Proceedings of the 1991 IEEE
Intemational Conference on Robotics and Automation
Sacramento, California - April 1991

Parallel Robot Motion Planning

Tomés Lozano-Pérez,
Patrick A. O’Donnell

MIT Artificial Intelligence Laboratory

Abstract

This paper presents a fast, parallel method for com-
puting configuration space maps. The method is made
possible by recognizing that one can compute a family
of primitive maps which can be combined by superposi-
tion based on the distribution of real obstacles. We use
the fast configuration space computation to implement
a global six degrees-of-freedom path search for a Puma
robot.

1 Introduction

In this paper we present a simple global motion-
planning algorithm that can take advantage of the ca-
pabilities of massively-parallel machines. The key idea
that makes this algorithm possible was first articulated
in W. Newman’s doctoral thesis [10]. Newman noted
that, for most robot kinematics, one can precompute
a one-parameter family of primitive configuration
space maps, indexed only by radial distance to the
robot base. One can then obtain complex configuration
space maps by superposition of these primitive obstacle
maps. This result is a generalization of the union prop-
erty of the configuration space, where the configuration
space obstacle for a union of objects is the union of the
configuration space obstacles of the individual objects
[7). The superposition of primitive maps is quite general
and can be used to construct configuration space maps
for the first three links of the majority of existing in-
dustrial robots. We have exploited an extension of this
property to develop parallel algorithms for computing
the configuration space maps for six degrees-of-freedom
wrist-decoupled robots.

The primitive configuration space maps can be repre-
sented as bitmaps. The advantage of a bitmap represen-
tation is that it provides a simple and efficient means of
superimposing precomputed maps. The drawbacks of
a bitmap representation are that the memory require-

1000

CH2969-4/91/0000/1000$01.00 © 1991 IEEE

ments limit the practical resolution of the map, and it
forces a discretization of the configuration space in all
dimensions.

Nevertheless, under a few simplifying assumptions,
notably that the robot have few degrees-of-freedom
(typically three) and that the required position resolu-
tion is limited, one can construct complex configuration
space maps in a few seconds on a modern workstation
[10, 2]. Although some previous planners (8, 4] are al-
most this fast on comparable problems, the bitmap su-
perposition approach leads to very simple algorithms
and is ideal for parallel implementation.

We have implemented this motion planner for the first
three degrees-of-freedom of a Puma robot in *Lisp™
on a Thinking Machines’ Connection Machine with 8K
processors. The time to build a 32 x 32 x 32 configura-
tion space is approximately 0.3 sec; for a 64 x 64 x 64
configuration space, the time is approximately two sec-
onds. In both cases, the running time is independent of
the number of obstacle bits of the input obstacle maps.
Increasing the number of physical processors in the Con-
nection Machine, which can have up to 64K processors,
would provide a linear speedup.

We have also implemented a six degree-of-freedom
version of the algorithm. This algorithm performs a
sequential search of the six dimensional configuration
space, building three-dimensional cross sections in par-
allel. In the example illustrated in Figure 1 a path was
found in approximately three minutes.

2 Relation to Previous work

There has been a great deal of published work on mo-
tion planning during the past twenty years. A number
of approximate motion planning algorithms have been
implemented and tested; the survey [9] lists many of
these. The survey [12] describes work on exact combi-
natorial algorithms.

EEE
CE

Figure 1: A six degree of freedom path for a Puma robot
found with this algorithm. The task is to insert a 12
inch ruler into a partially closed cardboard box. The
sequence is left to right, top to bottom.

A number of recent approaches that are worthy of
note are: Local methods—[1] uses a combination of
a low-dimensional Voronoi-like diagram and random-
1ized search to explore large degree of freedom config-
uration spaces, [5] uses a variant of the potential field
method that uses linearized constraints in the configura-
tion space rather than pseudo-forces. Global methods—
[6, 3] show how to compute explicit configuration space
boundaries for manipulators with several degrees of
freedom, avoiding the sampling techniques of previous
methods.

We are aware of very few parallel algorithms for mo-
tion planning, except Pollard [11].

1001

3 Primitive configuration space
maps

Our approach exploits the rotational symmetry in the
kinematic structure of most robots to allow precompu-
tation of the configuration space maps for simple obsta-
cles [10, 2]. We will illustrate this idea first for a two-link
planar revolute robot, then for the first three links of a
Puma-like robot, next for the first three links of a vari-
ety of other robot types, and finally for wrist-decoupled
six degrees-of-freedom robots. The treatment of the
first three links of robots parallels that in [10, 2]; the
treatment of wrist-decoupled robots is new. In this sec-
tion we describe the general approach. Section 4 gen-
eralizes the approach to six degree-of-freedom grippers.
In Section 5 we show the parallel algorithms.

3.1 A two-link revolute robot

Consider the two-link planar manipulator shown in
Figure 2(a). The configuration of this manipulator is
specified by the two joint angles 62, 65. (The choice of
joint angle subscripts 2 and 3, instead of 1 and 2, is
to retain consistency with the three-dimensional robot
we will discuss later.) In Figure 2(a), we can also see
a point obstacle whose polar coordinates are r,¢. The
configuration space obstacle corresponding to collisions
between this point obstacle and the last link is shown in
Figure 2(b). This configuration space obstacle is made
up of a single locus, described by the following paramet-
ric equations with parameter s (which is the distance on
the second link where the point intersects):

2 g2 _ g2
_ g fre=1l5—5
fs = cos (———M) 63
02 = ¢ —atan(ssinfs,ly + scosfs) (2)

The crucial observation is that ¢ enters into these equa-
tions only as an offset in #;. The only obstacle pa-
rameter that affects the shape of the locus is r. The
configuration space obstacle for another point with the
same r but different ¢ can be derived from the one in
Figure 2(b) simply by shifting in the 8, direction.

This property follows from the rotational symmetry
of the problem; the choice of the zero value for 45 is
totally arbitrary. Had we chosen the base frame to be
rotated so that the ¢ coordinate for the obstacle point
was zero, we would not have changed the geometry of
the problem in any way. A rotation of the base coor-
dinate system amounts to a shift in the configuration
space. Therefore, we should expect the effect of a co-
ordinate system rotation to manifest as a shift in the
configuration space; it does.

63
s
r
o
02
i
i ———e-
'.“.
0=0
63
9=0
"
. .
62

Figure 2: (a) A two-link planar manipulator. 6 and
05 are the joint variables. A point obstacle is shown at
polar coordinates (r,¢). Configurations which collide
depend on the parameters s, r, and ¢. ¢ only affects
the configuration as an offset of 5. (b) The configu-
ration space obstacle of a point on the z-axis (dotted).
As the polar angle, ¢ of the point increases, the con-
figuration space obstacle shifts along 62, but does not
change shape (solid).

Given this property, we can characterize the primi-
tive configuration space maps for a given manipu-
lator by storing the configuration space generated from
point obstacles with ¢ = 0 and different values of r.
Each of these maps, for this simple manipulator, is char-
acterized by a single locus. The primitive maps form
a one-parameter family of curves in the configuration
space with radial distance r as a family parameter.

The fact that the shape of the configuration space
obstacles for an obstacle point depends only on r is
not limited to manipulator links modeled as lines; it
holds for any link shape. It follows directly from the
rotational symmetry of the problem. Therefore, one
can build the primitive configuration space maps for

1002

<! o taa

11 i”é

Figure 3: Primitive maps for some values of r for a

planar robot with polygonal links.

=1 joint 3 axis

] joint 2 axis
int 1 axj

Figure 4: Top view of a Puma-like robot with a shoulder
offset.

each range of r using any existing configuration space
algorithm. Since this only needs to be done once for
a given robot, there is no particular need for efficiency.
Figure 3 shows some primitive configuration space maps
for links with more complex shapes. These maps can be
used instead of the obstacle maps for line links shown in
Figure 2. Similarly, the extension from point obstacles
to physical primitives is trivial, provided the primitive
obstacle is symmetric around the relevant joint axis of
the robot.

3.2 The third dimension

We describe our algorithms for a Puma-like robot, with
two arm links operating in a plane which is offset from
the shoulder axis by a distance h (see Figure 4). (Ac-
tually, they operate in a planar slab—see below.) Let
us, for the moment, neglect the actual shape and dis-
placements of the arm links and assume that both links
reside in a plane. Then, given a point obstacle at z, y, z
(with \/z? + y? > h), there are two values of 6, for
which that point will lie in the plane of the arm. Let
v =+/22 +y% - h? and

P =
¢ =

ro=

atan(y,z) + atan(41’, h) — g (3)
atan(z, r') (4)

Vit 2 (5)

Note that there are two sets of »,¢, % , one for each of
the two roots for ». These correspond to the two values
of @; which cause the plane of the arm links to intersect
the point obstacle.

As in the planar case, the primitive configuration
space obstacles form a one-parameter family of curves.
In fact, it is exactly the same family, since the effect
of 0; is merely to pick a plane within which the ob-
stacle interaction happens. These equations ignore the
shape of of the arm out of the plane. For the Puma,
the links are a constant width w perpendicular to their
plane of motion. In that case, there are two ranges of
% values over which the effects of a point obstacle are
felt. The range can be approximated by treating the
obstacle point as a sphere of diameter (at least) w.

If the shape of the link out of the plane of motion were
not a constant width, then we would need to use three-
dimensional primitive configuration space obstacles. To
see this, consider attaching a spherical protrusion to the
side of a planar link. Assume an obstacle point on the
x axis. Then, depending on the value of 8;, the link
shape is either the shape of the planar link or a circle.
Of course, this has drastic effects on the primitive ob-
stacles, requiring the use of three-dimensional primitive
maps so as to capture the variations as a function of 8.

3.3 Other robot kinematics

The approach described in the preceding sections is not
limited to Puma-like robots. Whenever one has in-
tersecting joint axes, one obtains the symmetries that
these algorithms exploit.

1003

4 Grippers and wrists

We have limited our attention thus far to the first three
links of a robot. In this section we extend our ideas to
full six degree-of-freedom robots. We will show that for
“wrist-decoupled” robots the applicability of families of
primitive obstacle maps extends to the grippers. We
will also show how a simple search strategy can make
use of fast three degree-of-freedom configuration space
computation to implement a full six degree-of-freedom
path search.

In the majority of non-redundant linked robots, the
first three links serve to position the robot’s wrist, a
point where the last two or three joint axes intersect. It
is well known that this type of wrist structure ensures
the existence of a closed-form solution to the robot’s
kinematics. For related reasons, this design also en-
sures that the computation of the configuration space
obstacles for the robot’s gripper can be effectively de-
coupled from the computation of the obstacles for the
arm. Therefore, we will assume that we are dealing
only with “wrist-decoupled” robots. We can exploit the
same kind of rotational symmetry that we have used to
construct the configuration space around the base of
the robot to characterize the obstacles for the robot
gripper (and its payload). Furthermore, this approach
is applicable to wrist-decoupled robots independent of
the kinematic arrangement of the first three links.

The difficulty of dealing with the gripper is that the
symmetry exists about the position of the “wrist,” that
is, the tip of the arm and not its base. Therefore, we
have to perform a computation at each wrist position.
This should not be surprising; it simply recognizes the
fact that the gripper has six degrees-of-freedom. Fortu-
nately, the computation is the same at each wrist po-
sition. Only the obstacles found in the neighborhood
of each wrist position differ. This type of computation
is, in principle, ideal for SIMD machines such as the
Connection Machine. In practice, memory limitations
have forced us to pursue a somewhat different approach
for the six dimensional case (see Section 4.3). We will
illustrate our approach in the planar éase, where it is
easier to visualize.

4.1 Planar grippers

Consider a simple planar robot gripper. We are inter-
ested in determining the legal combinations of z,y,6
values for the gripper. That is, we want to construct a
three-dimensional configuration space. Note that we are
using values of 6, the orientation of the gripper about
the global x axis, and not the values of the last joint
angle. This choice is essential to enable us to consider

collisions of the gripper independently of collisions of
the arm. OQur strategy is to characterize the forbidden
positions and orientations of the “foating” gripper in-
dependent of any arm constraints.

In our implementation, we characterize the range of
forbidden wrist angles for a given wrist position, z,y.
This process is analogous to that of building the con-
figuration space obstacles for the planar revolute ma-
nipulator. Earlier, we noted that rotations of the base
coordinate frame of the revolute manipulator did not
affect the shape of the configuration space obstacles,
but only their position in the configuration space. In
the case of a floating planar gripper, neither transla-
tions of the wrist nor rotations about the wrist affect
the shape of the configuration space obstacles. Only the
distance between the point obstacle and the wrist mat-
ters. Therefore, the primitive obstacles for the gripper
(at a particular wrist position) form a one-parameter
family of one-dimensional configuration space obsta-
cles, representing forbidden values of ¢ and indexed by
distance from the wrist position.

4.2 Three-dimensional grippers

The three-dimensional case is analogous to the planar
case. The difference is that now we have to deal with
three wrist angles and three displacements. We exam-
ine the case of a gripper mounted on a spherical wrist.
The extension of these remarks to other types of wrist
construction is straightforward.

We will use the angles o, 3,7 to represent the ori-
entation of the gripper relative to the global cartesian
frame. The wrist angle o corresponds to the angle ¥
in the spherical coordinate representation. The wrist
angle 8 corresponds to the spherical angle ¢. The wrist
angle v represents rotation about the axis defined by o
and B. Given the 8;,6,0; joint angles that determine
a wrist position, these wrist angles can be converted to
joint angles for the wrist.

One crucial issue in handling a three-dimensional
gripper is that the Fuler-type angle specification used
for the gripper only has one angle whose origin can be
specified arbitrarily, namely o Therefore, we require
a two-parameter family of three-dimensional primitive
maps, parameterized by values of § and r.

It is easy to see that the geometry of the system is
unchanged when the base coordinate system is rotated
by an arbitrary angle. Just as with the first link of the
two-link robot, it follows that the shape of the primitive
obstacles is independent of «. However, once the axis
of rotation for a is chosen, a natural origin for 3 is de-
fined; the obstacles are not independent of 3. The three-
dimensional configuration space obstacle corresponding

1004

to a point changes in its f4 extent as the 8 coordinate
of the point changes.

Compared to the primitive obstacle maps for the arm,
the maps for the gripper include an extra dimension of
the map and an extra parameter describing the family
of maps. Although this would appear to increase the
complexity of the problem, it will be seen that the sim-
plicity of the algorithm to compute the configuration
space will not be affected. The fundamentals remain
identical to those for the configuration space of the arm.

4.3 On-demand computation of obsta-
cle maps

In general, one has to be wary of computing high-
dimensional obstacle maps, as they require memory
and computation that is exponential in the degrees-
of-freedom. A single full six degree-of-freedom con-
figuration space bitmap with a sampling resolution of
11 degrees per index would consume a 128 megabytes
of storage. Even our Connection Machine, as currently
configured, contains only half that amount of memory.
Our approach has been to compute obstacle maps only
as needed to find a path. In particular, we construct
the complete obstacle map for the three arm degrees-
of-freedom and compute the maps for the wrist as nec-
essary. We compute the wrist maps for only a single
z,y,z position of the wrist at a time, only requiring a
three degree-of-freedom map for the orientation of the
wrist. The three degree-of-freedom maps consume a
more managable 4K bytes each.

Any safe path for the robot must lie in the free
space of the configuration space of the arm degrees-of-
freedom. We can thus use that configuration space to
direct a sequential search for a full six degree-of-freedom
path for the arm plus gripper. The search generates a
path for the arm within the configuration space of the
arm, and for each step of the arm’s path, a motion of
the wrist is computed which maintains safety from col-
lision due to the gripper. This is easily accomplished by
comparing the gripper configuration spaces of neigbor-
ing configurations along the path to identify common
free space. With the gripper in any configuration in the
common free space, the arm motion for that path step
will be safe. All that remains is to find a path in the
gripper configuration space into the common free space.

The parallel implementation of our approach (see Sec-
tion 5) is sufficiently fast in computing configuration
spaces that we can compute the gripper obstacle maps
on demand as the search proceeds. As the search strat-
egy tries each new step along the arm path, it computes
the gripper map for the new configuration to compare it
with the map for the current configuration. Whenever

there is a common free space between the maps and a
path for the gripper into the common free space, the
search can consider that new step as a possibility. If no
common free space or path can be found, that branch
of the search reaches a dead-end.

5 Parallel Algorithms

Our parallel configuration space algorithm runs in time
that depends only on the resolution desired. It is inde-
pendent of the number of obstacles. The algorithm is
as simple as it can possibly be, but the implementation
is slightly tricky because the organization of the data
in the SIMD machine must be carefully laid out to take
full advantage of the parallelism offered.

The fundamental algorithm is simply this: form a
cover of the actual obstacles using primitive obstacles.
Begin with a configuration space map initialized with
the joint limits of the arm. For each primitive obstacle
in the cover, select the primitive map indexed by r—
the radial distance of the obstacle, shift the map by
¢—the polar angle of the obstacle, and add it into the
configuration space map being constructed. That’s all.

The fundamental algorithm is unchanged whether
we're generating the configuration space map for the
two-link planar robot, the three-dimensional Puma-like
robot or the general 3D gripper. The layout of the data
in the Connection Machine is the only difference, as
described in this section.

5.1 The Connection Machine

Our Connection Machine has 8192 physical processors
which can be configured on demand to simulate a con-
ceptually unbounded number of virtual processors ar-
ranged in an arbitrarily dimensioned grid. (Each physi-
cal processor simulates a number of virtual processors.)
This capability suggests several natural mappings of
parameters of the path planning problem to axes of
the virtual Connection Machine. Unfortunately, large
numbers of virtual processors (large ratios of virtual-
to-physical processors) make unreasonable demands on
the available physical memory of the machine, and also
increase program running time approximately linearly
with the virtual processor ratio. As a result, our ac-
tual implementation trades off natural implementation
strategy against memory and time.

The Connection Machine offers an interprocessor
communication function which our parallel algorithms
exploit. This is a scan operation, which combines data
from all processors along a specified dimension of the
processor grid using an associative arithmetic function,
such as logical-or. As a special case, it can also copy

1005

11111

Figure 5: The primitive maps as stored in the Connec-
tion Machine. This stack illustrates the storage for a
single value of 7. Each plane represents a 6-63 plane
indexed by a particular value of ¢. (For the resolution
shown, there would be 32 of these planes.) The map is
shifted according to the ¢ index of the processor. The
r-dimension (not shown) controls the shape of the prim-
itive configuration space obstacle.

the value from one processor to all processors along that
dimension. This scan operation runs in essentially con-
stant time.

5.2 Data representation

We need to represent three data structures in the Con-
nection Machine: the bitmap representing the carte-
sian obstacles, the primitive obstacle bitmaps, and the
configuration space bitmap. It is natural to associate
the primitive obstacle bitmaps and the configuration
space bitmap with a two-dimensional processor grid,
with each processor representing one bit. It is not im-
mediately obvious how to represent the cartesian obsta-
cles to efficiently exploit the machine.

Since we index the family of primitive maps by r, and
shift them by ¢, where r and ¢ are the polar coordinates
of the cartesian obstacles, a natural representation is to
form a bitmap with axes » and ¢, where each bit will
be on if there is an obstacle in cartesian space at those
coordinates.

The polar-coordinate obstacle bitmap is denoted

O,(r,8). The family of primitive bitmaps is denoted
P[r](62,05), where 85 and 3 are quantized along the
axes of the bitmaps. The configuration space map is
denoted C(6s,03).

We configure the Connection Machine into a four
dimensional, n x n x n X n grid, indexed by 65, 63, r and
¢. The reason for this will be seen in the procedure for
computing the configuration space, which will consist of
one scan along each of the dimensions of the Connection
Machine.

To see the layout of the data in the CM, consider a
two-dimensional sub-grid indexed by a particular pair
of (r,¢)—a 02-03 plane. (Figure 5.) (Remember that
in these algorithms, 6 and 03 are quantized.) Within
this sub-grid, we store the primitive obstacle map, P[r],
offset along the #s-axis by the value of ¢ used to select
this sub-grid. The effect is that we will store in a pro-
cessor with indices (02,603, r,¢) the primitive obstacle
bit P[r](6s — #,03). (The subtraction 82 — ¢ must, of
course, be computed modulo n.) Call this the P-bit.
Fach primitive obstacle map, P[r] will be represented
in the Connection Machine n times, once for each value
of ¢. Since the primitive maps depend only on the robot
and the resolution of the quantization, the maps need
to be downloaded into the CM only once.

The two-dimensional obstacle bitmap, O, (7, ¢), is du-
plicated for all values of 6, and f3; that is, each proces-
sor, (8s,63,7,), stores the obstacle bit for coordinates
(r,#). For each r and ¢ the entire 65-83 plane is either
1 or 0, depending on Op(r,¢). Call this the Op-bit.

The final configuration space, C'(62,03), will be gen-
erated in the two-dimensional, 8,-03 sub-grid selected
by (r = 0) A (¢ = 0).

5.3 Parallel algorithm for the two-link
robot

Assuming that the obstacle bitmap has been stored in
the Connection Machine, the computation of the config-
uration space only needs to combine the primitive maps
as selected by the obstacle bitmap. The O,-bit selects
the desired (appropriately shifted) primitive maps, and
a scan operation with logical-or combination along the
r- and ¢-axes generates the configuration space map.

To store the obstacle bitmap in the Connection Ma-
chine in the format we described above, we download
the two-dimensional bitmap into a t wo-dimensional sub-
grid of the Connection Machine, then copy the bitmap
along the remaining two dimensions.

In full, the algorithm can be written as:

procedure two-link-from-r¢-bitmap-parallel
begin
download-2d(0,, r-axis, ¢-axis)

1006

O, « scan(copy, Op, 6,-axis)
O, « scan(copy, Op, f3-axis)
C « scan(logior, P A Op, r-axis, toward-zero)
C « scan(logior, C, ¢-axis, toward-zero)
C « C V joint-limit-map
end

Once the obstacle bitmap is in the Connection Ma-
chine, this algorithm runs in essentially constant time,
since only the scan operations are used. Rather than
downloading the obstacle bitmap, O, it can be com-
puted directly in the Connection Machine in time that
is linear in the number of obstacles.

One way to visualize this algorithm is to imagine a
two-dimensional 65 x 63 grid. At each grid point is
stored a duplicate copy of the two-dimensional Op(r,¢)
obstacle bitmap. Also at each grid point is stored n?
bits from the primitive obstacle bitmaps: P[r](d2 —
6,03), for all values of r and ¢. At each grid point,
the C-bit is turned on if and only if for some r and ¢
the O,-bit is on and the correct P-bit is on.

Another way to view the algorithm is as a projection
from four dimensions to two of the primitive maps which
are selected by the obstacle bits.

5.4 The third dimension

Conceptually, extending the two-link, two-dimensional
parallel algorithm to one for a three dimensional, Puma-
like robot is trivial. As mentioned above, the first joint
rotation, 6, simply selects which plane the remain-
ing two links operate in, and the algorithm operates
within that plane identically to the two-dimensional
case. Thus, we need simply add a single dimension
to our processor grid and represent our original obsta-
cle bitmap in a kind of spherical coordinate system in-
dexed by (r,¢,v) triples. This spheric-coordinate ob-
stacle map is denoted by O, (7,8, ¢).! The algorithm is
identical to the two-dimensional case, with the substi-
tution of O, for O,, using a three-dimensional download
function, and resulting in a three-dimensional configu-
ration space.

Unfortunately, five dimensions with 32 processors on
each axis (a resolution of 11 degrees) requires 32 million
virtual processors, or a virtual processor ratio of 4096 : 1
on our machine. This ratio is totally unreasonable in
terms of both execution time and memory availability.
The algorithm is modified to alleviate this problem by

1These are not the familiar spherical coordinates, since the
shoulder offset of the Puma robot yields two values for ¢ and ¢
for a single point. As with Op, the O, bitmap is easily computed
directly, since the mapping (r,é, %) — (z,¥,2) is one-to-one, and
each (r,,%) domain can be easily tested for intersection with
obstacles.

combining the bits for each data structure along 6s-
dimension into bit-vectors within each processor. (Note
that the only operation along the #3-axis is to copy the
obstacle bitmap. By collapsing this dimension, this scan
becomes unnecessary.) Also, instead of storing all the
shifted copies of the primitive maps in the ¢-dimension,
we loop (serially) over all values of ¢, using the nearest-
neighbor communcation facility of the Connection Ma-
chine to shift the primitive maps, combining the maps
into the configuration space at each step, as indicated
by the O, bitmap. This modification of the algorithm
still runs in time that depends only on the resolution,
though now it increases linearly with the resolution. At
the end, the configuration space is represented by a vec-
tor (the 85-dimension) of bit-vectors (the #3-dimension).

5.5 Parallel algorithm for the three-
dimensional gripper

The parallel algorithm for the three-dimensional gripper
is as easy to construct as the three-dimensional arm
was from the two-dimensional arm. This is because
the algorithm is, in essence, identical. The primary
difference is simply that, as discussed in Section 4.2,
the primitive obstacle maps are three-dimensional, and
they are indexed by two parameters, 8 and r, as well
as being shifted by «. Conceptually, this leads to a six-
dimensional processor grid, with axes 4, 85, 66, a, 8,
and r. In the implementation this is reduced to three
dimensions by looping over & and compressing the 85
and fg dimensions into a two-dimensional bitmap in
each processor. Other than the size of the bitmap stored
in each processor, the algorithm is identical to the three-
dimensional arm algorithm. (For the arm, n bits are
stored in a vector; for the gripper n® bits are stored in
a two-dimensional bitmap.)

Acknowledgments

This work was funded primarily by the Office of Naval
Research under University Research Initiative contract
N00014-86-K-0685. Additional support was provided
by an NSF Presidential Young Investigator Award to
Lozano-Pérez.

References

[1] J. Barraquand and J. C. Latombe. A monte-
carlo algorithm for path planning with many de-
grees of freedom. In 1990 International Confer-
ence on Robotics and Automation, pages 1712-
1717, Cincinnati, Ohio, 1990.

1007

[2] M. S. Branicky and W. S. Newman. Rapid com-
putation of configuration space obstacles. In IEEE
International Conference on Robotics and Automa-
tion, Cincinatti, 1990.

J. R. Dooley and J. M. McCarthy. Parameterized
descriptions of the joint space obstacles for a 5r
closed chain robot. In 1990 International Con-
ference on Robotics and Automation, pages 1536—
1541, Cincinnati, Ohio, 1990.

[4] B. Faverjon. Obstacle avoidance using an octree in
the configuration space of a manipulator. In IEEE
International Conference on Robotics and Automa-

tion, Atlanta, March 1984.

{5] B. Faverjon and P. Tournassoud. A local based ap-
proach for path planning of manipulators with a
high number of degrees of freedom. In 1987 Inter-
national Conference on Robotics and Automation,

pages 1152-1159, 1987.

Q. J. Ge and J. M. McCarthy. An algebraic
formulation of configuration space obstacles for
spatial robots. In 1990 International Conference
on Robotics and Automation, pages 1542-1547,
Cincinnati, Ohio, 1990.

[7

T. Lozano-Pérez. Spatial planning: A configura-
tion space approach. IEEE Transaction on Com-
puters, C-32(2):108-120, February 1983.

[8] T. Lozano-Pérez. A simple motion planning algo-
rithm for general robot manipulators. IEEE Jour-
nal of Robotics and Automation, RA-3(3):224-238,

June 1987.

J. M. McCarthy and R. M. C. Bodduluri. A bibli-
ography on robot kinematcis, workspace analysis,
and path planning. In O. Khatib, J. J. Craig, and
T. Lozano-Pérez, editors, Robotics Review 1. MIT
Press, 1989.

W. S. Newman. High-Speed Robot Conirol in Com-
plezx Environments. PhD thesis, Massachusetts In-
stitute of Technology, Dept. of Mechanical Engr.,
1987.

[9]

[10]

[11] N. Pollard. The grasping problem: towards task-
level programming for an articulated hand. Mas-
ter’s thesis, Massachusetts Institute of Technology,
Dept. of Elec. Engr. and Computer Science, May

1989.

C. K. Yap. Algorithmic motion planning. In
J. T. Schwartz and C. K. Yap, editors, Advances
i Robotics: Volume 1. Lawrence Erlbaum Asso-
ciates, 1987.

[12]

