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Abstract The limited nature of robot sensors make many important robotics prob-
lems partially observable. These problems may require the system to perform com-
plex information-gathering operations. One approach to solving these problems is
to create plans in belief-space, the space of probability distributions over the under-
lying state of the system. The belief-space plan encodes a strategy for performing a
task while gaining information as necessary. Most approaches to belief-space plan-
ning rely upon representing belief state in a particular way (typically as a Gaus-
sian). Unfortunately, this can lead to large errors between the assumed density
representation of belief state and the true belief state. This paper proposes a new
sample-based approach to belief-space planning that has fixed computational com-
plexity while allowing arbitrary implementations of Bayes filtering to be used to
track belief state. The approach is illustrated in the context of a simple example and
compared to a prior approach. Then, we propose an application of the technique
to an instance of the grasp synthesis problem where a robot must simultaneously
localize and grasp an object given initially uncertain object parameters by planning
information-gathering behavior. Experimental results are presented that demonstrate
the approach to be capable of actively localizing and grasping boxes that are pre-
sented to the robot in uncertain and hard-to-localize configurations.

1 Introduction

A fundamental objective of robotics is to develop systems that can perform tasks
robustly even in unstructured environments. One way to achieve this is to create a
planner capable of simultaneously localizing the state of the system and of reaching
a particular goal state. It is common to model control problems such as these as par-
tially observable Markov decision processes (POMDPs). However, in general, find-
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ing optimal solutions to POMDPs has been shown to be PSPACE complete [1]. Even
many approximate approaches are computationally complex: the time complexity of
standard point-based algorithms, such as HSVI and SARSOP, is exponential in the
planning horizon [2, 3, 4]. These algorithms calculate policies in belief-space, the
space of probability distributions over the underlying state space. Very few of these
algorithms can handle continuous state and action spaces [5, 6].

In an effort to avoid the computational complexity of creating policies, a new set
of approaches have recently been proposed which create plans based on expected
information content. In one class of approaches, large numbers of candidate trajec-
tories in the underlying state space are evaluated in terms of the information that
is likely to be gained during execution [7, 8, 9]. Trajectories are selected that opti-
mize information content or minimize the likelihood of collisions. These approaches
work well in scenarios where the likelihood of generating information-gathering tra-
jectories by sampling the underlying space is high. A different class of approaches
create plans in a parametrization of belief-space [10, 11, 12]. These approaches are
potentially better positioned to generate complex information-gathering plans, but
since they plan directly in the belief-space, the dimensionality of the planning prob-
lem is potentially very large. With the exception of [12], the planning approaches
listed above assume that Bayes filtering will be performed using a Gaussian density
function [10, 11, 7, 8, 9]. However, the popularity of the particle filter relative to
the extended Kalman filter or unscented Kalman filter suggests that in many robot
problems, belief state is not well-represented as a Gaussian. Furthermore, simply
extending an approach such as in [10, 11] to non-Gaussian distributions quickly
results in an intractable planning problem because of the high dimensionality of
typical non-Gaussian parametrizations.

This paper proposes an approach to planning in high-dimensional belief-spaces
that tracks belief state using an accurate, high-dimensional filter, but creates plans
using a fixed-dimensional sampled representation of belief. We leave the imple-
mentation of the high-dimensional filter as a design choice, but expect that it will
be a histogram filter or a particle filter. In order to create a new plan, the high-
dimensional belief state is projected onto a hypothesis in the underlying state space
and a set of sampled competing states. Plans are created that generate observa-
tions that differentiate the hypothesis from the other samples while also reaching
a goal state. During execution, we monitor KL divergence between the actual (high-
dimensional) belief-space trajectory and a belief-space trajectory associated with
the plan. If divergence exceeds a threshold, we halt execution and create a new plan
starting from the current belief (this re-planning approach is similar to that taken
in [10, 11]). In a technical report that expands upon this paper, we have shown that
if each new plan found has a below-threshold cost, then the algorithm eventually
localizes the true state of the system and reaches a goal region with probability
one [13]. We illustrate the approach in the context of a one-dimensional manipula-
tion problem and compare it to the approach proposed in [10]. Then, we show that
the approach can be used to solve a version of the grasp synthesis problem where
the robot must simultaneously localize and grasp an object. The algorithm generates
robot arm trajectories that gain information by “scanning” the boxes using a laser
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scanner and pushing one of the boxes as necessary in order to gain information. The
algorithm terminates in a pre-grasp configuration that is likely to lead to a successful
grasp. The approach is tested over a range of randomly selected box configurations.

2 Problem Statement

This paper is concerned with the problem of reaching a desired goal state when the
initial state is uncertain and may only be estimated based on partial or noisy obser-
vations. Consider a discrete-time system with continuous non-linear deterministic 1

process dynamics,
xt+1 = f (xt ,ut), (1)

where state, x ∈ Rn, and action, u ∈ Rl , are column vectors. At each time step, the
system makes an observation, z ∈ Rm, that is a non-linear stochastic function of
state:

zt = h(xt)+ vt , (2)

where vt ∼ N(0,Q) is zero-mean Gaussian noise with variance Q.
Bayesian filtering can be used to estimate state based on actions taken and ob-

servation perceived. The state estimate is represented by a probability distribution
function, π(x;b), that is a function of the parameter vector, b ∈B. We will refer to
b, (and sometimes the probability distribution, π(x;b)) as the belief state. Suppose
that at time t, the system starts in belief state, bt , takes action, ut , and perceives ob-
servation, zt+1. Then, belief state can be updated to incorporate the new information
using the Bayesian filter update equation. For deterministic process dynamics, it is:

π( f (x,ut);bt+1) =
π(x;bt)P(zt+1|x,ut)

P(zt+1)
, (3)

where we implicitly assume that P(zt+1) #= 0. Although, in general, it is impossi-
ble to implement Equation 3 exactly using a finite-dimensional parametrization of
belief-space, a variety of approximations exist in practice [14].

The objective of belief-space planning is to achieve task objectives with a given
minimum probability. Specifically, we want to reach a belief state, b, such that

Θ(b,r,xg) =
∫

x∈Bn(r)
π(x+ xg;b)> ω, (4)

where Bn(r) = {x ∈Rn,xT x≤ r2} denotes the r-ball in Rn, for some r > 0, xg ∈Rn

denotes the goal state, and ω denotes the minimum probability of success. It is
important to notice the similarities between this problem and the more general par-
tially observable Markov decision process (POMDP) framework. Both problems are

1 Although we have formally limited ourselves to the case of zero process noise, we find in Sec-
tion 4 that empirically, our algorithm performs well in environments with bounded process noise.
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concerned with controlling partially observable systems. However, whereas in the
POMDP formulation, the objective is to minimize the expected cost, in our problem,
the objective is to reach a desired region of state space with a guaranteed minimum
probability of success.

3 Algorithm

This paper extends the approach proposed in [10] to non-Gaussian belief spaces.
Our algorithm iteratively creates and executes a series of belief-space plans. A re-
planning step is triggered when, during plan execution, the true belief state diverges
too far from the nominal trajectory.

3.1 Creating plans

The key to our approach is a mechanism for creating horizon-T belief-space plans
that guarantees that new information is incorporated into the belief distribution on
each planning cycle. The basic idea is as follows. Given a prior belief state, b1,
define a “hypothesis” state to be at the maximum of the distribution,

x1 = argmax
x∈Rn

π(x;b1).

Then, sample k−1 states from the prior distribution,

xi ∼ π(x;b1), i ∈ [2,k], (5)

such that the pdf at each sample is greater than a specified threshold, π(xi;b1)≥ ϕ >
0, and there are at least two unique states (including x1). We search for a sequence of
actions, u1:T−1 = (u1, . . . ,uT−1), that result in as wide a margin as possible between
the observations that would be expected if the system were in the hypothesis state
and the observations that would be expected in any other sampled state. As a result,
a good plan enables the system to “confirm” that the hypothesis state is in fact the
true state or to “disprove” the hypothesis state. If the hypothesis state is disproved,
then the algorithm selects a new hypothesis on the next re-planning cycle, ultimately
causing the system to converge to the true state.

To be more specific, consider that if the system starts in state x, and takes a
sequence of actions u1:t−1, then the most likely sequence of observations is:

ht(x,u1:t−1) =
(

h(x)T ,h( f (x,u1))
T ,h(F3(x,u1:2))

T , . . . ,h(Ft(x,u1:t−1))
T )T ,

where Ft(x,u1:t−1) denotes the state at time t when the system begins in state x
and takes actions, u1:t−1. We are interested in finding a sequence of actions over a
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planning horizon T , u1:T−1, that maximizes the squared observation distance,

‖hT (xi,u1:T−1)−hT (x1,u1:T−1)‖2
Q,

summed over all i ∈ [2,k], where ‖a‖A =
√
aTA−1a denotes the Mahalanobis dis-

tance and Q = diag(Q, . . . ,Q) denotes a block diagonal matrix of the appropriate
size composed of observation covariance matrices. The wider the observation dis-
tance, the more accurately Bayes filtering will be able to determine whether or not
the true state is near the hypothesis in comparison to the other sampled states.

Notice that the expression for observation distance is only defined with respect
to the sampled points. Ideally, we would like a large observation distance between a
region of states about the hypothesis state and regions about the other samples. Such
a plan would “confirm” or “disprove” regions about the sampled points - not just the
zero-measure points themselves. We incorporate this objective to the first order by
minimizing the Frobenius norm of the gradient of the measurements,

Ht(x,u1:t−1) =
∂ht(x,u1:t−1)

∂x
.

These dual objectives, maximizing measurement distance and minimizing the Frobe-
nius norm of the measurement gradient, can simultaneously be optimized by mini-
mizing the following cost function:

 J(x1, . . . ,xk,u1:T−1) =
1
k

k

∑
i=2

e−Φ(xi,u1:T−1), (6)

where
Φ(xi,u1:T−1) = ‖hT (xi,u1:T−1)−hT (x1,u1:T−1)‖2

Γ (xi,u1:T−1)
.

The weighting matrix (i.e. the covariance matrix) in the metric above is defined

Γ (x,u1:T−1) = 2Q+HT (x,u1:T−1)VHT (x,u1:T−1)
T

+HT (x1,u1:T−1)VHT (x1,u1:T−1)
T , (7)

where V ∈ Rn×n is a diagonal weighting matrix.
In order to find plans that minimize Equation 6, it is convenient to restate the

problem in terms of finding paths through a parameter space. Notice that for any
positive semi-definite matrix, A, and vector, x, we have xTAx ≥ xT  Ax, where  A is
equal to A with all the off-diagonal terms set to zero. Therefore, we have the follow-
ing lower-bound,

Φ(xi,u1:t−1)≥
T

∑
t=1

φ(Ft(xi,u1:t−1),Ft(x1,u1:t−1)),

where
φ(x,y) =

1
2
‖h(x)−h(y)‖2

γ(x,y),
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γ(x,y) = 2Q+H(x)H(x)T +H(y)H(y)T ,

and H(x) = ∂h(x)/∂x. As a result, we can upper-bound the cost,  J (Equation 6), by

 J(x1, . . . ,xk,u1:T−1) ≤
1
k

k

∑
i=1

e−∑
T
t=1 φ(Ft (x

i,u1:t−1),Ft (x1,u1:t−1))

≤
1
k

k

∑
i=1

T

∏
t=1

e−φ(Ft (x
i,u1:t−1),Ft (x1,u1:t−1)). (8)

As a result, the planning problem can be written in terms of finding a path through
a parameter space, (x1:k

t ,w1:k
t ) ∈ R2k, where xit denotes the state associated with the

ith sample at time t and the weight, wit , denotes the “partial cost” associated with
sample i. This form of the optimization problem is stated as follows.

Problem 1.

Minimize
1
k

k

∑
i=1

(

wiT
)2

+α
T−1

∑
t=1

u2
t (9)

subject to xit+1 = f (xit ,ut), i ∈ [1,k] (10)

wit+1 = wite−φ(x
i
t ,x1

t ), i ∈ [1,k] (11)
xi1 = xi,wi1 = 1, i ∈ [1,k] (12)
x1
T = xg (13)

Problem 1 should be viewed as a planning problem in (x1:k,w1:k)∈R2k where Equa-
tions 12 and 13 set the initial and final value constraints, Equations 10 and 11 define
the “belief space dynamics”, and Equation 9 defines the cost. Notice that we have
incorporated a quadratic cost into the objective in order to cause the system to favor
short paths. Problem 1 can be solved using a number of planning techniques such
as rapidly exploring random trees [15], differential dynamic programming [16], or
sequential quadratic programming [17]. We use sequential quadratic programming
to solve the direct transcription of Problem 1. The direct transcription solution will
be denoted

u1:T−1 = DIRTRAN(x1:k,xg,T ), (14)

for the sample set, x1:k, goal state constraint, xg, and time horizon, T . Sometimes, we
will call DIRTRAN without the final value goal constraint (Equation 13). This will
be written, u1:T−1 = DIRTRAN(x1:k,T ). It is important to recognize that the com-
putational complexity of planning depends only on the number of samples used (the
size of k in step 3 of Algorithm 1) and not strictly on the dimensionality of the un-
derlying space. This suggests that the algorithm can be efficient in high-dimensional
belief spaces. In fact, we report results in [13] from simulations that indicate that the
algorithm can work well when very few samples (as few as three or four) are used.
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3.2 Re-planning

After creating a plan, our algorithm executes it while tracking belief state using
an accurate, high-dimensional filter chosen by the system designer. We denote this
Bayesian filter update as

bt+1 = G(bt ,ut ,zt+1).

If the true belief state diverges too far from a nominal trajectory derived from the
plan, then execution stops and a new plan is created. The overall algorithm is out-
lined in Algorithm 1. Steps 2 and 3 sample k states from the distribution with the hy-
pothesis state, x1 = argmaxx∈Rn π(x;b), located at the maximum of the prior distri-
bution. The prior likelihood of each sample is required to be greater than a minimum
threshold, 1 > ϕ ≥ 0. In step 4, CREATEPLAN creates a horizon-T plan, u1:T−1,
that solves Problem 1 and generates a nominal belief-space trajectory,  b1:T . Steps
6 through 12 execute the plan. Step 8 updates the belief state given the new action
and observation using the Bayes filter implementation chosen by the designer. Step
9 breaks plan execution when the actual belief state departs too far from the nom-
inal trajectory, as measured by the KL divergence, D1

[

π(x;bt+1),π(x;  bt+1)
]

> θ .
The second condition,  J(x1, . . . ,xk,u1:t−1) < 1−ρ , guarantees that the while loop
does not terminate before a (partial) trajectory with cost  J < 1 executes. The outer
while loop terminates when there is a greater than ω probability that the true state
is located within r of the goal state, Θ(b,r,xg) > ω (Equation 4). In the technical
report that expands upon this paper [13], we show that if, for each iteration of the
while loop, the two conditions in step 9 are met on some time step, t < T , then it is
possible to guarantee that Algorithm 1 will eventually localize the true state of the
system and the while loop will terminate.

Input : initial belief state, b, goal state, xg, planning horizon, T , and belief-state update, G.
1 whileΘ(b,r,xg)≤ ω do
2 x1 = argmaxx∈Rn π(x;b);
3 ∀i ∈ [2,k],xi ∼ π(x;b) : π(xi;b)≥ ϕ;
4  b1:T ,u1:T−1 = CreatePlan(b,x1, . . . ,xk,xg,T);
5 b1 = b;
6 for t← 1 to T −1 do
7 execute action ut , perceive observation zt+1;
8 bt+1 = G(bt ,ut ,zt+1);
9 if D1

[

π(x;bt+1),π(x;  bt+1)
]

> θ and  J(x1, . . . ,xk,u1:t−1)< 1−ρ then
10 break
11 end
12 end
13 b= bt+1;
14 end

Algorithm 1: Belief-space re-planning algorithm

Algorithm 2 shows the CREATEPLAN procedure called in step 4 of Algorithm 1.
Step 1 calls DIRTRAN parametrized by the final value constraint, xg. If DIRTRAN
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fails to satisfy the goal state constraint, then the entire algorithm terminates in fail-
ure. Step 2 creates a nominal belief-space trajectory by integrating the user-specified
Bayes filter update over the planned actions, assuming that observations are gener-
ated by the hypothesis state. If this nominal trajectory does not terminate in a belief
state that is sufficiently confident that the true state is located within r of the hypoth-
esis, then a new plan is created in steps 4 and 5 that is identical to the first except
that it does not enforce the goal state constraints. This allows the algorithm to gain
information incrementally in situations where a single plan does not lead to a suf-
ficiently “peaked” belief state. When the system gains sufficient information, this
branch is no longer executed and instead plans are created that meet the goal state
constraint.

Input : initial belief state, b, sample set, x1, . . . ,xk, goal state, xg, and time horizon, T .
Output: nominal trajectory,  b1:T and u1:T−1

1 u1:T−1 = DirTran(x1, . . . ,xk,xg,T);
2  b1 = b; ∀t ∈ [1 : T −1],  bt+1 = G(  bt ,ut ,h(x1

t ));
3 ifΘ(b,r,xg)≤ ω then
4 u1:T−1 = DirTran(x1, . . . ,xk,T);
5  b1 = b; ∀t ∈ [1 : T −1],  bt+1 = G(  bt ,ut ,h(x1

t ));
6 end

Algorithm 2: CREATEPLAN procedure

3.3 Illustration

Figures 1 and 2 illustrate the process of creating and executing a plan in a robot
manipulation scenario. Figure 1 shows a horizontal-pointing laser mounted to the
end-effector of a two-link robot arm. The end-effector is constrained to move only
vertically along the dotted line. The laser points horizontally and measures the range
from the end-effector to whatever object it “sees”. There are two boxes and a gap
between them. Box size, shape, and relative position are assumed to be perfectly
known along with the distance of the end-effector to the boxes. The only uncertain
variable in this problem is the vertical position of the end-effector measured with
respect to the gap position. This defines the one-dimensional state of the system and

Fig. 1 Localization scenario.
The robot must simultane-
ously localize the gap and
move the end-effector in front
of the gap.
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Fig. 2 Illustration of CREATEPLAN. (a) An information-gathering trajectory (state as a function
of time) found using direct transcription. Blue denotes the trajectory that would be obtained if the
system started in the hypothesis state. Red denotes the trajectory obtained starting in the true state.
(b) The planned belief-space trajectory illustrated by probability distributions superimposed over
time. Distributions early in the trajectory are light gray while distributions late in the trajectory
are dark. The seven “X” symbols on the horizontal axis denote the positions of the samples (red
denotes the true state while cyan denotes the hypothesis). (c) The actual belief-space trajectory
found during execution. (d-f) Comparison with the EKF-based method proposed in [10]. (d) The
planned trajectory. (e) The corresponding nominal belief-space trajectory. (f) Actual belief-space
trajectory.

is illustrated by the vertical number line in Figure 1. The objective is to localize
the vertical end-effector with respect to the center of the gap (state) and move the
end-effector to the center of the gap. The control input to the system is the vertical
velocity of the end-effector.

Figure 2(a) illustrates an information-gathering trajectory found by DIRTRAN
that is expected to enable the Bayes filter to determine whether the hypothesis state
is indeed the true state while simultaneously moving the hypothesis to the goal state
(end-effector at the center of the gap). The sample set used to calculate the trajec-
tory was x1, . . . ,xk = 5,2,3,4,6,7,8, with the hypothesis sample located at x1 = 5.
The action cost used while solving Problem 1 was α = 0.0085. DIRTRAN was ini-
tialized with a random trajectory. The additional small action cost smooths the tra-
jectory by pulling it toward shortest paths without changing information gathering
or goal directed behavior much. The trajectory can be understood intuitively. Given
the problem setup, there are two possible observations: range measurements that
“see” one of the two boxes and range measurements that “see” through the gap. The
plan illustrated in Figure 2(a) moves the end effector such that different sequences of
measurements would be observed depending upon whether the system were actually
in the hypothesis state or in another sampled state.
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Figures 2(b) and (c) show the nominal belief-space trajectory and the actual tra-
jectory, respectively, in terms of a sequence of probability distributions superim-
posed on each other over time. Each distribution describes the likelihood that the
system started out in a particular state given the actions taken and the observations
perceived. The nominal belief-space trajectory in Figure 2(b) is found by simulat-
ing the belief-space dynamics forward assuming that future observations will be
generated by the hypothesis state. Ultimately, the planned trajectory reaches a be-
lief state distribution that is peaked about the hypothesis state, x1 (the red “X”). In
contrast, Figure 2(c) illustrates the actual belief-space trajectory found during exe-
cution. This trajectory reaches a belief state distribution peaked about the true state
(the cyan “X”). Whereas the hypothesis state becomes the maximum of the nominal
distribution in Figure 2(b), notice that it becomes a minimum of the actual distribu-
tion in Figure 2(c). This illustrates the main idea of the algorithm. Figure 2(b) can be
viewed as a trajectory that “trusts” that the hypothesis is correct and takes actions
that confirm this hypothesis. Figure 2(c) illustrates that even when the hypothesis
is wrong, the distribution necessarily gains information because it “disproves” the
hypothesis state (notice the likelihood of the region about the hypothesis is very
low).

Figure 2 (d-f) compares the performance of our approach with the extended
Kalman filter-based (EKF-based) approach proposed in [10]. The problem setup
is the same in every way except that cost function optimized in this scenario is:

J(u1:T−1) =
1

10
(

σ2
T
)T
σ2
T +0.0085uT1:T−1u1:T−1,

where σ2
T denotes covariance. There are several differences in performance. Notice

that the two approaches generate different trajectories (compare Figures 2(a) and
(d)). Essentially, the EKF-based approach maximizes the EKF reduction in variance
by moving the maximum likelihood state toward the edge of the gap where the gra-
dient of the measurement function is large. In contrast, our approach moves around
the state space in order to differentiate the hypothesis from the other samples in
regions with a small gradient. Moreover, notice that since the EKF-based approach
is constrained to track actual belief state using an EKF Bayes filter, the tracking
performance shown in Figure 2(f) is very bad. The EKF innovation term actually
makes corrections in the wrong direction. However, in spite of the large error, the
EKF covariance grows small indicating high confidence in the estimate.

4 Simultaneous localization and grasping

In real-world grasping problems, it is just as important to localize an object to be
grasped as it is to plan the reach and grasp motions. We propose an instance of
the grasp synthesis problem that we call simultaneous localization and grasping
(SLAG) where the localization and grasp planning objectives are combined in a sin-
gle planning problem. In most robot implementations, the robot is able to affect the
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type or quality of information that it perceives. For example, many robots have the
ability to move objects of interest in the environment or move a camera or LIDAR
through the environment. As a result, SLAG becomes an instance of the planning
under uncertainty problem. The general SLAG problem is important because good
solutions imply an ability to grasp objects robustly even when their position or shape
is uncertain.

4.1 Problem setup

(a) (b) (c)

Fig. 3 Illustration of the grasping problem, (a). The robot must localize the pose and dimensions
of the boxes using the laser scanner mounted on the left wrist. This is relatively easy when the
boxes are separated as in (b) but hard when the boxes are pressed together as in (c).

Our robot, Paddles, has two arms with one paddle at the end of each arm (see
Figure 3(a)). Paddles may grasp a box by squeezing the box between the two pad-
dles and lifting. We assume that the robot is equipped with a pre-programmed “lift”
function that can be activated once the robot has placed its two paddles in opposi-
tion around the target box. Paddles may localize objects in the world using a laser
scanner mounted to the wrist of its left arm. The laser scanner produces range data
in a plane parallel to the tabletop over a 60 degree field of view.

We use Algorithm 1 to localize the planar pose of the two boxes parametrized
by a six-dimensional underlying metric space. The boxes are assumed to have been
placed at a known height. We reduce the dimensionality of the planning problem
by introducing an initial perception step that localizes the depth and orientation of
the right box using RANSAC [18]. From a practical perspective, this is a reasonable
simplification because RANSAC is well-suited to finding the depth and orientation
of a box that is assumed to be found in a known region of the laser scan. The remain-
ing (four) dimensions that are not localized using RANSAC describe the horizontal
dimension of the right box location and the three-dimensional pose of the left box.
These dimensions are localized using a Bayes filter that updates a histogram distri-
bution over the four-dimensional state space based on laser measurements and arm
motions measured relative to the robot. The histogram filter is comprised of 20000
bins: 20 bins (1.2 cm each) describing right box horizontal position times 10 bins
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Fig. 4 Example of a box localization task. In (a) and (d), the robot believes the gap between the
boxes is large and plans to localize the boxes by scanning this gap. In (b) and (e), the robot has
recognized that the boxes abut each other and creates a plan to increase gap width by pushing the
right box. In (c) and (f), the robot localizes the boxes by scanning the newly created gap.

(2.4 cm each) describing left box horizontal position times 10 bins (2.4 cm each)
describing left box vertical position times 10 bins (0.036 radians each) describing
left box orientation. While it is relatively easy for the histogram filter to localize the
remaining four dimensions when the two boxes are separated by a gap (Figure 3(b)),
notice that this is more difficult when the boxes are pressed together (Figure 3(c)).
In this configuration, the laser scans lie on the surfaces of the two boxes such that it
is difficult to determine where one box ends and the next begins. Note that it is diffi-
cult to locate the edge between abutting boxes reliably using vision or other sensor
modalities – in general this is a hard problem.

Our implementation of Algorithm 1 used a set of 15-samples including the hy-
pothesis sample. The algorithm controlled the left paddle by specifying Cartesian
end-effector velocities in the horizontal plane. These Cartesian velocity commands
were projected into the joint space using standard Jacobian Pseudoinverse tech-
niques [19]. The algorithm was parametrized by process dynamics that modeled
arms motions resulting from velocity commands and box motions produced by
pushes from the arm. Box motions were modeled by assuming zero slip while push-
ing the box and assuming the center of friction was located at the center of the area
of the box “footprint”. The observation dynamics described the set of range mea-
surements expected in a given paddle-box configuration. For planning purposes, the
observation dynamics were simplified by modeling only a single forward-pointing
scan rather than the full 60 degree scan range. However, notice that since this is a
conservative estimate of future perception, low cost plans under the simplified ob-
servation dynamics are also low cost under the true dynamics. Nevertheless, the ob-
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servation model used for tracking (step 8 of Algorithm 1) accurately described mea-
surements from all (100) scans over the 60 degree range. The termination threshold
in Algorithm 1 was set to 50% rather than a higher threshold because we found our
observation noise model to overstate the true observation noise.

Our hardware implementation of the algorithm included some small variations
relative to Algorithm 1. Rather than monitoring divergence explicitly in step 9, we
instead monitored the ratio between the likelihood of the hypothesis state and the
next most probable bin in the histogram filter. When this ratio fell below 0.8, plan
execution was terminated and the while loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned trajectory, a ratio of less
than one implies a positive divergence. Second, rather than finding a non-goal di-
rected plan in steps 3-5 of Algorithm 2, we always found goal-directed plans.

Figure 4 illustrates an example of an information-gathering trajectory. The al-
gorithm begins with a hypothesis state that indicates that the two boxes are 10 cm
apart (the solid blue boxes in Figure 4(a)). As a result, the algorithm creates a plan
that scans the laser in front of the two boxes under the assumption that this will
enable the robot to perceive the (supposed) large gap. In fact, the two boxes abut
each other as indicated by the black dotted lines in Figure 4(a). After beginning the
scan, the histogram filter in Algorithm 1 recognizes this and terminates execution of
the initial plan. At this point, the algorithm creates the pushing trajectory illustrated
in Figure 4(b). During execution of the push, the left box moves in an unpredicted
way due to uncertainty in box friction parameters (this is effectively process noise).
This eventually triggers termination of the second trajectory. The third plan is cre-
ated based on a new estimate of box locations and executes a scanning motion in
front of the boxes is expected to enable the algorithm to localize the boxes with high
confidence.

4.2 Localization Performance

At a high level, the objective of SLAG is to robustly localize and grasp objects even
when the pose or shape of those objects is uncertain. We performed a series of ex-
periments to evaluate how well this approach performs when used to localize boxes
that are placed in initially uncertain locations. On each grasp trial, the boxes were
placed in a uniformly random configuration (visualized in Figures 5(a) and (c)).
There were two experimental contingencies: “easy” and “hard”. In the easy contin-
gency, both boxes were placed randomly such that they were potentially separated
by a gap. The right box was randomly placed in a 13× 16 cm region over a range
of 15 degrees. The left box was placed uniformly randomly in a 20×20 cm region
over 20 degrees measured with respect to the right box (Figure 5(a)). In the hard
contingency, the two boxes were pressed against each other and the pair was placed
randomly in a 13×16 cm region over a range of 15 degrees (Figure 5(b)).

Figures 5(c) and (d) show right box localization error as a function of the num-
ber of updates to the histogram filter since the trial start. 12 trials were performed
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Fig. 5 “Easy” and “hard” experimental contingencies. (a) shows images of the 12 randomly se-
lected “easy” configurations (both box configurations chosen randomly) superimposed on each
other. (b) shows images of the 12 randomly selected “hard” configurations (boxes abutting each
other). (c) and (d) are plots of error between the maximum a posteriori localization estimate and
the true box pose. Each line denotes a single trial. The red “X” marks denote localization error at
algorithm termination.

in each contingency. Each blue line denotes the progress of a single trial. The ter-
mination of each trial is indicated by the red “X” marks. Each error trajectory is
referenced to the ground truth error by measuring the distance between the final po-
sition of the paddle tip and its goal position in the left corner of the right box using
a ruler. There are two results of which to take note. First, all trials terminate with
less than 2 cm of error. Some of this error is a result of the coarse discretization
of possible right box positions in the histogram filter (note also the discreteness of
the error plots). Since the right box position bin size in the histogram filter is 1.2
cm, we would expect a maximum error of at least 1.2 cm. The remaining error is
assumed to be caused by errors in the range sensor or the observation model. Sec-
ond, notice that localization occurs much more quickly (generally in less than 100
filter updates) and accurately in the easy contingency, when the boxes are initially
separated by a gap that the filter may used to localize. In contrast, accurate local-
ization takes longer (generally between 100 and 200 filter updates) during the hard
contingency experiments. Also error prior to accurate localization is much larger
reflecting the significant possibility of error when the boxes are initially placed in
the abutting configuration. The key result to notice is that even though localization
may be difficult and errors large during a “hard” contingency, all trials ended with
a small localization error. This suggests that our algorithm termination condition
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in step 1 of Algorithm 1 was sufficiently conservative. Also notice that the algo-
rithm was capable of robustly generating information gathering trajectories in all of
the randomly generated configurations during the “hard” contingencies. Without the
box pushing trajectories found by the algorithm, it is likely that some of the hard
contingency trials would have ended with larger localization errors.

5 Conclusions

Creating robots that can function robustly in unstructured environments is a central
objective of robotics. We argue that it is not enough to limit attention to developing
better perception algorithms. Robust localization of relevant state in real-world sce-
narios is not always possible unless the robot is capable of creating and executing
information-gathering behaviors. One avenue toward achieving this is the develop-
ment of algorithms for planning under uncertainty. Our paper proposes a new ap-
proach to the planning under uncertainty problem that is capable of reasoning about
trajectories through a non-Gaussian belief-space. This is essential because in many
robot problems it is not possible to track belief state accurately by projecting onto
an assumed density function (Gaussian or otherwise).

The approach is illustrated in the context of a grasping task. We propose a new
setting of the grasp synthesis problem that we call simultaneous localization and
grasping (SLAG). We test our algorithm using a particular instance of a SLAG
problem where a robot must localize two boxes that are placed in front of it in un-
known configurations. The algorithm generates information gathering trajectories
that move the arm in such a way that a laser scanner mounted on the end-effector is
able to localize the two boxes. The algorithm potentially pushes the boxes as nec-
essary in order to gain information. Several interesting questions remain. First, our
algorithm focuses primarily on creating information gathering plans. However, this
ignores the need for “caution” while gathering the information. One way to incor-
porate this into the process is to include chance constraints into Problem 1 [20].
One approximation that suggests itself is to place constraints on the sample set used
for planning. However, since we use a relatively small sample set, this may not be
sufficiently conservative. Alternatives should be a subject for future work.
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