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Very  high  level  languages  for  describing  mechanical  assembly require a  representation  of  the  geometric  and  physical 
properties  of 3 - 0  objects  including  parts,  tools,  and  the  assembler  itself.  This  paper  describes  a  geometric  modeling 
system  that  generates  a  data  base  in  which  objects  and  assemblies  are  represented  by  nodes  in  a  graph  structure.  The 
edges  of  the  graph  represent  relationships  among  objects  such  as part-of, attachment,  constraint, and assembly. The 
nodes  also  store  positional  relationships  between  objects  and  physical  properties  such  as  material  type.  The  user  designs 
objects  by  combining  positive  and  negative  parameterized  primitive  volumes,  for  example,  cubes  and  cones,  which  are 
represented  internally  as  polyhedra.  The  data  base is built  by  invoking  a  procedural  representation  of  the  primitive 
volumes,  which  generates  vertex,  edge,  and  surface  lists  of  instances  of  the  volumes.  Several  applications  in  the  automat- 
ic  assembly  domain  have  been  implemented  using  the  geometric  modeling  system  as  a  basis. 

1. Introduction 
This paper  describes a computer-based  system for  mod- 
eling three-dimensional (3-D) objects.  The initial motiva- 
tion for this research was to  create models for a  very high 
level programming language for mechanical assemblers. 
The result has evolved into a general  purpose system for 
describing parts both in terms of their three-dimensional 
geometry and  their mechanical properties. 

e The  task  domain:  mechanical  assembly 
A general purpose manipulator consists of a gripper 
mechanism whose position and orientation are  under 
computer  control. When such a device is coupled with 
sensory feedback,  such  as  force  and  touch sensing, it can 
perform complex assembly tasks.  However,  the useful- 
ness of manipulators may be limited by the fact that pro- 
gramming them in terms  ofjoint angles  (motor  positions), 
motor torques, raw sensor  values,  etc., is difficult. It 
would be  preferable to specify assembly operations in 
terms of their intended effect on  the  parts and the tools in 

the  workspace.  These high level  descriptions  must then 
be translated  into machine level manipulator commands. 
However,  to do this,  the  user must be able to describe  the 
parts,  tools, and  desired  assembly  relationships. 

A design for a high level,  assembly  directed  program- 
ming system, AUTOPASS (AUTOmated Parts Assembly 
system) is described in [ 13. The  assembly world of AUTO- 
PASS is quite  complex. It  involves both objects  and opera- 
tions that may be  intricate and,  when interpreted by hu- 
mans, may require  extensive  experiential  knowledge 
(e .g . ,  use of tools, or how parts fit together). The AUTO- 
PASS system is intended to  have a  compiler that  trans- 
forms  task  level statements into programs that  can be 
executed by a  mechanical assembler. AUTOPASS, as it 
compiles an assembly  program,  uses  a 3-D k t d d  model 
to simulate  the state of the world.  Thus, the model 
records the  changing 3-D locations  and orientations of 
parts  and of the mechanical assembler itself. In order 
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to perform certain  operations,  such  as determining how 
to grip an  object or planning a collision-free move- 
ment,  the compiler  requires  the 3-D physical character- 
istics of the world, such  as the shape  and weight of parts. 

The AUTOPASS user refers to  “assembly  operands” by 
symbolic names,  such  as bracket orj ixture , which are en- 
coded in the 3-D model. Names may be associated with 
objects and  sub-objects, and also with  geometric ele- 
ments of objects-edges, surfaces,  and  points.  In  order  to 
determine,  for  example,  whether  an  object can  be  moved 
and which other  objects will move  with it, the  model  in- 
cludes  various  relationships  among objects  (such  as  “A is  
attached  to B”). 

e Related  work in computer  geometric  modeling 
The following discussion, although  not comprehensive, is 
intended to illustrate the  scope of work in this area. Early 
applications of computer geometric  processing arose with 
the  introduction of numerically controlled (NC) machine 
tools.  Several  computer languages exist  for  the produc- 
tion of instruction  sequences for NC machine  tools.  One 
of the most widely used languages for this  purpose is AFT 

(Automatically  Programmed Tools) [2], which allows the 
programmer to  describe  continuous 3-D tool paths  for 
machining the  part.  Thus, the AFT model does not explic- 
itly contain any geometric structure  for parts. A number 
of modeling systems based on polyhedra have  been  devel- 
oped. Typical of these  systems is GEOMED [3], with which 
the  user  creates  an  object by describing a cross-section 
and moving this “wire  frame” through space. Algorithms 
for merging and intersecting the  polyhedra  are also pro- 
vided. Another  form of modeling program is based on  the 
combination of volume  primitives, as exemplified by 
BUILD [4]. BUILD’S six primitive volume types may be 
merged using a constructive  geometry  approach to gener- 
ate  representations of greater  complexity, and merging 
can be performed  on  the results of previous  merges. 

The  Part  and Assembly Description Language (PADL 

[5 ] )  is an  example of a constructive geometry  program- 
ming language which provides procedures  for defining 
parts in terms of a small number of primitives. The PADL 
interpreter  translates  these  procedural object definitions 
into object  representations for later processing. PADL pro- 
vides set  operations  on volumes and  thus allows the  user 
to  create hierarchically structured descriptions of objects. 
The  current version of PADL has restrictions on  com- 
ponent orientation and type,  thus limiting the  repertoire 
of the  resulting objects. A  more  general  procedural part 
description system is the method originated by Grossman 
[6]. In this system generalized semantics may be attached 
to object descriptions, e.g., all objects  that  are in the  class 
part will have  their mass  calculated  and stored. Object 
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Figure 1 GDP system  structure. 

descriptions are hierarchical  calls to  procedures that are 
trapped by an  interpretive  system, which  then  applies the 
appropriate  semantic routines.  A  procedural representa- 
tion based on Grossman’s work is used in the  system  de- 
scribed here  to  create  an initial geometric  description. 

e Overview of current  work 
To address  the  needs of the mechanical  assembly  task do- 
main, the geometric modeling system described  here  was 
developed. The  components of the  system, called GDP 

(for Geometric Design Processor),  are illustrated in Fig. 1. 

At the  center of the system is  the world  model, a graph- 
structured  data  base which describes  the  structure  and 
relationships of 3-D objects. The  data  base is initially 
created by invoking  system- and user-supplied proce- 
dural  descriptions in which instances of parts  and sub- 
parts  are  represented by invocations of object  proce- 
dures. The  interpretation of object  procedures by system- 
supplied semantic routines results in the  construction of 
the world model. The MERGE algorithm, which computes 
the  point set  operations of union,  intersection,  and dif- 
ference  for a pair of arbitrary polyhedra, plays an impor- 
tant role in interpreting the object-defining procedures  to 
produce the world model. Various  applications have  been 
developed  which access  the world  model. 

2. The world model 
The world model is represented as a graph-structure in 
which each  vertex  represents a  volumetric entity-aparf, 
sub-part, or assembly, and the edges  are directed and la- 
beled to  indicate  four kinds of relationships: part-of,  at- 65 
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Figure 2 World model data structure. 

tachment,  constraint, and assembly-component. Figure 2 
shows  an  example of a graph-structured world model. 

An object  vertex may represent  one of three  types of 
entities: 

0 A  three-dimensional part ( e . g . ,  a  machine  screw or L- 
bracket),  whose shape is fixed but  whose  position and 
orientation may be changed  dynamically. 
A sub-part ( e . g . ,  a screw-head  or bore-hole),  a vol- 
umetric entity  out of which parts  are composed. 
An aggregate (e .g . ,  a  piston  and  crankshaft or a model 
of a manipulator), whose constituent assemblies or 
parts  bear a fixed functional  relationship but whose in- 
ternal geometry can  change. 

The role of a  particular  object vertex is determined by its 
context in the world model structure  and  the value of its 
volume class  attribute (described  below). The  attributes 
of a  node are  as follows: 

Name A  symbolic  name  provided by the user. 
Class A  list of classes to which the object belongs. 

These  classes provide  semantic  information to  the vari- 
66 ous planning components of the manipulator language 
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compiler.  Examples of object classes  are: general  ob- 
ject,  fastener,  assembly, hole, rotor, and locking de- 
vice. In  the  example, the L-bracket is a  nonprimitive, 
general object  (see below for a discussion of primitive 
and  nonprimitive).  Some of these  classes  are  further 
qualified by type and may have associated  geometric 
information. An example is fastener, which may have 
type qualifiers such  as clip,  bolt,  nut, etc. 

Volume  class Defines the interpretation of the  object 
vertex: A value of PART means this  vertex is a part, in 
the  sense described above. A  value of AGGREGATE 
means  this vertex is an assembly or aggregate.  Values 
of SOLID or HOLE indicate that  this  vertex is a sub-part 
which adds  or  subtracts a  volumetric  component to or 
from the  part  or  sub-part  to which it belongs. (See be- 
low for a description of how positive  and  negative vol- 
umes are  combined.) 

Geometric  description The object’s  shape, represented 
as a polyhedron.  The polyhedral  description is a set of 
point, edge,  and surface list structures (Fig. 3) accessed 
by a pointer  at  the object vertex.  The individual ele- 
ments of the polyhedron may be  accessed,  thus allow- 
ing the  user  to refer to spatial  features. The choice of 
representing shapes in terms of polyhedra results in 
closure under  the  set  operations of union, intersection, 
and  difference.  This  property  provides  a uniform geo- 
metric representation of primitive  volumes,  complex 
objects,  and assemblies. The polyhedra are automati- 
cally generated by the MERGE algorithm,  described be- 
low. 

Coordinate  transformation A 4 x 4 homogeneous 
transformation matrix,  which,  when applied to a point 
in the object’s  coordinate frame, yields the point’s 
coordinates in a world reference frame. 

Physical  properties For example, material and weight, 
used in such calculations as center of gravity and  object 
stability. 

Primitive  parameters If the  object  vertex  represents  an 
instance of one of the primitive volumes (see below), 
the  arguments  passed  to the  primitive  object procedure 
are  stored in the  object  vertex.  For  example,  for a 
CUBOID, the X ,  Y, and z side-lengths would be stored. 
This is particularly useful in cases where the polyhedral 
representation only  approximates the “ideal”  primitive 
volume (e.g., CYLINDER). 

An object  vertex also  contains  a list of pointers to rela- 
tional descriptors.  These  descriptors define physical  rela- 
tionships that  the object  has  with other objects in the 
world model. The relationships  provided are: 

Part-of The part-of  relation represents  the logical con- 
tainment of one object in another; it has several  inter- 
pretations: 
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Figure 3 Data structure of a GDP polyhedron. 

A part may be part-of an aggregate. An aggregate 
can also be part-of another aggregate. 
A sub-part (represented by an  object vertex with vol- 
ume class SOLID or HOLE) may be part-of apart or of 
another sub-part. 

The part-of  relation  induces  a tree  structure  on  the 
world model,  as illustrated in Fig. 2. The system-sup- 
plied aggregate vertex TOP-NODE serves  as  the root of 
the part-of tree. 

Other relations in the world model are used to  repre- 
sent  mechanical and functional  links  among  aggregates, 
parts,  and  sub-parts and are  also  shown in Fig. 2. 

Attachment There  are three types of attachment rela- 
tionships: rigid,  nonrigid, and conditional. Each  de- 
scriptor indicates the type of attachment, the  two ob- 
jects  related,  and relative coordinate transforms be- 
tween the  two  objects. In addition, nonrigid and 
conditional attachment  descriptors contain  information 
to qualify the particular  relation. 

Rigid  attachment occurs  when  no relative motion is 
possible between  the frames of objects;  the relation- 
ship may have  a  force qualifier that defines ranges of 
thrusts and torques  over which the rigid attachment 
holds. 
Nonrigid  attachment occurs when  objects cannot be 
separated by an arbitrarily  large distance but relative 
motion between  their  frames is possible. Nonrigid at- 
tachments  are  the basis of the  system’s model of 
mechanisms and  are classified on the  basis of the 
type of mechanical joint they provide.  The  represen- 
tation of nonrigid attachment  enables  the system to 
analyze  the kinematics of mechanisms. At present 
two joint  types, linear and rotational,  are  permitted, 
though  this may be extended  later  to include other 
types  such  as ball joint; both types may be qualified 
with force  and spatial limits. 

Conditional  attachment is the representation of ob- 
jects being supported by gravity  (but  not  strictly at- 
tached).  The relationship enables  the system to move 
a part  supporting  another  part. Qualifiers in the com- 
mand define the range of orientations  over which the 
support relationships will hold, so that,  for  example, 
the  supported  part is not allowed to fall off. These 
qualifiers form a  condition list,  each element of 
which is a spatial  position, orientation,  or velocity 
condition expressed parametrically as a  linear in- 
equality. The intent is that  the  attachment holds  only 
as long as  the  constraints  are  met. 

Constraint  relationships Represent physical con- 
straints of one object on  another. A constraint is de- 
scribed by a type, a direction vector, a force  threshold, 
and a pointer  to  the constraining object. A translational 
constraint specifies that  the  object  cannot move in the 
given direction unless  the force threshold is exceeded. 
A rotational  constraint describes limits of rotation of 
an object  about a given vector.  Constraint relationships 
need to be updated  whenever  an  object is moved to re- 
flect newly created  or removed  physical constraints re- 
sulting from  that movement. 

Assembly  component A  type of object called an assem- 
bly has  special meaning in the world model.  It may be 
dynamically created during high level language com- 
pilation and  represents a set of objects which is closed 
under attachment and assembly. An assembly vertex is 
created when an assembly naming statement is encoun- 
tered in an AUTOPASS program [I]. This type of state- 
ment  assigns  a  name and a coordinate frame to a vertex 
and establishes  the assembly-component relationship 
between that  vertex and an  object (specified in the 
statement).  The programmer is  thus dynamically  de- 
claring  a new structure  that  can then be used like any 
other  object in subsequent  statements. Such an object 
does not have a polyhedral representation of its own 
but implicitly acquires  the  descriptions of the (transi- 67 
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Figure 4 Primitive objects. 

tively) attached chain of objects.  Thus,  an assembly al- 
lows  grouping of assembled parts  under  one name for 
future  reference. 

3. Creating world models 
In addition to supporting the world model data base  de- 
scribed above, GDP provides a facility to allow the  user 
to  create  such world models by executingprocedural  rep- 
resentations of aggregates, parts, and sub-parts. 

Hierarchical  object descriptions 
The specification which is used to  create a world model 

60 reflects the hierarchical structure defined by the part-of 

relation in the model itself. The  user defines aggregates by 
listing the  parts  and aggregates from which they are  com- 
posed. Similarly, parts (and sub-parts)  are defined by 
grouping together collections of sub-parts. 

Several other  features  are required to produce  a  com- 
plete description of the world model: First,  the user  must 
be able  to define the geometrical  relationships  among a 
set of entities which are part-of another entity.  This 
amounts  to being able  to define the positions and orienta- 
tions of those sub-entities in some suitable  coordinate 
frame. Second, it is necessary  to specify  more  exactly the 
relation between  an  entity  and  another  entity which it is 
part-of. Specifically, the  user  must be able to indicate that 
one entity is a part  and is part-of an  aggregate. Also the 
user must be able  to indicate that  an  entity is a sub-part 
which is part-of  a part (or another  sub-part)  and, in addi- 
tion,  whether  the  sub-part  contributes a  positive (SOLID) 

or negative (HOLE) volume to  its  super-part. Complex 
shapes  can be formed by  “gluing together” simpler 
shapes (formally,  taking  the union of polyhedral point 
sets).  Conversely,  one  can use  negative sub-parts 
(HOLES) as  “machine  tools”  that  can  cut and drill sec- 
tions out of parts (taking the  set difference of polyhedra). 
This ability greatly reduces  the  burden of describing all 
the points,  lines, and  surfaces which define a  complex 
part’s  polyhedral representation; it is possible  because of 
the MERGE algorithm for combining  general  polyhedra 
(see  below). 

The final feature needed to  complete  the hierarchical 
description process is a basis set of objects from which 
others  can be  defined. GDP supplies a set of sevenprimi- 
five objects (see Fig. 4). The primitive objects  are  “pa- 
rameterized” in the  sense  that  the  user may invoke in- 
stances which vary in size,  aspect  ratio, fineness of poly- 
hedral  approximation  (for curved  objects),  etc. Because 
the user-supplied object  descriptions use the  same proce- 
dural representation  as  the system-supplied primitive ob- 
jects, the user  can effectively “customize”  and  extend 
the  set of primitives. 

Dejining objects with procedures 
Following the work of Grossman [ 2 ] ,  GDP implements  the 
hierarchical object descriptions in the form of a  proce- 
dural representation, in which aggregates, parts, and  sub- 
parts  are  represented by  object procedures. An object 
procedure represents a “template”  for  an  object. An acti- 
vation of an  object  procedure  corresponds  to creating an 
instance of the  object in 3-D space. An object procedure 
may have parameters, which change the  form of the in- 
stance of the  object resulting from  an activation of that 
procedure. Such  a procedure may represent a  generic  ob- 
ject;  for example: 
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SCREW: PROCEDURE  (LENGTH,DIAMETER, 
THREADSPERINCH,NSECTORS); 
/* OBJECT  PROCEDURE  DEFINING  A  MACHINE  SCREW. 

NSECTORS IS THE  NUMBER  OF  FACETS IN THE POLY- 

HEDRON APPROXIMATION OF  THE  CYLINDER  THAT 

MODELS THE  SHAFT OF THE  SCREW. */ 

DECLARE (DIAMETER,HEADRADIUS,HEADTHICKNESS, 
LENGTH,NSECTORS  SLOTDEFTH, 

SLOTTHICKNESS,THREADSPERINCH) FLOAT; 

CALL SOLID(SHAFT,'SHAFT',LENGTH,DIAMETER, 
THREADSPERINCH,NSECTORS); 

CALL  ZTRAN(LENGTH); 
HEADTHICKNESS=DIAMETER; 
HEADRADIUS=DIAMETER; 

CALL SOLID(CYLNDR,'HEAD',HEADTHICKNESS, 
HEADRADIUS,NSECTORS); 

SLOTDEFTH=0.4*HEADTHICKNESS; 
SLOTTHICKNESS=O.S*SLOTDEFTH; 
CALL XYZTRAN(-HEADRADIUS,-SLOTTHICKNESS/2.0, 

HEADTHICKNESS-SLOTDEPTH); 

CALL HOLE(CUBOID,'SLOT',2.0*HEADRADIUS, 
SLOTTHICKNESS,SLOTDEFTH); 

END SCREW; 

Activating this procedure with parameters (0.5, 0.25, 20, 
16) will create  an  instance of a screw with length 0.5, di- 
ameter 0.25, 20 threads per  inch, and, in the internal  rep- 
resentation, will approximate the  curved portions of the 
screw by 16 facets (Fig. 5). Object procedures may call 
other  object  procedures, which corresponds  to building 
an  object  up  out of sub-objects, as described above. In 
the machine  screw  example the  threaded shaft of the 
screw is defined and  generated by another procedure 
SHAFT (not shown  here). Object procedures  are always 
called through one of four "generic" procedures: Calls to 

ject vertices;  calls to HOLE or SOLID generate  object ver- 
tices  corresponding to positive  and negative sub-parts. In 
the example the slot in the head of the screw is formed by 
subtraction of the primitive CUBOID, in the  statement  that 
begins "CALL  HOLE(CUB0ID . . . ." The actual  parame- 
ters used in creating  a primitive are always  saved in the 
data  structure  generated by the semantic  processor. By 
use of addition and  subtraction  operators  on pairs of  vol- 
umes  (primitive or  not), very complex  objects may be re- 
alized. While not all possible shapes  can be  realized,  the 
domain of parts  for mechanical assembly and  most other 
tasks can be adequately  approximated.  (The  set of primi- 
tive  object procedures is listed in Fig. 6.) 

PART and AGGREGATE generate PART and AGGREGATE ob- 

So far,  objects  have been described only by their 
shape;  their locations  and orientations in 3-D space must 
also be established. Associated  with the  object procedure 
interpreter is a position cursor, a current reference  frame 

II 
3 
3 
3 
3 
: 
3 

Figure 5 Result of procedure  SCREW. 

Figure 6 Primitive object  procedures. 

having a 3-D location  and orientation. Any activation of 
an object procedure  causes  the  reference frame to be 
passed to it. The  procedure defines the  object with re- 
spect  to  the  reference  frame.  The  user  can manipulate, 
store, and retrieve the  position cursor through  a  number 
of PUI procedures supplied with the  system. In the ex- 
ample  the call to ZTRAN moves the  reference frame from 
one end of SHAFT to  the  end where the HEAD is to be posi- 
tioned.  (The  frame-manipulation  and other auxiliary pro- 
cedures  are listed in Fig. 7.) 

In addition to calling other object- or frame-manipula- 
tion procedures,  an object procedure  can perform arbi- 
trary computations to  the limit of the base language (PWI). 

This is illustrated  by the line 

69 
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CALL  xi)^^^^ (DIST); /*Translate  position cursor*/ 

CALL Y ROT (ANGLE); /*Rotate  position cursor*/ 1 zi 
CALL Y MIRROR;  /*Reflect position cursor about  axis*/ 111 
CALL 1 STORE  RECALL  }(COORDINATE-FRAME); 

Figure 7 Auxiliary  world  model  definition procedures. 

Figure 8 MERGE operations: (a) union; (b) intersection; (c) 
and (d) difference. 

This,  together with the ability to  pass  parameters between 
object  procedures, greatly  increases the  power and flexi- 
bility of object definitions. 

0 Interpreting  procedural  descriptions 
The procedural representation is converted into  a world 
model by compiling and  executing  the  object  procedures 
in a context  where the GDP primitives are defined. Exe- 70 
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cuting  the object  procedures builds the world model data 
structure  as follows: 

Any invocation of one of the generic object procedures 
(HOLE, SOLID, PART, or AGGREGATE) results in the alloca- 
tion of an  object  vertex in the world  model. The volume- 
class  for that  vertex is set  as specified by the called proce- 
dure (HOLE, SOLID, etc.). If a name  for  the  object  vertex 
was  supplied, it is stored in the  vertex. If the “called  ob- 
ject” is one of the GDP-supplied primitives,  a  polyhedral 
representation of the primitive object, based on  the object 
parameters  and  the position cursor, is bound to  the  object 
vertex. 

In the case of nonprimitives, the user-supplied  object 
procedure (e .g . ,  SCREW) is then invoked; usually it will 
invoke other user-supplied or primitive object proce- 
dures.  Except  for  the  case of aggregates, the next step is 
to  create a  polyhedral representation of the nonprimitive 
part or  sub-part.  To  do  this, it is necessary  to combine  the 
polyhedral representations of the  sub-parts according to 
their specified polarity (HOLE or SOLID). This task is per- 
formed by the MERGE algorithm,  which  realizes the  com- 
plete range of  set  operations on arbitrary polyhedra. The 
algorithm takes  two polyhedra, described by lists of 
points,  lines, and  surfaces, and yields  a new polyhedron 
which is either  the union, intersection,  or difference of its 
arguments  (see Fig. 8 for definitions of these  operations). 

As the procedural  representations  are  interpreted, suc- 
cessive  applications of the MERGE algorithm are used to 
build up  quite complex  shapes,  as illustrated in Fig. 9. 
The MERGE algorithm can also be invoked  directly in GDP, 

allowing the world model to  be  altered  and subsequently 
re-merged. 

4. Applications of GDP 
This section briefly describes  several of the applications 
that have  been developed based on  the world models sup- 
ported by GDP. 

Interactive  scene  composition und anulysis 
In addition to the execution of procedural descriptions of 
objects to  produce world models, an  extension  to GDP al- 
lows interactive scene composition and analysis.  Scene 
composition enables separately generated world models 
to be retrieved from a file system  and  edited  into a single 
world model; objects  and sub-objects may be moved be- 
tween world model vertices, may be  translated  and ro- 
tated, and the MERGE algorithm may be re-applied.  Such 
interactively generated composite scenes may be dis- 
played in perspective views with hidden  lines suppressed 
[7] on a  storage-tube  display. The edited  models may be 
saved in the file system  for  subsequent use. 
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( a )  ( b )  

Figure 9 MERGE example:  (a)  components before merging; (b) resulting object. 

In the world model,  names  can  be  supplied not only  for 
aggregates, parts,  and  sub-parts, but  also to spatial fea-  
tures (surfaces,  edges, and points). The interactive  scene 
composer allows the  user  to identify a  feature by pointing 
to it with the  graphics  console cursor.  The program then 
matches  the 2-D coordinates  to  the  nearest corresponding 
feature in the 3-D polyhedron. A name is then supplied 
and associated with the  feature in the polyhedral  descrip- 
tor.  The  features  to which the user  has  access  are only 
those of the internal  polyhedral representation, i .e.,  the 
vertices,  straight lines, and flat surfaces which in many 
cases  are  the approximations of curved  entities. 

Path planning 
One of the fundamental  problems in manipulator  pro- 
gramming is how to find collision-free  paths for  a manipu- 
lator  and the  object it is holding through  a cluttered  envi- 
ronment. A new method for doing this is described in [SI. 
The  technique  involves modeling the  objects in the  work- 
space as polyhedra  (using GDP), “shrinking”  the  manipu- 
lator model to  a point in its  articulation or motor  space 
while concurrently “growing” the  obstacles, and  then 
performing a  search through the visibility graph of the 
grown obstacles’  vertices. 

Figure 10 shows side  and top views of a manipulator 
workspace with several  obstacles. In the side view the 
manipulator  gripper is shown, and in both views the com- 
puted trajectory of the tip of the gripper fingers is also 
shown. The particular problem involves moving a part 
from its “pallet” position at the left to  a new position and 
orientation in a fixture at  the right. The wall-like obstacles 
are arranged to exercise the  algorithm; the larger blocks 

r 1 

1 I 
(b) 

Figure 10 Path-finding application: (a) side view of calculated 
trajectory; (b) top view of trajectory  (gripper not shown). 

are high enough so that  the manipulator cannot go di- 
rectly over  them.  Note also that the object being carried 
is a complex part model itself and  that its  geometry is 
accounted for in the  path  calculation. 71 
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Figure 11 Interference-checking application: detail of inter- 
ferences at one corner of mounting  plate (also showing one of the 
studs as an object of interference). 

0 Interjerence  checking 
Another  application, that of mechanical design veri- 
fication, makes use of an interference  checking facility of 
GDP. Intersections of object  edges with other objects  can 
easily be detected  and shown  graphically. (Note  that  such 
edge-face intersection reporting is one of the basic  calcu- 
lations done in the polyhedron merging routine.) Figure 
11 shows one  corner of a mounting plate to be attached  to 
a frame (not  shown) with mounting studs  that  are in- 
tended to fit into slots.  In this GDP drawing  interferences 
between objects  are  shown by small circles; a mounting 
stud is shown out of place (it should  be  positioned in the 
slot), and the locations of other  interferences with the 
frame around  the plate are indicated above  the  slot.  In 
addition to  such  static interference checking, dynamic in- 
terference  checking has been  implemented using the al- 
gorithm of Boyse [9]. 

0 Applications to machine  vision 
As an example of the use of polyhedral  models in vision, 

72 programs have been  written to  determine  the stable  orien- 

tations of parts  on a plane  and then  to  generate  the 2-D 
outlines and  extract  features from them [IO]. The program 
STABLE takes  as  input a polyhedron and  returns a list of 
support planes defining “stable”  orientations of that poly- 
hedron. The method  used first calculates  the  convex hull 
of the  object by applying  a  “gift-wrapping” algorithm to 
the  polyhedron’s vertices. Figure 12(b) shows the  convex 
hull computed  for  the part  shown  in  Fig. 12(a). Next,  the 
object’s center of mass is found  by  integrating the volume 
formed by the prism under  each polyhedral face edge- 
loop, and appropriately combining  the  volumes. The cen- 
ter of mass is projected  onto  each of the  convex hull 
faces,  thus hypothesizing that  the  face is a  stable support 
plane. If the projected  point lies within the bounds of the 
face polygon, then it is tentatively declared a stable plane. 
A test is made  for  the degree of stability by calculating the 
energy  needed to  “tip”  the object by rotating over  the 
edge in the  support plane nearest  the projected center of 
mass. If the  energy is large enough, i . e . ,  exceeds a  user- 
set threshold,  then  the  convex  face is a support plane. All 
the faces are  checked and those passing the  tests  are 
ranked in decreasing order of stability ( i . e . ,  “tipping” en- 
ergy)  and returned in a list to the calling program. Figure 
13 shows the  stable positions  found for the part. 

The  object model can be manipulated so that it rests  on 
any of the stable  support  faces of the  convex hull [ 111. An 
imaginary camera viewpoint is set  to simulate the real 
camera’s  placement in the  workstation, and a program 
then calculates the  outer boundary of the  object’s  projec- 
tion  into the display  plane. The  vector list may be dis- 
played or  passed  to application  programs for  feature anal- 
ysis. Figure 14 shows  the outlines for  each of the  three 
stable  orientations of the interlock as viewed from di- 
rectly above  a  block  platform. 

5. Summary 
The geometric modeling system GDP presented above sat- 
isfies the  functional and  user  requirements of the Auto- 
mated Parts Assembly System (AUTOPASS) language. It 
provides  a structure  for representing  arbitrarily  complex 
objects in terms of primitive objects and for representing 
assemblies as relationships among  objects. A  means of 
creating object models using procedural descriptions of 
parts  and sub-parts  has been developed.  The original di- 
rection of this  project,  and  the  form of the world model 
produced  by GDP, were  suggested  by research in pro- 
gramming mechanical assemblers.  Several applications in 
this  domain  have  been  implemented,  based on GDP; how- 
ever,  the  authors believe that GDP has evolved  into a gen- 
eral  system for modeling 3-D objects.  The significant fea- 
tures of GDP are: 

1. The  structure of the world model. 
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( a )  ( b )  

Figure 12 Machine vision application:  (a) model of a typical part;  (b)  convex hull of the  part  shown in (a). 

Figure 13 Machine vision example: computed stable  orientations of the  part. 

I P 
Figure 14 Machine  vision  example: computed outlines for each of the  orientations of Fig. 13, viewed from  directly “overhead.” 

2. A  procedural representation  for initial specification of VMiCMS operating system; interactive  graphics facilities 

3. A semantic interpretation phase that produces poly- 

4. A  procedure for merging general  polyhedra. The  authors wish to thank  Peter Will for inspiring this 
work, Roger Evans  for his collaboration on  the merging 

GDP has  been  implemented as a set of PUI, FORTRAN, and  algorithm,  and Anna Bruss for generating the revolute 
BAL programs that  run  on a System 3701168 under the model of Fig. 3. 

object shapes and  locations. are provided by a storage tube  graphics  terminal. 

hedral representations of described  objects. Acknowledgments 
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