time, that is, by
waiting for the other arm to get out of the way, without chang-
ing the path. We will see, however, that our method also leads
to a prescription of how to change paths so as to minimize the
interference between the trajectories.

Our approach

In this section we present the simplest form of our approach; in
later sections we consider a number of extensions. We assume
that the path of each manipulator has been planned off-line
and is composed of a sequence of path segmenis. Each path
segment is constrained to lie within a box in the robot’s joint
space, that is, the path is constrained to lie within the bounding
box of the initial and final joint values of the segment. We make
no further assumption about the shape of the path segments.
Of course, paths produced by typical linear joint interpolation
between two joint vectors are acceptable. Furthermore, we as-
sume that we can estimate roughly the time required to execute
each path segment. Under these assumptions, we observe that
the trajectory coordination problem is a scheduling problem,
like job-shop scheduling, in which space is the shared resource.
Our approach to scheduling is based on an approach (see [7])
that was developed fon concurrency control in databases [11].

Task-Completion Diagram

Consider the task-completion (TC) diagram shown in Fig-
ure 1. On the horizontal axis, we represent the segments of the
path for robot A and on the vertical axis, we show the segments
of the path for robot B. The sizes of the segments in the dia-
gram are shown as constant, independent of the execution time
of the segments. Below, we will make the segment length be
proportional to estimated time, but we want to keep things as
simple as possible at first. Let A; denote the ith path segment,
0 < i < m, for robot A and B; denote the jth path segment,
0 < j < n, for robot B. For our purposes, a path segment in-
cludes both of its endpoints. Let R;,; be the rectangle spanned

485

Figure 1: Task-completion diagram with constraints arising
from potential collisions.

by segments A; and B;. If the volumes swept out by the robots
while following path A; and B; collide, then R;,; is shaded in
the TC diagram. The union of the shaded R;,; are the colli-
sion regions, indicating a possible collision between two path
segments. Path segments that define collision regions should
never be in execution at the same time.

A schedule for the task is any non-decreasing curve that
connects the lower left corner of the diagram to the top right
corner. We will not be considering the details of execution of
each path segment and, therefore, we will only consider sched-
ules composed of horizontal, vertical, and diagonal lines. That
is, we will only care whether manipulator A, B, or both A and
B are executing a path segment. A safe schedule is one that
never penetrates into the interior of the union of the collision
rectangles, the shaded Ri,j. It is important to note that the
boundaries of the collision regions are safe. This follows from
our treatment of the endpoints of a path segment as belonging
to the segment. Therefore, a possible collision at the endpoint
of a segment would cause both segments that share that end-
point to generate collision regions. This, in turn, entails that
such an endpoint could not be on the boundary of a collision
region, it must be in the interior.

Consider the following simple scheduling algorithm:

procedure Greedy Scheduler;
begin
1:=0;7:=0;
while i <m or j <ndo
begin
if R;,; is collision free
then begin
if < m then
begin Execute A;;i:=i+1; end
if j < n then
begin Execute Bj; j := j + 1; end
end
else
if i < m and R; ;1 is collision free
then begin Execute A;; i:=1+1; end
else
if j < n and Ri_1,; is collision free
then begin Execute Bj; j := j + 1; end
‘Wait for any completion signals;
end
end




T T T TIT

Q, B,

Figure 2: (a) A partial schedule that leads to a deadlock. (b)
SW Closure of collision regions is shown lightly shaded. Poten-
tial deadlocks are shown black.

Basically, this algorithm keeps track of the next segment
to be executed by the values of i and j. It then checks whether
the simultaneous execution of both of the next segments could
cause a collision. This is done by checking whether R;; is
shaded in the diagram. If no collision is possible, then they are
both executed. If a collision is possible, then it checks whether
executing the next A segment is feasible. This is done by testing
Ri,j_1. If R;;_, is not shaded, then we can execute A;, that is,
move along the bottom boundary of R; ;. If Ri;_, is shaded
and since we have already found R:; shaded, we know it is
impossible to execute A; at this point. If A; is illegal, we check
whether executing B; is legal by checking R:_1 ;.

In this algorithm, A_; and B_, refer to the path segments
before the beginning of each path; these are either zero-length
segments corresponding to the initial positions or, in the case of
a cyclical path, the final segments in the path A,_, and B,,_,
respectively. Similarly, Ay and B, are either null segments
corresponding to the final point or, in the case of a cyclical
path, they denote the initial segments A, and B, respectively.

It is fairly clear that this algorithm ensures that there are
no collisions. It will never initiate a path segment if another
segment that could lead to a collision is currently executing.
But, on the other hand, it does not guarantee that a complete
schedule will be produced. Figure 2 a shows a partial schedule,
produced by the Greedy scheduler, where no further segments
can be executed. This situation is called a deadlock or impasse.

We can construct a simple variation of the TC diagram
we have been using so far, such that the Greedy Scheduler al-
ways finds a deadlock-free, as well as collision-free, schedule.
This is done by computing the SW-closure[7] of the collision
regions (Figure 2 b). Such a closure fills in the non-convexities
in the connected components of the union of the collision re-
gions. The SW-closure of N rectangles can be computed by a
line-sweep algorithm in time O(N log N)[7]. For trajectories of
composed of n or fewer segments, there are at most n? collision
regions. Therefore, the SW-closure of the TC diagram can be
constructed in time O(n? log n).

There is one sublety when computing SW-closures. If some
segment A; has a possible collision with the final position of
robot B, that is, with the final endpoint of segment B, _; , then
there will be a deadlock if robot A does not execute segment
A; before robot B finishes its task. This deadlock is easily

486

N

Figure 3: In this figure, segment A; collides with the last posi-
tion in B’s path and segment Bs collides with the last position
in A’s path. The SW-closure places the necessary restrictions
on possible schedules to avoid these special deadlocks (shown
in black).

avoided by the following construction: add a null segment to the
end of each manipulator’s path, representing the final position.
Then, when generating the SW-closure, consider the entire part
of the TC diagram beyond the end of both robots’ paths to
be a collision region, but only in so far as it will fill in SW-
closure with explicit collision regions. (Otherwise, the entire
TC diagram would be filled in due to the SW-closure of this
virtual collision region.) Figure 3 illustrates this procedure.
In this figure, segment A, collides with the last position in B’s
path and segment Bj collides with the last position in A’s path.
The SW-closure places the necessary restrictions on possible
schedules to avoid these special deadlocks.

Once the SW-closure of the TC diagram is taken, a sched-
ule exists if and only if both the origin and the goal are each
not part of any collision region (or SW-closure). Clearly, if
there is a collision at the goal, the task cannot be completed;
similarly for a collision at the origin. Also, if the origin is in-
cluded in the SW-closure of some collision region, then there is
an unavoidable deadlock, and again, a safe schedule is impossi-
ble. To show the converse, assume that the origin and goal are
both clear. For there to be no schedule, there would have to
be a connected collision region (including SW-closure) cutting
across the entire TC diagram. But, with the “virtual collision
region” described above, such a connected region would have a
SW-closure which included the origin. Thus, there can be no
connected region cutting across the TC diagram. Put another
way, the safe areas including the goal and the origin must be
connected.

Further, let us assume that the origin is contained in a SW-
closure, and thus there is unavoidable deadlock. By replanning
part of the path of one robot using the swept volume of the
other robot as an obstacle, assuming that we can find a new
path to avoid this obstacle, we can guarantee that we can find
a schedule to complete the task. This technique is described in
greater detail in Section .

Constructing a Schedule

There are two general approacheés to constructing a schedule,
given a TC diagram. One is a local method, such as the Greedy
Scheduler shown earlier. That particular scheduler assumes
that there is a central controller that initiates the motions for
both manipulators. One can also build a decentralized version
of the greedy scheduler for the common case of independently




R ol

Figure 4: An example illustrating the increase of parallelism in
a schedule, obtained by clearing a collision regions. Segment A,
in the top diagram has been replaced by a new three-segment
path in the bottom diagram. Note that the new path for A has
longer expected time, but the increased parallelism results in a
schedule that is somewhat faster overall.

controlled robots. In that case each shaded R;; becomes a
“lock,” that is, a variable that can be indivisibly tested and
set so that we can guarantee that only one process “owns”
the variable. Before executing path segment A;, A’s controller
must grab the locks of the shaded R, j, for all j. Similarly,
before executing path segment Bj;, B’s controller must grab
the locks of the shaded R;,;, for all 7. In this scenario, the locks
corresponding to collisions and to the SW-closure must all the
obtained. Of course, one may actually aggregate adjacent locks
in a column or row into a single lock if desired.

An alternative approach to scheduling, which we can call
global, involves searching the TC diagram for a schedule that
is “optimal” by some measure, for example, the total execu-
tion time. This global search can also guarantee finding a le-
gal schedule if one exists without the need to assume that the
purely sequential schedules are safe. A schedule, such as may
be found by this search, corresponds to a fixed sequence of ac-
tivations for each of the path segments. A schedule can be
characterized by the sequence of its crossings of the horizontal
and vertical lines that demarcate the path segments in the di-
agram. Crossing each line adds to the schedule a command to
wait for the completion of one segment and then to initiate the
next segment. Such a schedule can be implemented in a cen-
tralized controller simply by marching down a list and issuing
the appropriate START and WAIT commands. A decentralized
implementation is also straightforward.

487

Increasing Parallelism

In the preceding discussion we have largely ignored the issue
of the time to execute a schedule. In practice, time is crucial.
In what follows, we will assume a slightly modified form of the
TC diagram in which the axes correspond to expected execu-
tion time. Each path segment will have an expected time and
this will determine its dimension in the diagram. Given this
modified diagram, we can search for a schedule with the best
expected execution time. The best possible schedules tend to
have a great deal of parallelism, that is, they are nearly diag-
onal lines in the TC diagram. But, a particular TC diagram
may have many collision regions near its diagonal, forcing the
“best” schedule into the sequential execution of large segments
of the path. The fault is not in choosing the schedule but in the
original choice of paths. If the paths were chosen completely in-
dependently, there is no guarantee that much parallelism is pos-
sible. It is possible, however, to take two paths and to increase
their parallelism by modifying some segments of the paths. The
resulting TC diagram will allow more parallelism but the paths
will generally be longer and may, therefore, increase the total
execution time.

To increase the potential parallelism in a TC diagram, we
pick an R, ;, or a larger collision region formed from the union
of several R;,;, such that:

1. The region is shaded because of a collision and not because
of the SW-closure operation.

2. The initial and final positions of the path segments giving
rise to the collision region are free of collision.

3. The region is large enough that it causes a significant in-
crease in the total time of the best schedule to go around
it.

Having chosen one or more of these regions, new paths can be
planned to connect the initial and final points of the 4 seg-
ments, but using as obstacles the volume swept out by B as it
moves through its segments.

A safe path may not exist but, if it does, this means that
the region in the new diagram will no longer need to be shaded.
Of course, the new path may introduce collisions with some
segments that may not have previously collided. Fortunately,
such collisions will be off the diagonal and therefore will not
affect the desired schedule. Also, the new path will generally
be longer than the original path since there are new obstacles
to be avoided. On the other hand, the impact of clearing one
collision may be greater than just clearing one small region due
to the impact of the SW-closure.

The process of increasing parallelism is illustrated by the
simple example in Figure 4. Note that by focusing on the col-
lisions near the diagonal, we are engaging in a crude form of
space/time planning. Only the combination of segments that
are going to be executed near the same time need to be consid-
ered. This is very different from, and substantially better than,
the trivial strategy of using the swept volume swept out by one
robot over its complete path as an obstacle while planning the
path for the other robot.

Dealing with Variable Segment Times

Earlier, we indicated that in many applications, the execution
times for path segments cannot be predicted reliably, especially
in situations involving sensing or variable-time processes. What




A\
N

T

RS

Figure 5: The effect of delay in the TC diagram is to move
collision regions on or off the diagonal. This figure shows the
effect on the schedule of increasing the time for segment B,
between the top and the bottom figures.

is the impact of the change in length of one of the path seg-
ments? The crucial impact is that it may change the choice of
the best schedule. Geometrically, the stretching of a segment
may move some new collision region into, or out of, the path of
the best schedule (Figure 5).

One simple strategy when faced with a significant delay is
simply to redo the coordination of the remainder of the sched-
ule in the modified diagram. This is the approach we have
adopted. It may be possible, however, to characterize the pos-
sible changes to the schedule brought about by different changes
in the execution times of the various segments and to construct
a decision tree that can be used on-line. We will be investigat-
ing this option in the future.

Changing the Task

When there are substantial delays in the execution of one or
more segments, it may be desirable to change the allocation of
tasks from one manipulator to the other. In the preceding dis-
cussion, we have assumed that the task assignments are fixed,
but this need not be the case.

Consider a task where four parts are to be taken from an
input pallet, processed and taken to an output pallet. There
are two processing stations, each with its own robot. The ini-
tial assignment has each robot doing two of the objects. What
happens if the A robot becomes delayed waiting at the first pro-

488

cessing step, perhaps waiting for human intervention? Usually,
we would like the B robot to take over the processing of the
other three parts.

Assume that the robots start each cycle in a standard po-
sition, so the last motion of a cycle is to return to that position;
this assumption can be relaxed later. Then, we construct the
TC diagram assuming that each robot will carry out the com-
plete task, that is, process all parts. This expanded diagram
contains all the combinations of assignments of task steps to
the different robots. Furthermore, in this TC diagram, sched-
ules can jump from the end of one part cycle to the beginning
of another one that may not be adjacent to it in the diagram.
This jumping around is made possible by our assumption that
the endpoints of each cycle are the same. If they were not,
we would have to plan the transfer motions between each pair
of cycles separately, but this does not present a fundamental
problem.

The method outlined above has the drawback of requiring
separate planning of each part cycle, including its interactions
with all other possible cycles. In practice, cyclical tasks tend
to be mostly the same motions except for a few path segments,
such as when picking up a new part from its own pallet location.
We can construct a “generic” cycle path that represents the
union of the path segments for all the cycles. This path union
can be used to compute the swept volume of the robots over
all instances of the cycle for different parts. We can then do
the planning for the possible interactions of the two arms as if
they were each executing only the generic path. For tasks in
which the actions performed in each “cycle” are very different,
one must consider each cycle separately using the expanded
diagram suggested above.

Testing for Collisions

Our approach requires that we be able to detect potential col-
lisions between path segments. That is, we need to identify
which R;,; in the TC diagram need to be shaded. This is read-
ily accomplished by computing the volume swept out by each
manipulator while executing segment A; and segment B; and
testing for these volumes for intersection. In general, it is hard
to compute the exact volume swept out by the robot during
a move, since it is non-convex and contains curved surfaces.
In our implementation, we only compute an approximation of
the volume swept out by an approximation to the links of the
manipulator. In practice, this approximation works out very
well.

Let us consider robot A and assume for the moment that
only one joint is moving during segment A;. For each link
of the manipulator distal to the moving joint, we compute a
rectangular bounding box for the link in the coordinate system
of the moving joint. The problem now reduces to finding the
swept area of a two-dimensional rectangle in the z-y plane of
the moving joint, and sweeping the resulting polygon between
the z-coordinates of the bounding box.

Figure 6 illustrates this procedure. Link 3 of a Unimation
Puma robot is shown being swept through 74 deg of rotation
of joint 2. The vertices of the polyhedral model of the link are
projected onto the z-y plane of the coordinate system for joint 2.
The bounding box for these projected points is computed, then
a polygonal approximation to the swept area of that rectangle
is found. The final diagram shows the entire swept volume for
links 2-6.




R ol

N

Figure 6: Steps in computing the swept volume of one link of
a manipulator: (a) Link vertices, (b) bounding box, (c) sweep,
(d) final result.

It is clearly possible to approximate the true swept vol-
ume of the bounding box of the link arbitrarily closeley. It is
also possible to improve the algorithm so as to approximate
the actual link arbitrarily closely, and thus compute a polyhe-
dral approximation to the swept volume with better and better
accuracy. However, detecting collisions between the swept vol-
umes takes time proportional to the product of the number of
edges and faces of the polyhedra, so unless there is an overrid-
ing reason to use very accurate swept volumes, it is beneficial
to use simpler polyhedra (rougher approximations) to save time
in collision detection.

The procedure above demonstrates the construction of the
swept volume for one moving joint, and only for a revolute joint.
The swept volume of a prismatic joint is trivial to compute ex-
actly. It is not so clear how to extend the procedure to multiple
moving joints. The approach we have taken is to use the vol-
umes swept out by distal links due to the motion of the distal
joints as “virtual links” when computing the swept volumes of
the proximal joints. For example, if both joints 2 and 3 are
moving, we first compute the swept volumes of links 3-6 due
to the motion of joint 3. We then substitute these polyhedra
for the actual links 3-6 and compute the swept volume due to
joint 2.

This procedure for handling multiple moving joints is ex-
tremely conservative, as it computes a much larger volume that
the robot is typically going to sweep out. But, this approxima-
tion is consistent with the mimimal assumptions we have made
on the shape of the paths, namely, that all joints stay within
the limits specified by the endpoints of the path segment. Strict
coordination between the joints is not necessary.

Detection of a potential collision is achieved by simply test-
ing whether the polyhedral approximation to the swept volumes
of A; and B; intersect. The actual volume of the intersection
does not need to be computed. Since an intersection test be-
tween to arbitrary polyhedra can be expensive, we have im-
plemented several quicker tests to determine if the full swept
volume approximation needs to be used.

Before the actual swept volume is computed for A;, we

489

compute a bounding box approximation to the swept volume.
This can be done much more quickly than computing the full

. approximation. What is actually calculated is the bounding box

in world coordinates of the bounding box in joint n coordinates
for the swept volume due to motion of joint n. Only if there
is some Bj; for which the bounding boxes intersect is the full
swept volume for A; computed, and the intersection test of the
full swept volume is only performed between those A; and B;
for which the bounding boxes intersect.

Acknowledgments

This work was funded by the Office of Naval Research under
the University Research Initative Program through contract
N00014-86-K-0685. Additional support was provided by an
NSF Presidential Young Investigator Award (Lozano-Pérez).

References

(1] M. Erdmann and T. Lozano-Pérez. On multiple moving
objects. Algorithmica, 2:477-521, 1987.

S. Fortune, G. Wilfong, and C. Yap. Coordinated motion
of two robot arms. In IEEE International Conference on
Robotics and Automation, pages 1216-1223, San Francisco,
1986. )

E. Freund and H. Hoyer. Real-time pathfinding in multi-
robot systems including obstacle avoidance. The Interna-
tional Journal of Robotics Research, 7(1):42-70, February
1988.

J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the
complexity of motion planning for multiple independent
objects. The International Journal of Robotics Research,
3(4):76-88, 1984.

K. Kant and S. W. Zucker. Toward efficient trajectory
planning: the path-velocity decomposition. The Interna-
tional Journal of Robotics Research, 5:72-89, 1986.

0. Kathib. Real-time obstacle avoidance for robot manip-
ulator and mobile robots. The International Journal of
Robotics Research, 5(1):90-98, Spring 1986.

F. P. Preparata and M. I. Shamos. Computational Geom-
etry. Springer Verlag, New York, 1985.

[8] J. Reif and M. Sharir. Motion planning in the presence of
moving obstacles. In IEEE Symposium on the Foundation
of Computer Science, pages 144-154, Portland, OR, 1985.
J. T. Schwartz and M. Sharir. On the piano mover’s prob-
lem iii. coordinating the motion of several independent
bodies: the special case of circular bodies amidst polygonal
barriers. The International Journal of Robotics Research,
2:46-75, 1983.

P. Tournassoud. A strategy for obstacle avoidance and its
application to multi-robot systems. In IEEE International
Conference on Robotics and Automation, pages 1224-1229,

2]

4

{n

9]

10}

San Francisco, 1986.

[11] M. Z. Yannanakis, C. H. Papadimitiou, and H. T. Kung.
Locking policies: safety and freedom from deadlock. In
IEEE Symposium on the Foundation of Computer Science,
pages 286-297, 1979.




