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Abstract

In this paper, we adapt the Multiple Instance Learn-
ing paradigm using the Diverse Density algorithm as
a way of modeling the ambiguity in images in order
to learn “visual concepts” that can be used to classify
new images. In this framework, a user labels an image
as positive if the image contains the concept. Fach ez-
ample image is a bag of instances (sub-images) where
only the bag is labeled — not the individual instances
(sub-images). From a small collection of positive and
negative examples, the system learns the concept and
uses it to retrieve images that contain the concept from
a large database. The learned ”"concepts” are simple
templates that capture the color, texture and spatial
properties of the class of images.

We introduced this method earlier in the domain of
natural scene classification using simple, low resolu-
tion sub-images as instances. In this paper, we extend
the bag generator (the mechanism which takes an im-
age and generates a set of instances) to generate more
complex instances using multiple cues on segmented
high resolution images. We show that this method
can be used to learn certain object class concepts (e.g.
cars) in addition to natural scenes.

1 Introduction

In the past few years, the growing number of dig-
ital image and video libraries has led to the need for
automated content-based image retrieval systems. Be-
cause what a user wants can vary greatly, we also want
to provide a way for the user to explore and refine a
query by letting the system bring up examples. In
this paper, we develop a general architecture to learn
visual query concepts similar to the ones that Lipson
pre-defined in [11] from a small number of examples.
The extracted concepts are simple, flexible templates
that capture some color, texture and spatial properties
of a class of images.

The learning framework we use in this paper is
called Multiple-Instance learning. In this framework,
examples are not labeled examples, but take the form
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of labeled bags (e.g. the whole image is labeled but
not individual regions). Each bag is a collection of in-
stances (e.g. subimages). A bag is labeled negative if
all the instances in it are negative, and positive if at
least one of the instances in it is positive. We use this
framework to model the ambiguity in mapping an im-
age to many possible templates which describe what it
represents. We discuss a method called Diverse Den-
sity [13] for learning concepts from Multiple-Instance
examples. We introduced this framework in [14] and
showed that it can be used effectively for the task of
natural scene classification.

In the domain of natural scenes, the predominant
color and spatial relations explained most parts of the
image and were preserved even in very low resolution
images. For many other types of queries, we might
want to retrieve new images based on smaller sub-
regions of the query image. For these queries, we need
to preserve some detailed high resolution properties
of image sub-regions for classification. In this paper,
we address these issues by introducing a few exten-
sions to the previous system. We use the segmented
regions in high resolution images to generate complex
instances (conjunctions and disjunctions of segmented
components) using color, texture and simple geomet-
ric properties. We show that the new instances can
be used to retrieve images of object classes like cars in
addition to images of natural scenes like fields and wa-
terfalls. Our experiments on “car” classification show
that a combination of cues (color, texture and simple
shape), some feature selection, and more complicated
concepts (conjunctions) play a significant role in im-
proving classifier performance.

2 Image Classification Systems

Many of the existing image-querying systems work
on entire images or in user-specified regions by using
distribution of color, texture and structural properties.
Some recent systems try to incorporate some spatial
information into their color feature sets [22, 5, 8, 2]
among others. More recently, work by Lipson [11] il-
lustrates that pre-defined flexible templates that cap-
ture the relative color and spatial properties in the im-



age can be used effectively to classify natural scenes
like mountains and waterfalls. In this paper, we
would like to learn such concepts/templates for natu-
ral scenes and other object classes from a small set of
positive and negative examples.

All of the systems described above require users
to specify precisely the desired query. Minka and Pi-
card [15] introduced a learning component in their sys-
tem by using positive and negative examples which let
the system choose image groupings within and across
images based on color and texture cues; however, their
system requires the user to label various parts of the
scene, where as our system only gets a label for the
entire image and automatically extracts the relevant
parts of the scene. Forsyth et al.[5] learned represen-
tations for horses by training the system using the ap-
propriate color, texture and edge configuration. Cox
et al. [4] modeled relevance feedback in a Bayesian
framework that uses an explicit model of the user’s
selection process. More recently, Nastar et al. [16]
introduced a relevance feedback system for query re-
finement over time using a set of positive and negative
images. They estimate the distribution of relevant im-
ages and minimize the probablility of retrieving non-
relevant images. Our system uses the Multiple In-
stance learning framework to learn a query concept
and feature weights automatically from a small set of
positive and negative examples. The system finds the
simplest concept (template) that can be used to ex-
plain the query set and retrieves similar images from
the database by finding the location of the concept in
the image.

3 Multiple-Instance Learning

In traditional supervised learning, a learning algo-
rithm receives a training set which consists of individ-
ually labeled examples. There are situations, however,
where this model fails, specifically, when the teacher
cannot label individual instances, but only a collection
of instances. For example, given a picture containing
a waterfall, what is it about the image that causes it
to be labeled as a waterfall? It is impossible to tell by
looking at only one image. The best we can say is that
at least one of the objects in the image is a waterfall.
Given a number of images (labeled as waterfalls and
non-waterfalls), we can attempt to find commonalities
within the waterfall images that do not appear in the
non-waterfall images. Multiple-Instance learning is a
way of formalizing this problem, and Diverse Density
is a method for finding the commonality.

In Multiple-Instance learning, we receive a set of
bags, each of which is labeled positive or negative.
Each bag contains many instances, where each in-
stance is a point in feature space. A bag is labeled
negative if all the instances-in it are negative. On
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the other hand, a bag is labeled positive if there is
at least one instance in it which is positive. From a
collection of labeled bags, the learner tries to induce a
concept that will label unseen bags and instances cor-
rectly. This problem is harder than even noisy super-
vised learning because the ratio of negative to positive
instances in a positively-labeled bag (the noise ratio)
can be arbitrarily high.

The multiple-instance learning model was only re-
cently formalized by [7], where they develop algo-
rithms for dealing with the drug activity prediction
problem. This work was followed by {1], who showed
that it is difficult to PAC-learn in the Multiple-
Instance model unless very restrictive independence
assumptions are made about the way in which exam-
ples are generated. [13]| develop an algorithm called
Diverse Density, and show that it performs well on a
variety of problems such as drug activity prediction,
stock selection, and learning a description of a person
from a series of images that contain that person.

3.1 Multiple-Instance learning in image
database indexing

In this paper, each training image is a bag. The
instances in a particular bag are various subimages.
Each of the instances, or subimages, is described as
a point in some high dimensional feature space. We
experimented with combinations of cues to describe an
instance. Details on the generation of these instances
will be discussed in section 6.

Given some labeled bags, we would like to find a
description which will correctly classify new images as
waterfalls and non-waterfalls. The main idea behind
the Diverse Density (DD) algorithm is to find areas
in feature space that are close to at least one instance
from every positive bag and far from every negative
instance. The algorithm searches the feature space
for points with high Diverse Density. Once the point
(or points) with maximum DD is found, a new image
is classified positive if one of its subimages is close to
the maximum DD point. In Section.6, new images are
sorted by their distance from the maximum DD point.

In the following subsection, we will describe a
derivation of Diverse Density and how we find the
maximum in a large feature space. We will also show
that the appropriate scaling of the feature space can
be found by maximizing DD not just with respect to
location in feature space, but also with respect to a
weighting of each of the features.

3.2 Diverse Density

In this section, we derive a probabilistic measure
of Diverse Density. We denote positive bags as B},
and the j* instance in that bag as Bj;. Likewise, B;;



represents an instance from a negative bag. For sim-
plicity, let us assume that the true concept is a single
point t in feature space. In other words, the intersec-
tion of all positive bags minus the union of all negative
bags is a single point. We can find ¢ by maximizing
Pr(t | BY,---,B}, By, -, B;;) over all points in fea-
ture space. Using Bayes’ rule and a uniform prior over
the concept location, we see that this is equivalent to
maximizing the likelihood:

argm?.xPr(B+,--QI,B,T,BI_,---,B,;It). (1)
By making the additional assumption that the bags
are conditionally independent given the target concept
t, this decomposes into

arg mtaxH Pr(B; |t) [ Pr(B | 1) (2)

which is equivalent (by similar arguments as above) to
maximizing

argmtaxHPr(t | B}) HPr(t | B) (3)

This is a general definition of Diverse Density, but
we need to define the terms in the products to instan-

tiate it. In this paper, we use the noisy-or model as
follows:

Pr(t| Bf) =1~ [](1-Pr(t| BY)).

J

(4)

The noisy-or model makes two assumptions: one is
that for ¢ to be the target concept it is caused by
(hence close to) one of the instances in the bag. It
also assumes that the probability of instance j not
being the target is independent of any other instance
not being the target.

Finally, we estimate the distribution Pr(¢ | B,"J')
with a Gaussian-like distribution of exp(— || B} ~t 12
1. A negative bag’s contribution is likewise computed
as Pr(t | B;) = [],(1 — Pr(t | Bj)). A supervised
learning algorithm such as nearest-neighbor or kernel
regression would average the contribution of each bag,
computing a density of instances. This algorithm com-
putes a product of the contribution of each bag, hence
the name Diverse Density. Note that Diverse Density
at an intersection of n bags is exponentially higher
than it is at an intersection of n — 1 bags, yet all it
takes is one well placed negative instance to drive the
Diverse Density down.

The initial feature space is probably not the most
suitable one for finding commonalities among images.

1 Any distribution which is monotonically decreasing as dis-
tance from the mean increases would be sujtable here.
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Some features might be irrelevant or redundant, while
small differences along other features might be crucial
for discriminating between positive and negative ex-
amples. The Diverse Density framework allows us to
find the best weighting on the initial feature set in the
same way that it allows us to find an appropriate lo-
cation in feature space. If a feature is irrelevant, then
removing it can only increase the DD since it will bring
positive instances closer together. On the other hand,
if a relevant feature is removed then negative instances
will come closer to the best DD location and lower it.
Therefore, a feature’s weight should be changed in or-
der to increase DD. Formally, the distance between
two points in feature space (B;; and t) is

I B =t 11°=>_ wi(Bijk — tx)? (5)
k .

where Bjjx is the value of the k" feature in the j*
point in the it* bag, and wy is a non-negative scaling
factor. If wy is zero, then the k** feature is irrelevant.
If wy is large, then the k' feature is very important.
We would like to find both ¢ and w such that Diverse
Density is maximized. We have doubled the number
of dimensions in our search space, but we now have
a powerful method of changing our representation to
accomodate the task.

We can also use this technique to learn more com-
plicated concepts than a single point. To learn a 2-
disjunct concept t V s, we maximize Diverse Density
as follows:

arg max H(l - H(l —Pr(tVvs| B;;)))

HHPr(tVs|Bi;)
i

where Pr(t V s | B;;) is estimated as max{Pr(¢ |
Bf),Pr(s | Bj)}. Other approximations (such as
noisy-or) are also possible.

Finding the maximum Diverse Density in a high-
dimensional space is a difficult problem. In general,
we are searching an arbitrary landscape and the num-
ber of local maxima and size of the search space could
prohibit any efficient exploration. In this paper, we
use gradient ascent (since DD is a differentiable func-
tion) with multiple starting points. This has worked
successfully because we know what starting points to
use. The maximum DD point is made of contributions
from some set of positive points. If we start an ascent
from every positive point, one of them is likely to be
closest to the maximum, contribute the most to it and
have a climb directly to it. Therefore, if we start an
ascent from every positive instance in a bag, we are
very likely to find the maximum DD point. When we
need to find both the location and the scaling of the

(6)



concept, we perform gradient ascent for both sets of
parameters at the same time (starting with all scale
weightings at 1). The number of dimensions in our
search space has doubled, though. When we need to
find a 2-disjunct concept, we can again perform gra-
dient ascent for all parameters at once. This carries
a high computational burden because the number of
dimensions has doubled, and we perform a gradient
ascent starting at every pair of positive instances.

4 Segmentation

In the domain of natural scenes, the predominant
color and spatial relations in the target concept ex-
plained most parts of the image and were preserved
even in very low resolution images. For many other
types of queries, we might not be interested in the
whole image and might want to retrieve new images
based on specific parts of the query image. For ex-
ample, we might want to retrieve images that contain
a certain object class like cars or tigers. For these
queries, we need to preserve some detailed high reso-
lution properties of image sub-regions in order to be
able to (a) extract the query object from the positive
examples as the target concept and (b) retrieve new
images containing the object.

To do this, the system needs to ignore the back-
ground and clutter and select out the object of inter-
est from the positive examples. The architecture we
have described in the previous sections can be applied
here as well. The instances here differ from the low-
resolution sub-images used in {14] in that they are seg-
mented components of a high resolution image with a
rich set of descriptive properties. There have been sev-
eral methods proposed in the literature for segmenting
images into multiple regions with coherent properties
(18, 19]. In this paper we use the method by Felzen-
szwalb et al. [19] to roughly decompose the image into
the dominant set of regions using its color properties.
The segmentation helps generate instances that cor-
respond to salient regions in the image and reduces
both the number of instances and the running time
for more complicated concepts (e.g. conjunctions).

5 Bag Generator using Multiple Cues

In this section, we will demonstrate how the Di-
verse Density algorithm can be used to learn a repre-
sentation for the class of cars by describing a new bag
generator which uses a combination of cues and rough
‘segmentation to generate the instances. For example,
a flexible car template which encodes the geometric
properties of the two wheels and the color and tex-
ture relations between the wheel regions and its neigh-
bours could be used to detect cars while accomodat-
ing within-class variations in color, texture and pose.
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We would like to show that we can use the Multiple
Instance Learning framework to learn the car concept
from a few examples by using a set of primitives which
includes color, texture and simple shape properties (a
wheel/circle detector in this case). We also demon-
strate the feature selection capability of the system
which determines the relevant features that are needed
to detect cars vs other natural scene (e.g. fields and
waterfalls).

In our experiments, all images were pre-segmented
using the algorithm described in [19]. We tried to learn
the concept using the hypothesis classes given below:

1. ccl: each instance is a 13 dimensional vector which
describes the color, texture and basic shape properties
of a segmented region in the image. < z,,z2,...T13 >.
T1,Zo gives the position of the centroid of the com-
ponent, x3,Z4,Ts gives the representative color of the
component.

We use the Hausdorff matching technique [9, 17] to

detect instances of a simple shape primitive (circle) in
the segmented component. The circles are detected
in the edge detected image. The Hausdorff matcher
searches for the circle over all 2 dimensional transla-
tions and scale thus detecting ellipses as well as circles.
Zg, X7, T8, L9 gives the location and scaling of the cir-
cle in the image. z¢ gives the distance to the detected
circle, z7 gives the Hausdorff fraction that says how
well it matched the model circle, zg, zg9 gives the scal-
ing of the model circle in.the image.
We use the output of the Steerable Pyramid [20] to get
a multi-scale, multi-orientation image decomposition
with a 4-orientation-band filter set in a neighborhood
around the centroid of the connected component. This
is included to give some measure of texture where the
segmented regions are non-uniform (e.g. snow capped
mountains, wheel regions of a car) 2. z19, %11, Z12,Z13
give the steerable filter responses for 4 orientations
across 3 scales.

2. cc2 : an instance is the conjunction of two con-
nected components (ccl vectors)

6 Experiments

In the following sections, we show three different
types of results from running the system: one is that
Multiple-Instance learning is applicable to this do-
main. A second result is that while one does not need
very complicated hypothesis classes to learn concepts
from the natural image domain {14], more complex
instances which describe a combination of properties
using multiple cues help extend the system to learn a

2These filter responses were obtained using the Steerable Fil-
ter Software Library designed by Simoncelli et al.[20, 21]



more diverse set of queries (e.g. object queries). In
the case of object queries, the target concept is only a
small part of the image. The third result compares the
performance of the system on the “car” class (1) using
simple (single component) vs. more complicated (con-
junction) concepts (2) with and without feature selec-
tion. This result shows that complicated concepts and
feature selection help improve classifier performance.

7 Experimental setup

We tried to learn each of four concepts (“fields”,
“mountains”, “waterfalls”, “cars”) using the new bag
generator. For training and testing we used natural
images from the COREL library, and the labels given
by COREL. These included 100 images from each of
the following classes: waterfalls, fields, mountains,
sunsets, lakes, cars, race-cars. We had a training set
of 140 images with 20 images from each of the classes,
a small test set of 538 images which was disjoint from
the training set, and a larger test set of 2600 images
(which included the training images). The training
scheme used five positives and five negative examples.
We attempted different training schemes: initial is
simply using the initial five positives and five nega-
tive examples. +5fp adds the five most egregious false
positives after a round of testing on a held-out set of
images. +10fp repeats the +6fp scheme twice. This
simulates the behavior of a user interacting with the
system.

8 Natural Scene Classification

We compared the best curves for three natu-
ral scene classes (“fields”, “mountains”, “waterfalls”)
with the previous version of the system from [14] that
uses low resolution sub-images as instances. Figure 1
shows that the performance is comparable to our pre-
vious results in this domain and is significantly better
than global histogramming. This performance con-
tinues for the larger test set of 2600 images as well.
Figure 3 shows a snapshot of the new system working
on the larger dataset of 2600 images for the water-
fall concept. In addition, the current system has the
advantage of better running time and a more general
framework which can be extended to other classes of
objects.

Even when using extremely low resolution images
(8x8), learning a concept using the previous system
took anywhere from a few seconds for the simple hy-
potheses to a few days for the more complicated hy-
potheses (conjunctions and disjunctions). The more
complicated hypotheses take longer to learn because
of the higher number of features and because the num-
ber of instances per bag is large (and to find the max-
imum DD point, we perform a gradient ascent from
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Figure 1: (a) Comparison of classification performance
with segmentation (solid curves) and without segmen-
tation (dashed curves) for 3 natural scene concepts on
538 images from the small test set. (b) This figure
shows the poor performance of global histogramming
on the larger dataset of 2600 images.

2000 2300

every positive instance). However, the current system
uses a better method of generating instances (a rough
segmentation using connected components) and this
reduces both the number of instances and the running
time by orders of magnitude. There are roughly 15—
20 components per image and the system takes a few
seconds to learn the simple cc1 concept and tens of
minutes to learn the more complicated ones

9 Classification of Cars

Figure 2 (a) compares the performance of the two
hypothesis classes cc1 (denoted by the solid lines) and
cc2 (denoted by the dashed lines) on the “cars” class.
We see that both the recall and precision-recall® are
better for the conjunction concept cc2. This indicates

3Precision is the ratio of the number of correct images to the
number of images seen so far. Recall is the ratio of the number
of correct images to the total number of correct images in the
test set



that a single circle detector alone is not sufficient to
classify cars.

Figure 2 (b and c)shows the role of scaling (fea-
ture selection) in the presence of multiple cues. The
solid lines represent the case where there is no fea-
ture selection and the dashed lines represent the case
where there is feature selection. Both the recall and
precision-recall is significantly better when there is fea-
ture selection. This indicates that for this class certain
dimensions are redundant or irrelevant and selecting
the salient dimensions helps improve classifier perfor-
mance.

Figure 4 shows a snapshot of the system working on
the cars concept on the test set of 538 images which
are disjoint from the training set. A new image has the
rating of the minimum distance of one of its instances
to the learned car concept, where the distance metric
uses the learned scaling to account for the importance
of the relevant features. As we see, the system is able
to extract the concept without having the user specify
salient regions within the example images.

10 Conclusions

In this paper, we have demonstrated a general sys-
tem for query learning and for image classification us-
ing a small number of examples. We describe an archi-
tecture that allows the user to train the system, by se-
lecting positive and negative examples, letting the sys-
tem create and use an initial template based on those
examples and finally refine the template by adding
incorrect matches (false positives). Our approach to
training indexing systems treats query learning as a
Multiple Instance Learning problem and builds on the
method of Diverse Density. The system has been
tested for a few classes on a database of 2600 images
from the COREL photo library.

We show that rough segmentation of high resolu-
tion images into salient connected components greatly
‘reduces the number of instances and the running time
of the algprithm especially when low resolution pixel-
instances are not sufficient (e.g. when we move from
the domain of natural scenes to objects). We also have
experiments to show that by using a more complex
representation and features within the same frame-
work, we can learn certain object classes (e.g. cars).
Our experiments on “car” classification show that seg-
mentation, combination of cues (color, texture and
simple shape), some feature selection and more com-
plicated concepts (conjunctions) help improve classi-
fier performance.

In this paper, we have used a small combination of
primitives which were suitable for natural scenes and
vehicles to demonstrate the learning, feature selection
and retrieval capabilities of our system. However, the
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issue of which primitives/invariants we need to use to
generate the instances is still open. In the future, we
would like to explore this issue and extend the bag
generator to use a base set of low-level primitives that
captures a larger set of class concepts.

This paper will be available on-line (with color images)
at the URL http://www.ai.mit.edu/people/aparna/
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Figure 2: (a) Recall curve comparing classification performance for ”cars” using a single component
concept (solid curve) vs a conjunction of components concept (dashed curve). (b) and (c) Recall and
precision curves comparing classification performance for ”cars” with feature selection (dashed curves)
and without feature selection (solid curves).

Figure 3: The figure shows the results for the waterfall concept using the cc2 concept. Top row: Initial
training set—5 positive followed by 5 negative examples. Last three rows: Top 30 matches retrieved from

the test set. The red squares indicate where the closest instance to the main component of the learned
concept is located.

Figure 4: The figure shows the results for the cars concept using the cc2 concept. Top row: Initial
training set—5 positive followed by 5 negative examples. Last three rows: Top 30 matches retrieved from
the small test set of 538 images. The red squares indicate where the closest instance to the learned
concept is located.
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