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Abstract

In this paper, we develop and test an approach to retrieving
images from an image database based on content similar-
ity. First, each picture is divided into many overlapping
regions. For each region, the sub-picture is filtered and
converted into a feature vector. In this way, each picture
is represented by a number of different feature vectors. The
user selects positive and negative image examples to train
the system. During the training, a multiple-instance learn-
ing method known as the Diverse Density algorithm is em-
ployed to determine which feature vector in each image best
represents the user’s concept, and which dimensions of the
feature vectors are important. The system tries to retrieve
images with similar feature vectors from the remainder of
the database. A variation of the weighted correlation statis-
tic is used to determine image similarity. The approach is
tested on a medium-sized database of natural scenes as well
as single- and multiple-object images.

1. Introduction

While searching for textual data on the World Wide Web
and in other databases has become common practice, search
engines for pictorial data are still rare. This comes as no
surprise, since it is a much more difficult task to index, cat-
egorize and analyze images automatically, compared with
similar operations on text.

An easy way to make a searchable image database is to
label each image with a text description, and to perform the
actual search on those text labels. However, a huge amount
of work is required in manually labelling every picture, and
the system would not be able to deal with any new pictures
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Figure 1. A sample picture

not labelled before. Furthermore, it is difficult to give com-
plete descriptions for most pictures. Consider the picture
in Figure 1. One might be tempted to describe it as “river,
trees and stones”, but it would not be able to respond to user
queries for “water”, “waterfall”, “clouds” or “white blobs in
background”. To make a real content-based image retrieval
system, we need some mechanism to search on the images
directly.

1.1. Previous work

Early approaches to the content-based image re-
trieval problem include the IBM QBIC (Query-By-Image-
Content) System [3], where users can query an image
database by average color, histogram, texture, shape,
sketch, etc. The image database is preprocessed with some
human assistance to facilitate the search. Some research
has been done to group images into categories that capture
high-level concepts, such as indoor vs. outdoor scenes and
city vs. landscape scenes [18, 19]. However, image queries
along these lines are not powerful enough, and more com-
plex queries (such as “all pictures that contain waterfalls”)
are hard to formulate. Lipsonet al. [9] used hand-crafted



templates to classify natural scene images. While it has
been successful in this domain, the process is difficult to
automate. Recent research has paid more attention to query-
by-example [1, 11, 16]. In these systems, user queries are
given in terms of positive and negative examples, and some-
times salient regions are also manually indicated. The sys-
tem then proceeds to retrieve images “similar” to the posi-
tive examples and “dissimilar” to the negative ones.

For images, however, “similarity” is not well-defined.
Many algorithms have been proposed to compute image
similarities. They typically do so by converting images into
feature vectors and using feature vector distances as a simi-
larity measure. Grosky and Mehrotra [4] experimented with
a representation using object boundaries’ local structural
features, and they used string edit-distance as a distance
measure. Mehrotra and Gary [13] used relative positions of
“interest points” along object boundaries to represent shape,
and used Euclidean distance as a distance measure. These
methods are based on object recognition techniques. How-
ever, they are quite sensitive to noise in the images, and
cannot handle images where there are no distinct objects, as
in natural scenes. De Bonet and Viola [1] proposed an algo-
rithm where images are passed through a tree of nonlinear
filters to obtain feature vectors that represent “texture-of-
texture” of the original images. It works well with natu-
ral scenes and single-object test sets. Maron and Lakshmi
Ratan [11] used simple features like a row’s mean color,
color differences and color distributions among neighbors,
etc., and it works well for color images of natural scenes.
Ravelaet al.[16] developed a system that uses a correlation
measure to indicate similarity. It works for a variety of im-
ages, but it requires that the user manually pick the regions
of interest from the images. In reality, the user may not al-
ways know which regions are most important with respect
to the similarity measure used by the algorithm. Further-
more, not all pixels within a rectangular region are of equal
interest, which complicates the problem.

More detailed reviews of previous literature in image
classification and retrieval can be found in [8, 11].

1.2. The multiple-instance learning approach

Since the picture in Figure 1 can be viewed differently
as “river”, “waterfall”, “trees”, “clouds”, etc., and multiple-
object images are more common than single-object images,
it is natural to have one image correspond to more than
one feature vector, each one describing one particular view
(or object). In this way, each positive or negative example
translates into multiple feature vectors. After Maron [10],
we call each of these feature vectors aninstance, and we
call the collection of instances for the same example image
abag.

For a positive example, at least one of the instances in
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Figure 2. A multiple-instance learning algo-
rithm: Diverse Density

the bag should be a close match to the concept the user had
in mind when he or she chose the examples, but we do not
know which one. The rest of the instances in the bag are
irrelevant and should be regarded as noise. For a negative
example, we know for sure that none of the instances in
the bag corresponds to the user’s concept. Given the large
collection of instances from positive and negative examples,
our task is to find the “ideal” feature vector that accounts
for the user’s concept. Furthermore, among all the feature
dimensions we choose to describe an instance, only some
of them may be relevant to defining the ideal concept, while
the remaining ones should be ignored. When we take this
into account, the problem becomes computationally much
harder [2].

This kind of problem is known as aMultiple-Instance
Learningproblem [2, 10, 12]. One way to solve this type
of problem is to examine the distribution of these instance
vectors, and to look for a feature vector that is close to a
lot of instances from different positive bags and far from all
the instances from negative bags. Such a vector is likely
to represent the concept we are trying to learn. This is the
basic idea behind theDiverse Densityalgorithm, proposed
by Maron and Lozano-P´erez [10, 11, 12], and is illustrated
in Figure 2. In Figure 2, there are five positive examples
(bags) labelled 1 to 5 and three negative examples (bags)
labelled 6 to 8. Each bag has several instances. The feature
vector space is 2-dimensional. The “ideal” feature vector
is where there is a high concentration of positive instances
from different bags.

Maron and Lakshmi Ratan [11] have applied the Diverse
Density technique to image retrieval problems by using im-
age features such as color statistics and color distribution
patterns. They converted each picture into an8 × 8 ma-



trix of “color blobs”, and used feature vectors such as row
color vectors, column color vectors, color patterns of spe-
cific neighborhoods, etc. This representation works well for
retrieving color natural scene images.

In this paper, we improve their method to deal with a
broader range of images including object images. Simi-
lar attempts have been made by Lakshmi Ratanet al. [6],
who used image segmentation techniques and more com-
plex features such as a combination of color, texture and
simple shapes. They used special filters to find circles and
other simple shapes from the images, in an attempt to learn
object concepts. Our approach differs from theirs in that
we do not pre-define or depend on any templates for object
shapes, but use a much simpler feature representation. For
object images that can be modeled by existing templates,
the method given in [6] is more suitable, but our method
can potentially work with a larger class of images.

We define an image similarity measure as the correla-
tion coefficient of corresponding regions after smoothing
and sampling, and further refine it by allowing different
weight factors for different locations when comparing for
similarity. Based on this, we develop a feature vector repre-
sentation for images where we can use weighted Euclidean
distance to reflect the distance defined by our weighted sim-
ilarity measure. For each example image, a bag of multiple
instances are obtained by choosing different sub-regions of
the image and generating a feature vector for each region.

In section 2 below, we introduce the Diverse Density al-
gorithm. Section 3 discusses our correlation similarity mea-
sure, its corresponding feature representation and a weight
factor controlling method. Section 4 gives experimental de-
tails and results.

2. The Diverse Density algorithm

In this section, we give a brief introduction to the
multiple-instance learning problem and the Diverse Density
(DD) algorithm. A more elaborate treatment can be found
in [10, 11, 12].

2.1. The multiple-instance learning problem

Machine learning algorithms provide ways for computer
programs to improve automatically with experience [14]. In
a typical machine learning problem, the task is to learn a
function

y = f(x1, x2, ..., xn)

given some examples. In traditionalSupervised Learning,
the examples are given in terms of(yi, xi1, xi2, ..., xin) tu-
ples, wherei is the index of examples:i = 1, 2, 3, ... That
is, each set of input values(xi1, xi2, ..., xin) is tagged with
the correct labelyi. In Multiple-Instance Learning, how-
ever, input vectors(xi1, xi2, ..., xin) (called instances) are

not individually labelled with its correspondingyi value;
rather, one or more instances are grouped together to form
a bag, and they are collectively labelled with ay value of 1
(TRUE) or 0 (FALSE). If the label is TRUE, it means that
at least one of the instances in the bag must correspond to
yi=TRUE, while others may correspond to either TRUE or
FALSE. If the label is FALSE, it means that all of the in-
stances in the bag must correspond to FALSE.

In terms of the image retrieval problem, each positive
example selected by the user corresponds to a bag labelled
TRUE, and each negative example selected by the user cor-
responds to a bag labelled FALSE. A feature vector consists
of n numbers (features), each of which partially describes
the image in some way, for example, pixel values, color
statistics, edge locations, etc. Redundant or irrelevant fea-
tures are allowed. Since the pictures are inherently ambigu-
ous, we generate more than one feature vector (instance)
to describe each picture. We expect that one of these fea-
ture vectors for each positive example would account for
the concept the user had in mind when picking the exam-
ples, and that none of them in the negative examples would
coincide with the user’s concept.

We would like to train the system so that it can make
predictions for new examples: given a new example image
(a bag of instance vectors), it should determine whether it
corresponds to TRUE or FALSE. To allow for uncertainty,
the system may give a real value between 0 (FALSE) and 1
(TRUE).

We make a simplifying assumption that the user’s con-
cept can be represented by a single “ideal” point in then-
dimensional feature space. A bag is labelled TRUE if one
of its instances is close to the ideal point. A bag is labelled
FALSE if none of its instances is close to the ideal point.
The “ideal” point is where there is a high concentration of
positive instances from different bags. The confidence of a
bag being TRUE can be measured by the distance from the
ideal point to the closest instance vector in the bag. [10, 12]
developed an algorithm calledDiverse Density, which is
able to find such a point. Not all dimensions of feature
vectors are equally important, so the distance here is not
restricted to normal Euclidean distance, but may be defined
as a weighted Euclidean distance where important dimen-
sions have larger weights. The Diverse Density algorithm
is capable of determining these weight factors as well.

2.2. Diverse Density

Following the same notations as in [10, 11, 12], we de-
note the positive bags asB+

1 , B+
2 , ..., B+

n and the negative
bags asB−1 , B−2 , ..., B−m. The jth instance of bagB+

i is
written asB+

ij , while thejth instance of bagB−i is written
asB−ij . Each bag may contain any number of instances, but
every instance must be ak-dimensional vector wherek is a



constant.
Not all k dimensions contribute equally to defining the

ideal concept, so we need to give a weight to each di-
mension. We want to look for a point in the weightedk-
dimensional space near which there is a high concentration
of positive instances from different bags. It is important that
they are fromdifferentbags, since a high concentration of
instances from the same bag is effectively the same as one
instance at that point. In other words, we are looking for
a point where there is a highDiverse Densityof positive
instances.

For any pointt in the feature space, the probability of
it being our target point, given all the positive and negative
bags, isPr(t|B+

1 , ..., B+
n , B−1 , ..., B−m). So the point we are

looking for is the one that maximizes this probability, that
is

argmax
t

Pr(t|B+
1 , ..., B+

n , B−1 , ..., B−m)

Using Bayes’ rule, assuming a uniform prior over the con-
cept locationPr(t) and conditional independence of the
bags given the target conceptt, the above equals

arg max
t

∏
i

Pr(t|B+
i )

∏
i

Pr(t|B−i )

This is a formal definition of maximizing Diverse Density.
We use the “noisy-or” assumption (see Maron [10] for mo-
tivation and discussions) that

Pr(t|B+
i ) = 1−

∏
j

(1− Pr(B+
ij = t))

Pr(t|B−i ) =
∏
j

(1− Pr(B−ij = t))

and make the following assumption:

Pr(Bij = t) = exp(−||Bij − t||2)

where||Bij − t|| is the distance between the two vectors.
This is a Gaussian bump centered on the feature vector. As
we mentioned before, not all dimensions are equally impor-
tant, so we define the distance to be a weighted Euclidean
distance:

||Bij − t||2 =
∑

k

w2
k(Bijk − tk)2

whereBijk is thekth dimension in the vectorBij . w2
k is

a non-negative weight. (We usew2
k rather thanwk in or-

der to force the weights to be non-negative.) Now we need
to maximize Diverse Density over botht andw. By intro-
ducing weights, we have actually doubled the number of
dimensions over which we are trying to maximize Diverse
Density.

2.3. Finding the maximum

The problem of finding the global maximum Diverse
Density (DD) is difficult, especially when the number of
dimensions is large. The DD algorithm makes use of a gra-
dient ascent method with multiple starting points. It starts
from every instance from every positive bag and performs
gradient ascent from each one to find the maximum. The
idea is that, at least one of the positive instances is likely to
be close to the maximum. So if we do hill-climbing from
every positive instance, it is very likely that we will hit the
maximum DD point.

3. Adapting Diverse Density

The definition of DD requires the definition of feature
vectors for images, where a weighted Euclidean distance
can be used as a measure of “similarity”. We want to use the
pixels themselves as the features and correlation coefficient
as a similarity measure.

3.1. The correlation similarity measure

Given two series of sampled signalsf1(t) and f2(t),
t = 1, 2, ..., n, there is a standard way to find out how cor-
related they are with respect to each other: we can compute
their correlation coefficient[17]. In its simplest form, the
correlation coefficientr is defined by

r =
1
n

∑n
t=1(f1(t)− f1)(f2(t)− f2)

σf1σf2

wheref1, f2 are the average values off1(t) and f2(t),
andσf1 , σf2 are the standard deviations off1(t) andf2(t),
respectively:1

f1 =
1
n

n∑
t=1

f1(t), f2 =
1
n

n∑
t=1

f2(t)

σf1 =

√√√√ 1
n

n∑
t=1

(f1(t)− f1)2, σf2 =

√√√√ 1
n

n∑
t=1

(f2(t)− f2)2

When r = 1, the two signals are perfectly correlated.
Whenr ≈ 0, there is little or no correlation between the
two. Whenr = −1, the two signals are perfectly inversely
correlated. If we only count positive correlations as “simi-
lar”, thenr can be used as a direct measurement of similar-
ity: asr increases, similarity increases.

1Strictly speaking [15], in the definitions forσf1 , σf2 and r given
here, 1

n
should be replaced by 1

n−1
. But it does not matter to us. Both

definitions work the same way in the derivations in this paper, and we
choose to use1

n
which is more convenient.
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Figure 3. Illustration of smoothing and sam-
pling process

Since an image region of sizeu× v can be treated as an
uv-dimensional vector of gray-scale values, this correlation
coefficient is often used to measure similarities between im-
age regions [5, 16].

If we apply the correlation formula to the original im-
ages directly, on a pixel-by-pixel basis, a shift in the im-
age by one pixel would cause a relatively big change in the
correlation value, which is not desirable. To avoid this ef-
fect, we smooth and sample them × n image down to a
low-resolutionh× h matrix. In most of the experiments in
this paper, we chooseh = 10. Specifically, we smooth the
m× n image with a 2m

h+1 ×
2n

h+1 averaging kernel and then
sub-sample it to get anh × h matrix. In other words, each
entry in the resultingh× h matrix is the average gray-scale
value of a corresponding block region in the original image,
as illustrated in Figure 3. In Figure 3, the average value of
blockAEGC goes into the 1st entry of the10× 10 matrix,
the average value of blockBFHD goes into the 2nd entry
(1st row, 2nd column) of the matrix, and so on. Each block
has a50% overlap with any of its neighbors. The large over-
lap is intended to reduce sensitivity to the choice of block
border locations.

3.2. Region selection

With the above smoothing and sampling scheme andh =
10, the correlation coefficient is a good indication of simi-
larity for two single-object images. However, this would not
generalize to more complex cases such as multiple-object
images, where the object (or feature) of interest may not be
at the same position in all pictures.

In a more complex image, the object (or feature) of inter-
est does not occupy the whole image, but only a sub-region
of the image. We would not be able to get satisfactory re-
sults if we compared the two entire images in Figure 4(a)

Picture 1 Picture 2

(a) Correlation coefficient of these two images is 0.118.

Picture 1 Picture 2

(b) Correlation coefficient of the two marked regions is
0.674.

Figure 4. More complex images

using the correlation similarity measure, but we may have
better luck if we compare a region in one image against a
region in the other. For example, the correlation coefficient
of the two entire images in Figure 4(a) is 0.118, while the
correlation coefficient of the two marked regions in Figure
4(b) is 0.674, indicating similarity.

Now the question is, how do we choose the regions? In
fact, we do not know which regions we should pick, since
the pictures are inherently ambiguous, and any region might
become the region of interest, depending on the user’s con-
cept. This is exactly where multiple-instance learning can
help us: we can simply pick all possible regions and let the
learning algorithm take care of finding the “right” region for
us.

Figure 5 shows 20 possible regions (as shaded areas).
Conceptually, there is an unlimited number of possible re-
gions. When deciding the actual number of regions to con-
sider, there is a trade-off between the chance of hitting the
“right” region and the amount of noise introduced. This will
be discussed further in Section 4.2.

In most of this paper, we only consider the 20 possible
regions shown in Figure 5. Consequently, if some images
contain objects that are much smaller than one quarter of
the entire image, their details may not be visible to the al-
gorithm. For each region, we consider both the original im-
age in that region and the left-right mirror image of that
region, since left-right mirror images occur very frequently
in image databases and we would like to regard them as
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Figure 5. Possible regions to consider

the same. Therefore, there are a total of 40 sub-pictures to
consider. This translates into 40 instances per bag in the
multiple-instance learning framework. Here, we do a little
optimization to throw out regions whose variances are be-
low a certain threshold, since low-variance regions are not
likely to be interesting. For each sub-picture, we process it
with smoothing and sampling as illustrated in Figure 3, to
get anh × h matrix which we treat as anh2-dimensional
feature vector.

3.3. Weighted correlation coefficient

Not all dimensions in the feature vector are equally im-
portant. For example, some of them may correspond to the
background in the image, and we do not want them to carry
the same weights as other dimensions. Therefore, we ex-
tend our correlation similarity measure to allow different
dimensions to have different weight factors. We define a
weighted correlation coefficient for twon-dimensional fea-
ture vectorsf1 andf2 as:

r′ =
1
n

∑n
k=1 w2

k(f1(k)− f1)(f2(k)− f2)
σ′f1

σ′f2

wherew2
k is the non-negative weight for thekth dimension,

f1, f2 are defined as before, andσ′f1
, σ′f2

are the “weighted”
standard deviations off1(k) andf2(k), respectively:

σ′f1
=

√√√√ 1
n

n∑
k=1

w2
k(f1(k)− f1)2

σ′f2
=

√√√√ 1
n

n∑
k=1

w2
k(f2(k)− f2)2

3.4. Fitting into Euclidean space

Our similarity measure is defined as the weighted corre-
lation coefficient on feature vectors, rather than Euclidean
distance. This does not fit directly into the Diverse Density
framework. However, there is a simple way to transform the
vectors, so that we can use weighted Euclidean distance di-
rectly to reflect the weighted correlation coefficients of the
original feature vectors.

Suppose thatAij is then-dimensional feature vector we
have obtained for theith bag,jth instance.w2

k is the weight
factor for thekth dimension. Define

Bij =
Aij −Aij

σ′Aij

whereAij is the average ofAij entries, andσ′Aij
is the

“weighted” standard deviation ofAij entries:

Aij =
∑n

k=1 Aijk

n
, σ′Aij

=

√√√√ 1
n

n∑
k=1

w2
k(Aijk −Aij)2

With this definition, we are going to show that, compar-
ing or rankingAij vectors based on weighted correlation
coefficients is the same as comparing or rankingBij vec-
tors based on weighted Euclidean distances in reverse order.
This is formally stated as follows:
Claim For anyi, j, l,m, p, q, u, v and weight factors{w2

k},

1. Corr(Aij , Alm) > Corr(Apq , Auv) if and only if
||Bij −Blm|| < ||Bpq −Buv||

2. Corr(Aij , Alm) = Corr(Apq , Auv) if and only if
||Bij −Blm|| = ||Bpq −Buv||

3. Corr(Aij , Alm) < Corr(Apq , Auv) if and only if
||Bij −Blm|| > ||Bpq −Buv||

whereCorr(α, β) means the weighted correlation coeffi-
cient ofα andβ, and||α−β||means the weighted Euclidean
distance betweenα andβ.
Lemma For anyi, j,

n∑
k=1

w2
kB2

ijk = n

Proof of the lemma is straightforward given the definitions
above.
Proof of Claim

||Bij −Blm||

=
n∑

k=1

w2
k(Bijk −Blmk)2



=
n∑

k=1

(w2
kB2

ijk + w2
kB2

lmk − 2w2
kBijkBlmk)

= n + n− 2
n∑

k=1

w2
k(

Aijk −Aij

σ′Aij

)(
Almk −Alm

σ′Alm

)

= 2n− 2nCorr(Aij , Alm)

Similarly,

||Bpq −Buv|| = 2n− 2nCorr(Apq , Auv)

and the Claim follows.

3.5. Bag generation and image retrieval

Now we are ready to put everything together. For every
image in our database, we do the following pre-processing:

1. If it is a color image, convert it into a gray-scale image.

2. Select some regions from the image, according to Sec-
tion 3.2. Throw out regions whose variances are below
a certain threshold.

3. Extract two sub-pictures from each region: one as the
image itself in the region, and the other as its left-right
mirror image. For each sub-picture, perform smooth-
ing and sampling as illustrated in Figure 3 to get an
h × h matrix. Treat this as anh2-dimensional feature
vector.

4. Transform each feature vector into a new one accord-
ing to Section 3.4, i.e., subtract its mean from it and
then divide it by its standard deviation. (All weights
are 1 to start with.)

5. For each image in our database, we have obtained a
number of feature vectors (after the transformation).
Treat each one as an instance and put them together to
form a bag for the image.

After these steps, our image database is ready to respond
to user queries. The user is asked to select several positive
and negative examples. The system puts together the cor-
responding image bags of multiple-instance data and feeds
them into the DD algorithm. The DD algorithm returns an
“ideal” point in the feature space as well as a set of fea-
ture weight values which maximize Diverse Density. Then
the system goes to the image database and ranks all images
based on their weighted Euclidean distances to the ideal
point. (To find the distance from an image to the ideal point,
it computes the distances of all of its instances to the point,
and then picks the smallest one.) It then retrieves images in
the ranked order. If the retrieval results are not satisfactory,
the user may obtain better performance by picking out false
positives and/or false negatives, adding them to the exam-
ples and training the system again.

3.6. Controlling feature weight factors

The DD algorithm finds an “ideal” feature vectort and a
set of weightsw to maximize Diverse Density. However, in
the presence of few negative instances, it tends to push most
of the weight factors towards zero, leaving only a few large
weight values, which means that we are only using a small
fraction of pixels to classify and retrieve images. Since we
have very little training data, a too-simple concept based
on a few pixels is likely to work well on the training set.
However, it is not likely to generalize well, especially for
complex image concepts. To address this issue, we impose a
constraint on the sum of weight factors, as discussed below.

Without loss of generality, we require that all weight fac-
tors be between 0 and 1:0 ≤ wk ≤ 1, k = 1, 2, ..., h2. (h2

is the number of dimensions in the feature vectors.) We can
limit the change in weight factorswk by imposing the fol-
lowing constraint, which sets a lower bound for the sum of
weights:

h2∑
k=1

wk ≥ β · h2

whereβ is a constant between0 and1. Whenβ = 0, there
is no restriction on the weights, and we are back to the orig-
inal DD algorithm. Whenβ = 1, we are forcing all weight
factorswk to be equal to 1. The restrictions on weight fac-
tors are easily controlled by changingβ values. For exam-
ple, whenβ = 0.5, the average of weight factors must be
greater than 0.5, so no more than half of the weight factors
can be close to zero.

The simple unconstrained maximization algorithm used
in the original DD method would no longer work to find the
maximum with this new constraint. We switch to a more
powerful algorithm called CFSQP (C code for Feasible Se-
quential Quadratic Programming) [7], which is capable of
handling maximization problems with constraints. As will
be shown in Section 4, this approach works well on a wide
variety of situations.

4. Results

We have tested our system on two different image
databases. One is a natural scene image database, con-
sisting of 500 pictures, 100 each for waterfalls, moun-
tains, fields, lakes/rivers, and sunsets/sunrises. These are
taken from the COREL library, the same database as used
in [11]. The other one is an object image database, con-
sisting of 228 pictures from 19 different categories, such
as cars, airplanes, pants, hammers, cameras, etc. These
are downloaded from the websites of AVIS Car Rental
(www.avis.com), Bicycle Online (www.bicycle.com), Con-
tinental Airlines (www.flycontinental.com), Delta Airlines
(www.delta-air.com), J. Crew (www.jcrew.com), JCPenney



User-selected positive examples

User-selected negative examples

Final retrieval from test set (top 16 images)

Figure 6. A sample run with 3 rounds of train-
ing: retrieving cars

(www.jcpenney.com), Ritz Camera (www.ritzcamera.com),
Sears (www.sears.com) and Sony (www.sony.com).

4.1. Experimental setup

To simulate user feedback while minimizing user inter-
vention, we followed the same experimental method as used
in [11]:

The entire image database is split into a smallpotential
training setand a largertest set. The correct classifications
for all images in the potential training set are known to the
system. After the user selects positive and negative image
examples, we generate corresponding bags and run DD al-
gorithm once, and then use the results to rank images from
the potential training set. Since their correct classifications
are already known, the system can evaluate its own perfor-
mance on these images without asking the user. It can pick
out some false positives and/or false negatives and add them
to the examples to train itself again. This process can be re-
peated more than once, and it effectively simulates what a
user might do to obtain better performance. In the exper-
iments of this section, 20% of images from each category
are placed in the potential training set. The system picks
out top 5 false positives from the potential training set and
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Figure 7. Precision-recall curve for Figure 6

adds them to the negative examples for a second round of
training, and then picks out another top 5 false positives and
trains for a third time. Finally it retrieves images from the
larger test set. A sample run of the image retrieval system is
shown in Figure 6, where the user wants to retrieve images
that contain cars.

One way to evaluate image retrieval performance is to
use precision-recall curves. Precision is the ratio of the
number of correctly retrieved images to the number of all
images retrieved so far. Recall is the ratio of the number
of correctly retrieved images to the total number of correct
images in the test database. In a precision-recall curve, we
plot precision values against recall values. Figure 7 shows
the precision-recall curve for the retrieval result in Figure
6. In this graph, precision is around 0.5 when recall is 0.6,
which means: in order to obtain 60% of all waterfalls, about
50% of the images retrieved are true waterfalls.

4.2. Comparisons

We now study the effects of changing various parameters
in the learning algorithm.

• Adjusting weight factor control

Theβ value in the inequality constraint affects perfor-
mance very much. In Figure 8, we show the results of
varyingβ when retrieving sunset images. For eachβ,
the precision-recall curve is shown. Asβ moves to-
wards0, the precision-recall curve tends to move close
to that of the original DD algorithm. Asβ moves to-
wards1, the precision-recall curve tends to move close
to that of forcing all weights to be identical. This is
consistent with our analysis in Section 3.6.
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β = 0.6:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Original DD

Identical Weights

Inequality β=0.6

β = 0.9:
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Figure 8. Precision-recall curves for different β in the inequality constraint

retrieving sunsets/sunrises:
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Figure 9. Precision-recall curves for different number of instances per bag

retrieving sunsets/sunrises:
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retrieving waterfalls:
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Figure 10. Precision-recall curves when smoothing and sampling at different resolutions



• Choosing different number of instances per bag

Most of the experiments have been done with up to 40
instances per bag, by picking 20 different regions and
taking mirror images. Figure 9 shows the effects of us-
ing fewer and more instances per bag. In general, hav-
ing more instances per bag means a higher chance of
hitting the “right” region. However, it also means in-
troducing more noise which affects DD performance.
Therefore, more instances per bag do not guarantee
better performance. This is supported by Figure 9.

• Changing feature vector dimensions

In most experiments, we smoothed and subsampled
each image region to a low-resolution10 × 10 ma-
trix (a 100-dimensional feature vector) before compar-
ing them against each other. We can use other reso-
lutions (i.e., feature vector dimensions) as well. Fig-
ure 10 shows the effects of doing so. In many cases,
as we increase the resolution, performance first rises,
then declines. The problem with a very low resolution
is that it does not give much information to compare
for similarity. The problem with a very high resolu-
tion is that it makes our correlation similarity measure
very sensitive to image shifts, and a higher resolution
brings more noise. The “ideal” resolution which gives
the best performance is highly dependent on the actual
images.

• Comparing with a previous approach

Now we compare our system with a previous approach
developed by Maron and Lakshmi Ratan [11], which
used DD algorithm with image feature vectors of color
statistics and color distribution patterns. With a natural
scene database, the performance of our system is very
close to that of [11], as shown in Figure 11. The ap-
proach in [11] was targeted to retrieving color natural
scene images, and would not work with object images.
Our system makes use of only gray-scale information
from the images, and has obtained comparable results
on the natural scene database. Furthermore, it works
with a wider range of image databases including ob-
ject images.

5. Conclusions and future work

We have presented a new approach to the problem of
content-based image database retrieval, using a weighted
correlation similarity measure and the Diverse Density
multiple-instance learning techniques. We have built and
tested a system which allows users to select positive and
negative example images and then automatically retrieves
similar pictures from a medium-sized database. As has been
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Figure 11. Comparison with a color-statistics
approach

shown in the test results, this approach performs reasonably
well on both natural scenes and object images.

Compared with a previous approach in [11] which was
targeted to retrieving natural scenes, our approach performs
very close to theirs. Furthermore, our approach works well
on object image databases, which [11] was not designed to
handle.

We have studied the effects of putting more or fewer in-
stances in each bag (by choosing more or fewer regions
from each picture), and the effects of changing the num-
ber of feature vector dimensions (by smoothing and sam-
pling image regions at different resolutions). Having more
instances per bag does not guarantee better performance.
Although the chance of hitting the “right” region increases
as we put more instances into each bag, more irrelevant in-
stances lead to more noise, which makes it more difficult
for DD algorithm to find the ideal point. On the other hand,
as we increase the number of dimensions of each feature
vector, performance first rises and then drops down in many
cases. This is because a very low resolution does not give
enough information to compare for similarity, while a very
high resolution adds noise and also makes our correlation
similarity measure very sensitive to image shifts.

The treatment of feature space weight factors in the Di-
verse Density algorithm has significant effects on the per-
formance of our system. The original Diverse Density al-
gorithm gives the maximization process too much freedom,
which drives most of the weight factors towards zero, leav-
ing only a few large values. This is not desirable in the
image retrieval domain. We experimented with imposing
different inequality constraints on the sum of weights. The
system is quite sensitive to these changes.



In Section 4.2, we discussed the effects of changing the
β value in the inequality constraint. As a future direction,
one might want to study how to chooseβ automatically to
get optimal performance.

All experiments shown in this paper have been done on
gray-scale images. Some attempts have been made to make
use of color information in color natural scene images. We
used RGB values separately and used a similar approach
as we did with gray-scale images, tripling the number of
dimensions of feature vectors. No significant improvements
have been observed in this case. One other possible future
direction would be to explore the effects of alternate color
representation schemes, and to test on a larger variety of
color images.

Also, one might want to try to use different feature vector
representations and/or other similarity measures. We have
attempted to preprocess the images with edge detection, and
to use line and corner features in the feature vectors. How-
ever, the results we have got are not satisfactory.

Although our system is able to handle scaling changes
across images, it is not designed to handle rotations. The
correlation similarity measure can tolerate small rotations,
but large rotations of the same object would be treated as
dissimilar. One way to handle rotations would be to add
more instances to represent different angles of view for each
image region, although this would mean a significant in-
crease in the number of instances per bag. There may be
better ways, and this is yet another possible future direc-
tion.
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