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Abstract

There is a need for frameless guidance sysiems to
help neurosurgeons to plan the ezact location of a cran-
iotomy, to define the margins of tumors and o pre-
cisely identify locations of neighboring critical struc-
tures. We have developed an automatic technique for
registering clinical data, such as segmented MRI or CT
reconstructions, with the patient‘s head on the operat-
ing table. A second method calibraies the position of a
video camera relative to the patient. The combination
allows a visual miz of live video of the patient with the
segmented 3D MRI or CT model, enabling enhanced
reality techniques for planning and guiding neurosur-
gical procedures, and to interactively view eziracranial
or intracrantal structures non-intrusively. Eztensions
of the method include image guided biopsies, focused
therapeutic procedures and clinical studies involving
change detection over time sequences of images.

1 Motivating Problem

Many surgical procedures require highly precise lo-
calization on the part of the surgeon, in order to ex-
tract targeted tissue while minimizing collateral dam-
age to adjacent structures. The problem is exacer-
bated by the fact that this 3D localization often re-
quires isolating a structure deeply buried within the
body. While methods exist (e.g. MRI, CT) for imag-
ing and displaying the 3D structure of the body, the
surgeon must still relate what she sees on the 3D dis-
play with the actual anatomy of the patient.

Current solutions in neurosurgery typically involve
presurgically attaching a stereotactic frame to the pa-
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tient’s skull, then imaging the skull and frame as a
unit. This allows the surgeon to determine, from the
imagery, the location of the tumor or other target rel-
ative to a coordinate system attached to the stereo-
tactic frame, and thus to the patient’s head. As well,
the frame typically allows the positioning of a probe
at any orientation relative to the patient, letting the
surgeon mark a planned angle of entry that localizes
the expected extraction of material. Unfortunately,
stereotactic frames are cumbersome to the surgeon,
and involve considerable discomfort to the patient. As
well, such frames can have limited flexibility, espe-
cially should surgical plans change in the middle of
the procedure, e.g. if the line of attack is found to
pass through critical regions, such as the motor strip.

1.1 An Ideal Solution

Ideally, one would prefer a system that automati-
cally registers 3D data sets, and tracks changes in a
data set’s position over time, without requiring the
attachment of any devices to the patient. An ideal
system should support: real-time, adaptive, enhanced
reality patient visualizations in the operating room;
dynamic image-guided surgical planning; image guided
surgical procedures, such as biopsies or minimally in-
vasive therapeutic procedures; and registered transfer
of a priori surgical plans to the patient in the OR.

While our group is actively developing all aspects
of such a system, this paper focuses on one key com-
ponent, the registration of different data sources to
determine relevant coordinate frame transformations.

1.2 Contributions to the Ideal Solution

We have created a system that registers clinical im-
age data with the position of the patient’s head on the
operating table at the time of surgery, using methods
from visual object recognition. The method does not
require a previously attached stereotactic frame. The
method has been combined with an enhanced reality
technique (7, 2, 19], in which we display a compos-
ite image of the 3D anatomical structures with a view



of the patient’s head. This registration enables the
transfer to the operating room of preoperative surgi-
cal plans, obtained through analysis of the segmented
3D preoperative data [4], where they can be graphi-
cally overlaid onto video images of the patient. Such
transfer allows the surgeon to apply carefully consid-
ered surgical plans to the current situation, and to
mark internal landmarks used to guide the progres-
sion of the surgery. Extensions of our method include
adaptively re-registering the video image of the patient
to the 3D anatomical data, as the patient moves, or as
the video source moves, as well as other surgical appli-
cations such as image guided biopsy, or focused ther-
apeutic procedures such as laser disc fusion or tumor
ablation. We have also recently demonstrated the use
of our system in clinical settings, by registering data
sets acquired over extended time periods, thereby en-
abling the detection of changes in anatomy over time.

2 An Example Scenario

The following scenario demonstrates our approach:

(1) A patient requiring surgery is scanned by a
3D, high resolution, internal anatomy scanner, such
as Magnetic Resonance Imaging (MRI) or Computed
Tomography (CT). The scan is segmented into tissue
types.

(2) The patient is placed in the operating room.
Prior to draping, the patient is scanned by a laser
range scanner. The 3D locations of any table land-
marks are also calculated to identify their location rel-
ative to the patient. The current MRI or CT scan
is automatically registered to the patient skin surface
depth data obtained by the laser range scanner. This
provides a transformation from MRI/CT to patient.

The position and orientation of a video camera rel-
ative to the patient is determined, by matching video
images of the laser points on an object to the ac-
tual 3D laser data. This provides a transformation
from patient to video camera. The registered internal
anatomy is displayed in enhanced reality visualization
[7, 2, 19] to “see” inside the patient. In particular, the
two previously computed transformations can be used
to transform the 3D model into the same view as the
video image of the patient, so that video mixing allows
the surgeon to see both images simultaneously.

The patient is draped and surgery is performed.
The enhanced reality visualization does not require
the surgeon to do anything different from normal, but
rather provides her with additional visualization infor-
mation to greatly expand her limited field of view.

(3) The location of table landmarks can be contin-
ually tracked to identify changes in the position of the
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patient’s attitude, relative to the visualization camera.
Visualization updates are performed by updating the
MRI/CT to patient transformation. Viewer location
can be continually tracked to identify any changes in
the position of the viewer. For a stationary video cam-
era, this is straightforward, though for head-mounted
displays such tracking is both more relevant and more
challenging. Visualisation updates are performed by
updating the patient to viewer transformation.

The surgical procedure is executed with an accu-
rately registered visualization of the anatomy of the
patient, thus reducing side effects.

3 Details of Our Approach

Methods currently exist for Part 1 [4, 6]. In this
paper we focus on part 2, where the key step is the
registration of data obtained from the patient in the
operating room with previously obtained data and sur-
gical plans. Part 3 is part of our planned future work.
The basic steps of our method are outlined below.

3.1 Model input

We obtain a segmented 3D reconstruction of the pa-
tient’s anatomy, (e.g. CT or MRI). Current segmenta-
tion techniques are generally semi-automatic, typically
by training an intensity classifier on a user selected set
of tissue samples, where the operator uses knowledge
of anatomy to identify the tissue type. Once initial
training is completed, the rest of the scans can be au-
tomatically classified on the basis of intensities in the
scanned images, and thus segmented into tissue types
[4, 6]. Removing gain artifacts from the sensor data
[20], and correcting for distortions due to magnetic sus-
ceptibility differences between different materials [17)
can both improve the segmentation.

This 3D anatomical reconstruction is referred to as
the model, and is represented relative to a model coor-
dinate frame, whose origin is the centroid of the points.

3.2 Data input

We obtain a set of 3D data points from the patient’s
skin surface using a Technical Arts laser range scan-
ner. It operates by scanning a laser beam using an
oscillating mirror through an optical mechanism that
results in a controlled plane of light. A video camera
is placed at an angle to this plane such that a por-
tion of the plane is in the camera field of view. When
an object is placed in this visible region such that it
intersects the laser plane, points in the camera image
illuminated by the laser unambiguously correspond to
fixed 3D scene points. In general, the correspondences



Figure 1: Example of laser data (shown as large dots) overlaid
on CT model of a plastic skull, after an initial alignment of
the two point sets. Note the transparent laser points which are
actually lying inside the skull.

between the scene points and image points are calcu-
lable by using a nonlinear projective transform, which
can be determined by scanning an object of known
form. Since the deflection of the beam in the image
is in a known direction, one can process many such
points in a single scan (or position of the laser light
plane). In this case, the device actually produces 240
3D measurements for any single scan. The measure-
ments are accurate to within 0.003”.

The plane of the laser can be arbitrarily controlled,
so that data points from a 3D volume are obtained.
The laser can either be moved by small increments to
obtain a dense sampling of data, or the laser plane
can be moved by larger increments, to obtain a small
number (5-10) of planar slices of data from the scene.

This information is referred to as the data, and is
represented in a coordinate frame attached to the laser,
which reflects the position of the patient in a coordi-
nate frame that exists in the operating room. Our
problem is to determine a transformation that will
map the model into the data in a consistent manner.

3.3 Matching data sets

We match the two data sets as follows:

(1) To initiate the matching, we have several op-
tions. We can use a simple graphical interface to
roughly align the laser data with the 3D model, provid-
ing an estimate of the view direction of the model. In
this case, we extract a sampled set of visible points of
the model, using a gz-buffer. Given a pixel size for the
z-buffer and given an estimate for the view direction,
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we project all of the model points into a plane orthogo-
nal to the view direction, where the plane is tesselated
in pixels of the given side. Within each pixel, we keep
only the point closest to the viewer. This gives us a
temporary model, which we can use for matching.

Alternatively, we sample a set of evenly spaced di-
rections on the view sphere. For each view, we use the
z-buffer method described above to extract a sampled
set of visible points of the model. For each such model,
we execute the matching process described below.

(2) Next, we separate laser data of the patient’s
head from background data. Currently we do this
with a simple user interface, in which three orthogo-
nal views of the laser data are presented, and the user
places a bounding box around the data that actually
comes from the patient. Note that this process need
not be perfect, we simply want to remove gross out-
liers from the data. Given this segmented laser data,
we find three widely separated laser points.

(3) We use constrained search [9, 8] to examine
all ways of matching the three laser points to three
points selected from the sampled MRI model. For
each association, the method tests whether the pair-
wise distances between model points and laser points
are roughly the same. If all such tests are valid, the
match is kept, and we compute the coordinate frame
transformation that maps the three laser points into
their corresponding model points. These transforma-
tions form a set of hypotheses. Note that due to the
sampling of the model data, the actual object points
corresponding to the selected laser points may not ex-
ist, so these hypothesized transformations are at best
approximations to the actual transformation.

In the example of Figure 4, there are 481 laser sam-
ple points, and the skull model has 35,265 sample
points. Given an estimated view, and a coarsely sam-
pled z-buffer, there are 409 model points in the sam-
pled view. In principle, there are ~ 2.02e14 possible
hypotheses, but using simple distance constraints, only
16,945 possible hypotheses remain for further testing.

(4) We use the Alignment Method [12] to filter these
hypotheses. For each hypothesis, we verify that the
fraction of the laser points, transformed by the hypoth-
esized transformation, without a corresponding model
point within some predefined distance is less than some
predefined bound. We discard those hypotheses that
fail this verification. For efficiency, we use two levels
of sampling of the laser points, first verifying that a
coarsely sampled set of laser points are in agreement,
then further verifying, for those that pass this test,
that all the laser points are in agreement.

Figure 1 shows an example of the model and laser
data after a verified alignment. Note that some of the



Figure 2: Final alignment of data and model.

laser points are partially buried in the CT model (dis-
played as partially transparent), indicating that the
initial alignment is not sufficiently accurate.

(5) Evaluate each verified hypothesis as follows:

(5.1) Sum, for all transformed laser points, a term
that is a sum of the distances from the transformed
point to all nearby model points, where the distance is
weighted by a Gaussian distribution [18]. This Gaus-
sian weighting is a method for roughly interpolating
between the sampled model points to estimate the
nearest point on the underlying surface to the trans-
formed laser point. More precisely, if vector & is a
laser point, vector m; is a model point, and 7 is a
coordinate frame transformation, then the evaluation
function for a particular pose (or transformation) is

1Te5-m;12

B(T)=YY e . (1)
i

This function is similar to the posterior marginal pose
estimation (PMPE) method of [18]. Because of its for-
mulation, the objective function is quite smooth, and
thus facilitates “pulling in” solutions from moderately
removed locations in parameter space.

(5.2) Iteratively maximise this evaluation function
using Powell’s method. This yields an estimate for the
pose of the laser points in model coordinates.

(5.3) Execute stages 5.1 and 5.2 with a multireso-
lution set of Gaussians. A broad Gaussian is used to
allow influence over large areas, resulting in a coarse
initial alignment, which can be reached from a wide
range of starting positions. Then, narrower Gaussian
distributions are used to focus on only nearby model
points to derive the pose.
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(5.4) Starting from the resulting pose, repeat the
evaluation process, using a rectified least squares dis-
tance measure. In particular, perform a second sam-
pling of the model from the current viewpoint, using
a much more finely sampled s-buffer. Relative to this
finer model, use Powell’s method to minimisge the eval-
uation function:

BT = i { e min T} @

where dpax is some preset maximum distance. This
objective function is essentially the maximum a poste-
riori model matching scheme of [18]. It acts much like
a robust chamfer matching scheme (e.g. [13]). The
expectation is that this second objective function is
more accurate locally, since it is composed of satu-
rated quadratic forms, but it is also prone to getting
stuck in local minima. Hence we add one more stage.

(5.5) We observe that while the above method al-
ways gets very close to the best solution, it can get
trapped into local minima in the minimization of Ej.
To improve upon this, we take the pose returned by the
above step, and perturb it randomly, then repeat the
minimization. We continue to do this, keeping the new
pose if its associated RMS error is better than our cur-
rent best. We terminate this process when the number
of such trials that have passed since the RMS value was
last improved becomes larger than some threshold.

(5.6) The final result is a pose, and a measure of
the residual deviation of the fit to the model surface.
An example is shown in Figure 2.

We collect such solutions for each verified hypothe-
sis, over all legal view samples, and rank order them by
smallest RMS measure. The result is a highly accurate
transformation of the MRI data into the coordinate
frame of the laser sensor.

3.4 Camera Calibration

Once we have such a registration, it can be used for
surgical planning. A video camera can be positioned
in roughly the viewpoint of the surgeon, i.e. looking
over her shoulder. By calibrating the position and ori-
entation of this camera relative to the laser coordinate
system, we can render the aligned MRI or CT data
relative to the view of the camera. This rendering can
be mixed with the live video signal, giving the sur-
geon an enhanced reality view of the patient’s anatomy
[7, 2, 19]. This can be used to plan a craniotomy or a
biopsy, or to define the margins of an exposed tumor
for minimal excision. Figure 3 shows an alignment of
a CT model and an actual image of a skull in a cali-
brated video camera.



Figure 3: Example of video image, and overlay of a registered
3D (CT) object model with the real object in that image.

We have investigated two methods for calibrating
the camera position and orientation. In the first case,
a calibration object of known size and shape is placed
in the common field of view of the laser ranging sys-
tem and the video camera. Landmark points on the
object are identified, and measured in camera coordi-
nates by extracting the landmark points in the video
image, and in laser coordinates by fitting a model of
the calibration object to the laser data. The camera
parameters are calculated by using Powell’s method
to minimize the distance between transformed laser
points and matched image points.

A second method does not rely on a known cali-
bration object. Instead images of the laser slices are
taken with the video camera. Straight line segments
are located in the video images and matched to cor-
responding straight line segments in the laser data.
If three such matching segments are found, they can
be used to solve for an approximation to the perspec-
tive projection transformation, and thus for the pose
of the camera. Using this as a starting point, Powell’s
method can again be used to optimize the pose esti-
mate to best bring all of the laser data into projective
alignment with the corresponding video data. Thus,
one can use the patient directly to calibrate the cam-
era, and thus this process can be repeated throughout
the surgical procedure as needed (e.g. if the position
of the camera relative to the operating table is per-
turbed).
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Figure 4: Example of registered laser data (shown as large
dots) overlaid on CT model.

4 Testing and Applications

As a first controlled experiment, we have registered
a CT reconstruction of a plastic skull with laser data
extracted for a variety of viewpoints. We have run
the system both with an initial pose estimate, and by
sampling a range of views on the viewing sphere. In all
cases, the system finds a correct registration (Figure
4), with typical residual RMS errors of 1.6 mms.

For a typical set of views of the model, the number
of points in a coarse model was =~ 500, and led to initial
hypotheses ranging from 16,945 to 114,062. Only one
hypothesis survived Alignment verification, in which
case a finer model of 9428 points was refined relative
to the laser data. This led to a single correct solution
with an RMS residual of 1.5mm. It is worth com-
menting on the RMS error, since interactively viewing
the overlaid results on a 3D display suggests that the
registration is much more accurate than an RMS of
1.5 mm would suggest. First, the method we use to
extract a surface model from the MRI or CT data is
overly simple. For each individual slice of the data, we
extract exterior boundary points. When the underly-
ing surface is oriented nearly tangential to the image
slice, this method will undersample the skin surface.
Thus, between two adjacent slices, there may be con-
siderable gaps between extracted skin points. A better
solution would be to interpolate a dense skin surface,
and ensure that model skin points are uniformly sam-
pled. The effect of not doing this is that occasionally
we can have transformed laser points that lie quite
close to the model surface, but for which the nearest
sampled point is some distance away along the surface.
Thus the tail of the histogram can pull the overall RMS
value to higher value than is correct (Figure 5).

Note that the resolution of the CT scan is 1 x 1 X
2mms. Thus, the model points lie at the nodes of a



Figure 5: Histogram of residual errors for the final pose of
Figure 2.

discrete lattice, and since the laser points are not con-
strained to lie on the same lattice, this descretization
will also contribute to the reported RMS errors.

We have also successfully run trials matching laser
data against an MRI scan of one of the authors, an
example of which is shown in Figures 6 and 7. The res-
olution of this MRI scan is 0.9375 x 0.9375 x 1.5mms.

Recently we have run a series of trials with ac-
tual neurosurgery patients. An example registration
of the laser data against an MRI model of the patient
is shown in Figure 8. Note that while most of the scalp
had been shaved for surgery, a patch of hair was left
hanging down over the patient’s temple. As a result,
laser data coming from the hair cannot be matched
against the segmented skin surface in the MRI model,
and this shows up as a set of points slightly elevated
above the patient’s skin surface in the final registra-
tion. We can automatically remove these points, and
reregister the remaining data. As well, the tumor and
the ventricles of the patient are also highlighted. The
RMS error in this case was 1.9mm. Finally, given the

Figure 6: Example of registered laser data (shown as large
dots) overlaid on MRI model.
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Figure 7: Visualisation image of brain merged with video view.

registration between the patient and the model (by
matching the laser data in this manner) we can trans-
form the model into the coordinate system of a second
video camera, and overlay this model on top of the
camera’s video view. This is shown in Figure 9.

Besides applications for surgical planning and guid-
ance, including tumor excision and biopsy, the method
has other applications, including the registration of
multiple clinical data sets such as MRI versus CT. As
a demonstration of this, we have registered equences of
MRI scans of the same patient, taken over a period of
several months, and used differences in the registered
scans to visualize and measure changes in anatomy [5].
These scans are part of an ongoing NIH study of mul-
tiple sclerosis (MS) at Brigham and Womens Hospital
aimed at determining the optimal frequency for per-
forming MR imaging of MS patients.

5 Related Work

Several other groups have reported methods simi-
lar to ours. Of particular interest are three such ap-
proaches. Pelizzari et al. [16, 15] have developed a
method that matches retrospective data sets, (MRI,
CT, PET), to one another. This work also uses a least
squares minimization of distances between data sets,

Figure 8: Example of registered laser data (shown as large
dots) overlaid on an MRI model. This is a case of registration
of an actual neurosurgical case, with the patient fully prepped
for surgery before the laser data is acquired.



Figure 9: Using the results of Figure 8, and given a calibration
of & video camera relative to the laser, we can overlay parts of
the MRI model on top of & video view of the patient, providing
an enhanced reality visualisation of the t . In this figure,
the tumor is shown in green, and the ventricles are displayed as
a landmark in blue.

although with a different distance function. Typical
reported RMS errors are 3-5mms. This approach does
require some operator intervention to set a decent ini-
tial starting position, which our system does not. It
also apparently requires some operator intervention to
steer the system towards the correct solution, suggest-
ing that local minima are a potential problem. Our
system avoids this difficulty by randomly perturbing
near final solutions to find better nearby minima.

A second related approach [3, 14] also does a least-
squares minimization of a distance function to match
data sets. Here, the distance is weighted by an esti-
mate of the inverse variance of the measurement noise,
and a Levenberg-Marquardt method is used to find the
minimum. The method presently requires a reasonable
initial starting position, though the authors observe
that sampling over the view sphere could remove this
restriction. Once an initial solution is found, points
with large errors are removed and the minimization is
repeated to refine the pose. It is unclear whether re-
moving outliers is sufficient to keep the method from
getting trapped into local minima.

A third approach [1, 10, 11] performs automatic
rigid registration of 3D surfaces by matching ridge
lines which track points of maximum curvature along
the surface. This method is not directly suitable for
dealing with sparse data, such as the laser input.
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