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Spatial Planning: A Configuration Space
Approach

TOMAS LOZANO-PEREZ

Abstract-This paper presents algorithms for computing con-
straints on the position of an object due to the presence ofother objects.
This problem arises in applications that require choosing how to ar-
range or how to move objects without collisions. The approach pre-
sented here is based on characterizing the position and orientation of
an object as a single point in a configuration space, in which each
coordinate represents a degree of freedom in the position or orientation
of the object. The configurations forbidden to this object, due to the
presence of other objects, can then be characterized as regions in the
configuration space, called configuration space obstacks. The paper
presents algorithms for computing these configuration space obstacles
when the objects are polygons or polyhedra.

Index Terms-Computational geometry, obstacle avoidance,
robotics.

I. INTRODUCTION

INCREASINGLY, computer applications deal with models
of two- and three-dimensional objects. Partly because of

this, there has been rapid growth of interest in efficient algo-
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rithms for geometric problems. For example, research has
focused on algorithms for 1) computing convex hulls [16],
[32], 2) intersecting convex polygons and polyhedra [6], [27],
[36], [38], 3) intersecting half-spaces [11], [33] 4) decom-
posing polygons [35], and 5) closest-point problems [37].I
Another class of geometric problems involves placing an object
among other objects or moving it without colliding with nearby
objects. We call this class of problems: spatial planning
problems. The following are representative applications where
spatial planning plays an important role:

1) the layout of templates on a piece of stock [1]-[3], [13]
so as to minimize the area of stock required:

2) machining a part using a numerically controlled machine
tool [50], which requires plotting the path of one or more
cutting surfaces so as to produce the desired part;

3) the layout of an IC chip [48] to minimize area, subject
to geometric design constraints;

4) automatic assembly using an industrial robot [22], [23],
[43], which requires grasping objects, moving them without
collisions, and ultimately bringing them into contact.
One common spatial planning problem is to determine

where an object A can be placed, inside some specified region
R, so that it does not collide with any of the objects Bj already

I The references cited here are representative of the current literature; they
are by no means a complete survey.
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I,OZANO-PEREZ: SPATIAL PLANNING

placed there. We call this the Findspace problem. Finding
where to place another suitcase in the trunk of a car is an ex-
ample of Findspace, where the new suitcase is A, the previous
suitcases are the Bj, and the inside of the trunk is R. A related
problem is to determine how to move A from one location to
another without causing collisions with the Bj. We call this the
Findpath problem. For example, moving the suitcase men-
tioned above from its initial position outside the trunk to the
desired position in the trunk, requires computing a path for the
suitcase (and the mover's arms) that avoids the rest of the car.
These two geometric problems, Findspace and Findpath, are
the subject of this paper. Previous work on Findspace and
Findpath is surveyed in Section VIII.

Findspace and Findpath can be defined more formally as
follows.

Definition: Let R be an object that completely contains kB
other, possibly intersecting, objects Bj.

1) Findspace-Find a position for A, inside R, such that
for all Bj, A n Bj = 0. This is called a safe position.

2) Findpath -Find a path for A from position s to position
g such that A is always in R and all positions ofA on the path
are safe. This is called a safe path.

Throughout this paper, the objects R and Bj are fixed con-
vex polyhedra (or polygons). We take A to be the set union of
kA (possibly intersecting) convex polyhedra (or polygons) Ai.
For example, A may be a convex decomposition of a nonconvex
polyhedron [35]. Fig. 1 illustrates the definitions of Findspace
and Findpath for convex polygons.
The algorithm presented here for the Findspace and Find-

path problems has two main steps: 1) building a data structure
that captures the geometric constraints and 2) searching the
data structure to find the solution. In this paper we focus on
algorithms for constructing the appropriate data structure. In
this sense, the approach is similar to many geometric search
algorithms, for example, the Voronoi polygon approach to
closest-point problems [37]. In the Findspace and Findpath
algorithms described here, we build geometric objects, called
configuration space obstacles, that represent all the positions
of the object A that cause collisions with the Bj. Given these
objects, Findspace and Findpath correspond to the simpler
problems of finding a single point (a position of A) or a path
(a sequence of positions of A), outside of the configuration
space obstacles. The advantage of this formulation is that the
intersection of a point relative to a set of objects is easier to deal
with than the intersection of objects among themselves.

Representing the positions of rigid objects requires speci-
fying all their degrees of freedom, both translations and
rotations. We will use the notion of configuration to unify our
treatment of degrees of freedom. The configuration of a pol-
yhedron is a set of independent parameters that characterize
the position of every point2 in the object. The configuration of

2 In what follows, all geometric entities-points, lines, edges, planes, faces,
and objects-will be treated as (infinite) sets of points. All of these entities
will be in some Rn, an n-dimensional real Euclidean space. a, b, x, and y shall
denote points of Bn, as well as the corresponding vectors. A, B, and C shall
denote sets of points in _n, while I and K shall denote sets of integers. y, 0,
and ,B, shall denote reals, while i,j, k, 1, m, n shall be used for integers. The
coordinate representation of a point c e Bn, shall be c = ('yi) = (y1, * * ,
flYn)-

Fig. 1. R, Bj, and A for Findspace and Findpath problems in two dimensions.
(a) The Findspace problem is to find a configuration for A where A does
not intersect any of the Bj. (b) The Findpath problem is to find a path for
A from s to g that avoids collisions with the Bj.

a polyhedron is defined relative to an initial configuration. In
this initial configuration, by convention, a fixed vertex of the
polyhedron coincides with the origin of the global coordinate
frame. For a polyhedron A, this vertex is called the reference
vertex ofA, or rvA.
The number of parameters required to specify the config-

uration of a k-dimensional polyhedron, A, relative to its initial

configuration, is d, where d = k + (2) [7, p. 10]; k parameters

are required to specify the position of rvA in N k and (2) are

required to specify the orientation3 of A. Thus, the configu-
ration ofA can be regarded as a point x E j? d; this d-dimen-
sional space of configurations ofA is denoted CspaceA. A in
configuration x is (A)x; A in its initial configuration is (A)o.
When an object's configuration is fixed, e.g., the Bj mentioned
earlier, we leave it unspecified.

If A is a polygon in ]2, the configuration ofA is specified
by (x, y, 0), where (x, y) is the position of rVA and 0 is the
rotation of A, about rvA, relative to (A)O. That is, for polygons
in ]2, k = 2, configurations are elements of ]I3, d = 2 + 1. If
the orientation ofA is fixed, (x, y) alone is sufficient to specify
the polygons configuration; therefore, CspaceA is simply the
(x, y) plane. If A is a polyhedron in ]?3, k = 3, the configu-
rations of A are elements of j76, d = 3 + 3. That is, three
translations and three rotations are needed to specify the po-
sition and orientation of a rigid three-dimensional object
[7].
Not all possible configurations in CspaceA represent legal

configurations of A; in particular, configurations ofA where
A n Bj 0 are illegal because they would cause collisions.

3 The relative rotation of one coordinate system relative to another can be

specified in terms of (k) angles usually referred to as Euler angles [7]. These

angles indicate the magnitude of three successive rotations about specified
axes. Many conventions for the choice of axes exist, any of which is suitable
for our purposes.
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Fig. 2. The CspaceA obstacle due to B, for fixed orientation of A.

These illegal configurations are the result of a mapping of the
B1 into CspaceA. This mapping exploits two fundamental
properties of objects: 1) their rigidity, which allows their
configurations to be characterized by a few parameters and
2) their solidity, which requires that a point not be inside more
than one object.

Definition: The CspaceA obstacle due to B, denoted
COA (B), is defined as follows:

COA (B) E{x E CspaceA I (A)X n B 0}.

Thus, ifx E COA (B) then (A), intersects B, therefore x is not
safe. Conversely, any configuration x 0 COA (Bj) (for all
objects Bj) is safe. IfA is a convex polygon with fixed orien-
tation, the presence of another convex polygon B constrains
the configuration of A, in this case simply the position of rvA,

to be outside of COA (B), a larger convex polygon, shown as

the shaded region in Fig. 2. The choice of a different vertex as

rvA would result in translating COA (B) relative to B in the
figure.

Just as COA (B) defines those configurations for which A
intersects B, CIA (B) defines those configurations for which
A is completely inside B.

Definition: The CspaceA interior of B, denoted CIA (B), is
defined as follows:

CIA(B) Ix E CspaceA (A)X BJ.

Clearly, CIA (B) C COA (B). Moreover, it is easy to see that
for A to be inside B, it must be outside of B's complement.
Therefore, letting -X represent the complement of the set X,
CIA (B) = -COA (-B).
A superscript to COA (B) and CIA (B) will be used to indi-

cate the coordinates of the configurations in the sets, e.g.,

CON'(B) and COtt(B) denote sets of (x, y) and (x, y, 0)
values, respectively. When no superscript is used, as in
COA(B), we mean sets of configurations in the complete
CspaceA for a polyhedron of A's dimension, e.g., Y?6 for a

three-dimensional polyhedron.
Using the definitions of Cspace obstacle and Cspace inte-

rior, Findspace and Findpath can be expressed as equivalent
problems that involve placing one point, the configuration of
A, relative to the CspaceA objects COA (Bj) and CIA (R). In-
general, these problems are equivalent to finding either a single
configuration ofA or a connected sequence of configurations
ofA (a path), outside all of the COA (B1), but inside CIA (R)

IfA and all of the B1 are polygons and if the orientation of
A is fixed, then the CO¶Y4(Bj) are also polygons. In that case,

Fig. 3. The Findpath problem and its formulation using the COt(Bj). The
shortest collision-free paths connect the origin and the destination via the
vertices of the COY(Bj) polygons.

the shortest4 safe paths for A are piecewise linear paths con-
necting the start and the goal configurations via the vertices
of the CON(Bj) polygons; see Fig. 3. Therefore, Findpath can
be formulated as a graph search problem. The graph is formed
by connecting all pairs of COZ(Bj) vertices (and the start and
goal) that can "see" each other, i.e., can be connected by a
straight line that does not intersect any of the obstacles. The
shortest path from the start to the goal in this visibility graph
(Vgraph) is the shortest safe path for A among the Bj [24].
This algorithm solves two-dimensional Findpath problems
when the orientation of A is fixed, but the paths it finds are
very susceptible to inaccuracies in the object model. These
paths touch the CspaceA obstacles; therefore, if the model were
exact, an object moving along this type of path would just touch
the obstacles. Unfortunately, an inaccurate model or a slight
error in the motion may result in a collision. Furthermore, the
Vgraph algorithm does not find optimal paths among three-
dimensional obstacles [24]. Alternative techniques for path-
finding are treated in [23].

Here is a brief summary of the rest of the paper. Section II
presents algorithms for computing COY(B). Section III
characterizes COY0(B), the CspaceA obstacle for polygons
that are allowed to rotate. Section IV describes an algorithm
for computing COYZ(B), the CspaceA obstacle for polyhedra
with fixed orientation. Section V characterizes COA (B), the
CspaceA obstacle for polyhedra that are allowed to rotate.
Section VI deals with slice projection, an approximation
technique for higher dimensional CspaceA obstacles, for ex-
ample, those obtained when a polyhedron is allowed to rotate.
Section VII discusses the extensions to the Findspace and
Findpath algorithms needed to plan the motions of industrial
robots. Section VIII discusses related work in spatial plan-
ning.

II. COMPUTING COY(B)
The crucial step in the Cspace approach to Findspace and

Findpath is computing the CspaceA obstacles for the Bj. Thus
far, we have only provided an implicit definition of COA (B);
we now provide, in Theorem 1, a characterization of COY(B)
and CIG(B) in terms of set sums that will lead us to an efficient
algorithm for computing CspaceA obstacles.

Set sum, set difference, and set negation are defined on sets
of points, eqivalently vectors, in Sin as follows:

4 This assumes Euclidean distance as a metric. For the optimality conditions
using a rectilinear (Manhattan) metric, see [19].
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Fig. 4. Illustration of Theorem 1. Any location of rvA, denoted c, for which
A and B have a point in common (expressible as b and a'), can be expressed
as c = b - a'. Therefore, COY(B) = B e (A)o.

A @DB = la + bja E A, b e B)
A e B = la-bja e A, b E B}

eA =f-aa sA.

If a set A consists of a single point a, then a S B = la) E B =
A E B. Also, A e B = A CD (EB). Note that, typically A S
A I{2aIa e A} andA EA $ 0,althoughA SB = BS
A.
We can characterize the CspaceA obstacle for objects with

fixed orientation as a set difference of the objects' point
sets:

Theorem 1: For A and B, sets in B2, COY(B) = B e
(A)o.

Proof: If c is an (x, y) configuration of A, then (A)c =
c S (A)o. Therefore, if a E (A), then there exists a' E (A)o
such that a = c + a'; see Fig. 4. Thus, if b E B n (A), and
therefore b E (A), then, for some a' E (A)o, b = c + a' and
therefore c = b - a'. Clearly, the converse is also true. U

This theorem extends naturally to higher dimensions, e.g.,
COYZ'(B), as long as the orientation of A is fixed.

If A and B are convex, then A S B and A e B are also
convex [16, p. 9]; therefore COY(B) is convex. In fact, if A
and B are convex polygons,'then COY(B) is also a convex
polygon. We can now use well-known properties of convex
polygons and the set sum operation [5] to state an O(n) algo-
rithm for computing COY (B) when A and B are convex n-
gons.

Let ir(A, u) denote the supporting line [5] ofA with out-
ward normal u. All of A is in one of the closed half-spaces
bounded by ir(A, u) and u points away from the interior of A.
ir(A, u) n A is the set of boundary points of A on the sup-
porting line.
Lemma 1 [5]: IfA and B are convex sets and u is an arbi-

trary unit normal, then

ir(A S B, u) n (A S B)
= (w(A, u) n A) a (ix(B, u) n B). (1)

Fig. 5 illustrates this lemma.
Lemma 2[5]:
a) Let s(al, a2) be a line segment and b a point, then s(al,

a2) S b = s(aI + b, a2 + b) is a line segment parallel to s(ai,
a2) and of equal length. See Fig. 6(a).

b) Let s(a1, a2) and s(bi, b2) be parallel line segments such
that (a2 - a,) = k(b2 -b1) for k > 0. Then s(ai, a2) S s(b1,

7C AGO, u)

7n(A,U)

IM\\//
/

.+ b

.. / I

P.X

- Ii\ 7Ctm.u)

Fig. 5. Illustration for Lemma 1.

U2

al

a2+ bj

a,+ b

a,+ b2

a,
ab2 ab + b

\a, \\b,

Fig. 6. Illustration for Lemma 2.

b2) = s(aI + bI, a2 + b2) and the length of the sum is the sum
of the lengths of the summands. See Fig. 6(b).

Theorem 2: For A a convex n-gon and B a convex m-gon,
CO7(B) can be computed in time O(n + m).

Proof: For a polygon P, assume the jth edge, s%(v, v1+ 1),
makes the angle 0j with the x-axis. If O(u) is the angle u makes
with the x axis, then

(V.Vj,
ir(P, u) n P = s(v1, 1j+ 1),

V+ I ,

if 0j-I <0(U) <Oj
if 0(u) = fj
if 0j < 0(u) < j+1.

We now apply Lemmas 1 and 2. Depending on the angle
0(u), each term on the right-hand side of (1) is either a line
segment (edge) or a single point (vertex). It follows from
Lemma 2 that the term on the left of (1) is one of:

a) a new vertex, when two vertices are combined;
b) a displaced edge, when an edge and a vertex are com-

bined (Lemma 2a);
c) an edge, corresponding to a pair of displaced end-to-end

edges, when two edges are combined (Lemma 2b).
As u rotates counterclockwise, the boundary of A CD B is

formed by joining a succession of these elements. Note that,
because of the convexity ofA and B, each edge is encountered
exactly once [25, p. 13].

Polygons are stored as lists of vertices in the same order as
they are encountered by the counterclockwise sweep of u. This
is equivalent to a total order on the edges, based on the angle
that the edge makes with the x axis. These lists for A and B can
be merged into a single total order on the angle in linear time,
as they are traversed. At each step, we construct a new vertex
(edges need not be represented explicitly) by the method in-
dicated in the lemmas. The time for constructing the new
vertices is bounded by a constant, since it involves at most two

III
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Fig. 7. The edges of B_e (A)o, when A and B are convex polygons, are found
by merging the edge lists ofB and e(A)o, ordered on the angle their normals
make with the positive x axis.

vector additions. Thus A @D B can be computed in linear time
during a scan of the vertices ofA and B; see Fig. 7. An imple-
mentation of this algorithm is included in Appendix I. Thus,
B e (A)o can be computed in linear time by first converting
each vertex ai to rvA - a1; see Fig. 7.

This algorithm is similar to Shamos' diameter algorithm
using antipodal pairs [36], but- instead of dealing with two
supporting lines on one polygon, it deals with two polygons and
one supporting line on each. An algorithm, essentially identical
to the one in Theorem 2, has been recently described in [39].
The proof Theorem 2, however, will be used in subsequent
sections to derive characterizations and algorithms for other
Cspace entities.
When A or B are nonconvex polygons, COY(B) can be

computed by an extension of the algorithm above. The ex-
tension relies on decomposing the boundaries of the polygons
into a sequence of polygonal arcs whose internal angles, i.e.,
the angle facing the inside of the polygon, are each less than
ir. The algorithm of Theorem 2 can then be applied to pairs
of arcs; the result is a polygon whose boundary, in general,
intersects itself. The algorithm requires, in the worst case,
O(n X m) steps.
An alternative method of computing COY(B) for nonconvex

A and B can be used when convex decompositions of A and B
are available, e.g., the objects may have been designed by set
operations on convex primitives. If A is represented as the
union of kA objects Ai, and B is the union of kB objects Bj, then
Theorem 3 follows directly from the definition of COA (B).

Theorem 3: If A = U 1A Ai and B ,- U1 Bj:
kA kB

COA (B) = U U COA,(Bj).
i=l j=l

This theorem simply says that the set of configurations that
cause a collision between A and B are those for which any part
ofA intersects any part of B.

III. CHARACTERIZING COYO(B)
We have so far restricted our attention to cases where A

remains in a fixed orientation. In these cases, all the geometric
constraints for spatial planning are embodied in COY(B).
However, COY(B) is only the cross section, for fixed 0, of the
three-dimensional full configuration space obstacle for poly-
gons, COV0(B). In this section, we consider COAY(B), when

II TI

ia3

b4
I%'

LOk,~-.

14

CjW B i _._

b3-

Fig. 8. When A (and E(A)O) rotates by 0, the e' rotate around bj and the
ej are displaced. When an eg is aligned with an eb for some 0, any additional
rotation of A will interchange the order in which they are encountered
during the counterclockwise scan of Theorem 2. For example, in the top
figure a., appears before b2 on the boundary of COY(B) and is (nearly)
aligned with b2; in the bottom figure, after additional rotation of A, al
appears after b2 on the boundary of COY(B). Therefore, the top figure
illustrates A in the orientation 0!J.

A and B are convex, by examining changes in its cross section
as 0 changes.

For fixed 0, we know from Theorem 2 that the edges of
COY(B) are either displaced edges ofA or displaced edges of
B. Therefore, for a small rotation of A, we expect that those
edges of COY(B) corresponding to the edges of A will rotate,
but the edges corresponding to edges in B will not. As A ro-
tates, however, the rate of displacement of these edges changes
discontinuously when edges of A and B become parallel, as
illustrated below.

Let vert(B) denote the set of vertices- of a polygon B, bj be
the position vector of the jth member of vert(B), and as(O) be
the position of the ith member of vert(e(A)o), which depends
on 0. Assume that A and B have no parallel edges. For fixed
0, the proof of Theorem 2 shows that each edge of COY(B) can
be expressed as one of

e = bj @ s(ai (0), ai+ (0))
eb = ai(6) @ s(b , bj+1).

(2a)
(2b)

The order in which the ai and bj are encountered in the
counterclockwise scan described in Theorem 2 determines the
(i, j) pairings of vertices and edges. For example, in (2b), ai(0)
is the vertex of E(A)o that is on the supporting line of E(A)o
which is parallel to s(bj, bj+ 1), i.e., if uj is the normal to s(bj,
bj+1), then ai = wr(E(A)o, u1) n e(A)o.

Equation (2) shows that, for a given pairing of edges and
vertices, the e? rotate around bj, while the ej are simply dis-
placed by the vector ai(O); see Fig. 8. The discontinuous
changes occur at values of 0, denoted 06 , where the ith edge
ofA becomes parallel to the jth edge of B. For values of 6 just
greater than these 06 , some pair of edges has a different order
in the scan of Theorem 2 from what they had when 6 was just
less than 0! ; see Fig. 8. Therefore, at each 6k,, the pairings
between edges and vertices change. For A a convex n-gon and

112
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,P*rvA_
bj+, U1

\ /
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a1V
Eb)

Fig. 9. Illustration of terms used in (3).

B a convex m-gon, there are O(n X m) such 0 j in
COXY(B).

Between discontinuities, the lines defined by e' edges have
a simple dependence on 6. The edge s(bj, bj+1) is on a line
whose vector equation5 is: (uj, x) = (uj, bj), where uj is the
constant unit normal to s(bj, bj+ 1). Let ai (O) make the angle
+ mq with the x axis, withgi constant, and u1 make the angle

Oj with the x axis. Then, if || ai || represents the vector magni-
tude of ai, the equation for the line including eb is

(uj,x) = (uj,a,(6) +bj)
= Ilai cos (O + qi- qj) + (bj, uj). (3)

The terms are illustrated in Fig. 9. This equation holds between
discontinuities.
The equation for the e' edges is not as simple, because the

orientation of the edge changes with 0, i.e., the edge is a cross

section of a curved surface in (x, y, 0) space. Let vi(6) be the
normal vector to s(a,(6), ai+I(6)); then the vector equation
of this curved surface is

(vi(6), x) = (vi(6), ai(6) + bj). (4)

This equation also holds only between discontinuities, i.e., for
each pairing of vertices and edges.

Equations (3) and (4) define the shape of COY'(B). Since
the resulting object is not polyhedral, however, it cannot be
used for the Vgraph algorithm. Section VI discusses a tech-
nique for constructing lower dimension polyhedral approxi-
mations of CspaceA obstacles and an extended Vgraph algo-
rithm to use them (see also [23]). These equations for
COY'(B) are the basis for the Findpath algorithm described
in [10].

IV. ALGORITHM FOR COyZ(B)
Theorem 1 applies also to COYZ(B), but the algorithm of

Theorem 2 cannot be extended to polyhedra, since there is no
similar total ordering of the faces of a polyhedron. However,
Theorem 4 below follows easily from Theorem 1 and provides
a way to compute COYZ(B) for convex polyhedra A and B.
The method of Theorem 4 also applies to polygons, but is much
less efficient than the linear algorithm of Theorem 2. Theorem
4 provides the basis for approximating COyz(B) when A and
B are nonconvex, simply by replacing A or B by their convex
hulls.

Let conv(A) denote the convex hIll of a polygon A, i.e., the

5 The scalar (dot) product of vectors a and b will be denoted (a, b).

smallest convex polygon enclosing A. We know that conv(A),
for a nonempty set A c _d, iS {12; yixiIxi e A, yi > 0, Z2=l
yi = 11, for some n [16, p. 15] . This definition says that every
point in the convex hull ofA can be written as a convex linear
combination of points in A.

Theorem 4: For polyhedra A and B,

conv(A @ B) = conv(A) C conv(B)
= conv(vert(A) @ vert(B)).

Proof: First show that conv(A @ B) = conv(A) @
conv(B).

(v): By the definition of @, if x E conv(A) @ conv(B),
then there exist a E conv(A) and b E conv(B) such that x =
a + b. The definition of convex hull states that any a e
conv(A) can be expressed as a convex linear combination of
points in A; likewise for any b e conv(B). Therefore, there
exist ai e A, bi e B, 1i yi = 1, yi > O, 2jOj = 1, and lj >
0 such that a = 2i -yiai and b = Yj3jbj and thus

x = a + b = (E yiai) + b = E yi(ai + b)
yj(i + i111

= E fyi3ai+ E 31jbb)
i

= E 'Yi E Ojyai + E Oj,bj\

= E yi 31j(ai + bj) = E Ei 'yi,#3(a1 + bj).
i Ii

But, since Xi jy io = 1 and yyifi > 0, x is a convex linear
combination of points in A @ B and therefore belongs to its
convex hull. Therefore conv(A) @ conv(B) c conv(A @ B).

(c): If x E conv(A E B), then there exist -yi > 0 with
Ii7i = 1, a; e A, and bi E B, such that

x = , oyi(ai + b,) = Eyiai + E yibi.
1. i i

Therefore, x E conv(A) (D conv(B).
This establishes that conu(A $ B) = conv(A) $ conv(B).

Replacing A by vert(A) and B by vert(B), and using the fact
that conv(A) = conv(vert(A)) [16], shows that conv(vert(A)
E vert(B)) = conv(A) CD conv(B). U

Corollary: For convex polyhedra A and B, COXAYZ(B) =
conv(vert(B) e vert((A)O)).

Proof: A $D B is convex, when A and B are both convex;
thus, A $ B = conv(A D B). By Theorem 4, A $ B = conv-
(vert(A) CD vert(B)). Using Theorem 1 establishes the corol-
lary. -

Several algorithms exist for finding the convex hull of a fi-
nite set of points on the plane, e.g., [15] and [32]. The latter
[32] also describes an efficient algorithm for points in V3.
These algorithms are known to run in worst case time O(v log
v), where v is the size of the input set. Therefore, Theorem 4
leads immediately to an algorithm for computing COYJZ(B)
and an upper bound on the computational complexity of the
problem or convex polyhedra.

Theorem 5: For convex polyhedra A, B c ?3, each with

113



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

0(n) vertices, COY'Z(B) can be computed in time 0(n2 log
n).

Proof: The set vert(B) e vert((A)O) is of size 0(n2).
Applying an 0(v log v) convex hull algorithm to this set gives
an 0(n2 log n) algorithm for computing CO"YZ(B). U
The Vgraph algorithm discussed in Section I can be ex-

tended directly to deal with three-dimensional CspaceA ob-
stacles, COYz(Bj). However, the paths found are not, in
general, optimal paths [24]. Furthermore, with three-dimen-
sional obstacles, the Vgraph algorithm is not even guaranteed
to find a solution when one exists. This happens when the
vertices of the COYZ(Bj) are inaccessible, because they are
outside of CIYz(R). In that case, there may exist collision-free
paths (via edges of the COz(Bj)), but the Vgraph algorithm
will not find them. An alternative suboptimal, but complete,
path searching strategy is described in [23]. A path searching
algorithm based on mathematical optimization of a path along
a fixed set of edges is described in [ 12].

V. CHARACTERIZING COA (B)

The surfaces of COA (B), when A is three-dimensional and
allowed to rotate, can be characterized in the same manner as
the surfaces of CO'(B) were characterized in Section III.
There are three types of surfaces that need to be considered,
rather than two types as in two-dimensional objects. Letf1(O)
be the ith face of the convex polyhedron A, with 0 being the
vector of three Euler angles indicating the orientation of A
relative to its initial orientation. Similarly, let gj be the jth face
of the convex polyhedron B. As before, we let as(0) and bj
denote vertices ofA and B, respectively. Each face of COA (B)
can be expressed as one of

f = bj @f1(0) (5a)
Pi = as (O) 03 gj (5b)

fijXb = s(ai(0), ai+1(0)) @ s(bj, bj+1). (5c)
The faces defined by (5a) and (5b) are parallel to the faces of
A and B, respectively. Each face defined by (5c) is a paral-
lelogram, with edges parallel to the edges ofA and B that give
rise to the face. The vector equation for each type of surface
follows the pattern of (3) and (4) above:

(N, x) = (N, ai(0) + bj) (6)

whereN is 1) the normal tof1(0) for (5a) faces, 2) the normal
to gj for (5b) faces, or 3) the cross product of the vectors along
s(ai(0), ai+1(0)) and s(bj, bj+ 1) for (5c) faces. As above, this
characterization only holds between discontinuities.

VI. APPROXIMATING HIGH-DIMENSION Cspace
OBSTACLES

We have seen that when A is a three-dimensional solid
which is allowed to rotate, COA (B) is a complicated curved
object in a six-dimensional CspaceA. An alternative to com-
puting these objects directly is to use a sequence of low-di-
mensional projections of the high-dimensional CspaceA ob-
stacles. For example, a three-dimensional (x, y, 6) CspaceA

-

Fig. 10. Slice projections of CspaceA obstacles computed using the (x,
y)-area swept out by A over a range of0 values. Each of the shaded obstacles
is the (x, y)-projection of a 0-slice of COA(B). The figure also shows a
polygonal approximation to the slice projection and the polygonal ap-
proximation to the swept volume from which it derives.

obstacle can be simply approximated by its projection on the,
(x, y) plane, and any path of A that avoided the projection
would be safe for all orientations of A. On the other hand, there
may be no paths that completely avoid the projection. A better
approach is to divide the complete range of 0 values into k
smaller ranges and, for each of these ranges, find the section
of the (x, y, 6) obstacle in that range of 6. These are called
0-slices of the obstacle. The projection of these slices serves as
an approximation of the obstacle. Paths that avoid individual
slices are safe for orientations ofA in the 0-range defining the
slice.
The shaded areas in Fig. 10 are the (x, y) projection of

0-slices of COA (B) when A and B are rectangles. These slices
represent configurations where A overlaps B for some orien-
tation ofA in the specified range of 0. We will show that these
slice projections are the CspaceA obstacles of the area swept
out by A over the range of orientations of the slice. The swept
area under rotation of a polygon is not pologonal. To use the
COY(B) algorithm developed earlier, we approximate the
swept area as the union of polygons [23]. This polygonal ap-
proximations leads to a polygonal approximation for the pro-
jected slices, as shown in Fig. 10. Similar considerations apply
to polyhedra.
The crucial properties of slice projection are: 1) a solution

to a Findspace or Findpath problem in any of the slices is a
solution to the original problem, although not all actual solu-
tions can be found in the slices; and 2) the degree of approxi-
mation can be controlled by choosing the range of parameters
of the slice, in particular the approximation need not be uni-
form across the range of parameters.
The Vgraph algorithm for Findpath, has been extended

[24], by means of slice projection, to find paths when A and
all the Bj are three-dimensional polyhedra that are allowed to
rotate. Fig. 11 illustrates the basic idea of this algorithm. An
alternative path-searching technique, also using slice projection
is described in [23]. Because the slice projections are approx-
imations to the CspaceA obstacles, neither of these algorithms
is guaranteed to find solutions to Findpath problems. Paths
found by Findpath algorithms that use slice projections are
composed of sequences of translations interspersed with
rotations, but where the rotations happen in quantized incre-
ments corresponding to the ranges of orientations that define
the slices. Not all paths can be expressed in this fashion. For
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Zi/v+ii7 A3
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Fig. 11. An illustration of the Findpath algorithm using slice projection
described by Lozano-P6rez and Wesley in [24]. A number of slice projec-
tions of the Cspace obstacles are constructed for different ranges of or-
ientations of A. The problem of planning safe paths in the high-dimensional
CspaceA is decomposed into 1) planning safe paths via COY'Z(Bj) vertices
within each slice projection and 2) moving between slices, at configurations
that are safe in both slices. Al represents A in its initial configuration, A3
represents A in its final configuration and A2 is a simple polyhedral ap-
proximation to the swept volume of A between its initial and final orien-
tation.

example, the classic problem of moving a rectangular sofa
through a rectangular bend in a hallway that just fits the sofa
requires continuous rotation during translation. However, a
large class of useful problems can be solved using slice pro-
jection.

In the rest of the section we show how slice projections of
COA (B) may be computed using the CO7(B) and COAY'Z(B)
algorithms of Section IV. The idea is simply that if a collision
would occur for A in some orientation, it would also occur for
a swept volume of A that includes A in that orientation.
More formally, a j-slice of an object C e I? n is defined to

be t(li, 3,n) E C 1yj < /j < 'y)l, where yj and % are the
lower and upper bounds of the slice, respectively. Then, if I =
$1, n,n and K I, then a K-slice is the intersection of the
j-slices for ] E K. Note that a K-slice of C is an object of the
same dimension as C. Slices can then be projected onto those
coordinates in I not in K, i.e., I - K, to obtain objects of lower
dimension. A j-cross section is a j-slice whose lower and upper
bounds are equal, e.g., COj(B), for some orientation of A, is
the projection on the (x, y) plane of a 0-cross-section of
CO?0(B).

Slice projections are related to cross-section projections by
the swept volume of an object. Intuitively, the swept volume
ofA is all the space that A covers when moving within a range
of configurations. In particular, given two configurations for
A, called c and c', then the union of (A), for all c < a < c' is
the swept volume of A over the configuration range [c, c'].
Generally, c and c' differ only on some subset, K, of the con-
figuration coordinates. For example, if c and c' are of the form
(/31, 02, /3) and K = 13j, then the swept volume ofA over the
range [c, C']K refers to the union ofA over a set of configura-
tions differing only on /33. The swept volume ofA over a con-
figuration range is denoted A [c, C']K.

IfA [c, C']K overlaps some object B then, for some config-
uration a in that range, (A)a overlaps B. The converse is also
true. COA[c,cI]K(B) is the set of I - K projections of those
configurations of A within [c, C']K for which A overlaps B.

Fig. 12. Linked polyhedra can be used to model the gross geometry of
industrial robot manipulators.

Equivalently, COA[C,C'JK(B) is the I -K projection of the [c,
C]K slice of COA (B). If the configurations of the swept volume
are one of (x, y), (x, y, z), or (x, y, 6) then the algorithms of
the previous sections can be used to compute COA [C,C'LK(B) and
thereby compute the required slice projections.6
A formal statement and proof of this result is included in

Appendix II as Theorem 6. This theorem is of practical im-
portance since it provides the mechanism underlying the
Findspace and Findpath implementations described in [23]
and [24].

VII. AUTOMATIC PLANNING OF INDUSTRIAL ROBOT
MOTIONS

One application of the algorithms for Findspace and Find-
path developed above is in the automatic planning of industrial
robot motions [23], [43]. However, some extensions of the
results for polyhedra are needed. In this section, we briefly
discuss these extensions.

Industrial robots are open kinematic chains in which adja-
cent links are connected by prismatic or rotary joints, each with
one degree of freedom [29]. We model them by linked poly-
hedra, kinematic chains with polyhedral links, each of which
has either a translational or rotational degree of freedom rel-
ative to the previous joint in the chain; see Fig. 12. The relative
position and orientation of adjacent links, Ai and A+1, is de-
termined by the ith joint parameter [29], [7]. The set ofjoint
parameters of a linked polyhedron completely specifies the
position and orientation of all the links. This type of model is
clearly an approximation to the actual geometry; in particular,
the shape of the joints is not represented and some values of
the joint parameters may cause overlap of adjacent links.
The natural CspaceA for a linked polyhedron is that defined

by the set ofjoint parameters. A point in this space determines
the shape of the linked polyhedron and the configuration of
each of its links. Unfortunately, the presence of rotary joints
prevents the use of the COYZ(B) algorithm of Section IV to
plan the motions of linked polyhedra. However, there is an
increasingly popular class of industrial robots, known as
Cartesian robots, where the translational degrees of freedom
of the robot are separate from the rotational. With this class
of robots, we can use the COYZ'(B) algorithm and slice pro-
jection approach to plan collision-free paths and to plan how
to grasp objects [23]. Actually doing this requires constructing
the swept volume, over the rotational parameters, of the linked

6 Of course, this requires computing a convex polyhedral approximation
to the swept volume of A. Simple approximations are not difficult to compute
[231, but this is an area where better algorithms are required. Nevertheless,
the swept volume computation is a three-dimensional operation which can
be defined and executed without recourse to six-dimensional constructs.
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02 A2
'3

Fig. 13. Changes in the second joint angle from 02 to O'2 causes changes
in the configurations of both link A2 and link A3.

polyhedron modeling the robot. The resulting swept volume
can be viewed as a polyhedron with only translational degrees
of freedom, for which the COYf(B) algorithm is applicable.

Using swept volumes of linked polyhedra for slice projection
requires taking into consideration the interdependence of the
joint parameters. Note that for a linked polyhedron, the po-
sition of link j typically depends on the positions of links k <
j, which are closer to the base than linkj. Let K = {i, c = (0i),
c= (6;), and [c, C']K define a range of configurations differing

on thejth CspaceA parameter. Since joint j varies over a range

of values, links 1 > j will move over a range of positions which
depend on the values of c and c', as shown in Fig. 13. The union
of each of the link volumes over its specified range of positions
is the swept volume of the linked polyhedron. The swept vol-
ume of linksj through n can be taken as defining a new jth link.
The firstj-1 links and this new jth link define a new ma-

nipulator whose configuration can be described by the first j
- 1 joint parameters. On the other hand, the shape of the new
link j depends not only on the K-parameters of c and c', i.e.,
Oi and O", but also on 61 for 1> j. This implicit dependence on

parameters of c and c' that are not in K is undesirable, since
it means that the shape of the new jth link will vary as the
swept volume is displaced, i.e., the (I - K)-parameters are

changed. If we let K = U, * *, n}, then the shape of the swept
volume depends only on the K-parameters of c and c', while
its configuration is determined by the (I - K)-parameters. A
swept volume that satisfies this property is called displaceable.
This property plays a crucial role in proving the fact, men-

tioned in Section VI, that slice projections of a CspaceA ob-
stacle can be computed as the CspaceA obstacles of the swept
volume of A (see Theorem 6 in Appendix II).

In summary, with the extensions discussed in this section,
the spatial planning algorithms developed for the case of rigid
polyhedra can serve as the basis for planning the motions of
industrial robots.

VIII. RELATED WORK IN SPATIAL PLANNING

The definition of the Findspace problem used here is based
on that in [49]. One previous approach to this problem is de-
scribed in [30]; it is an application of the Warnock algorithm
[47] for hidden line elimination. The idea is to recursively
subdivide the workspace until an area "large enough" for the
object is found. This approach has several drawbacks: l) any
nonoverlapping subdivision strategy will break up potentially
useful areas and 2) the implementation of the predicate "large
enough" is not specified (in general, the CIA (B) computation
is required to implement this predicate). However, once the
CspaceA obstacles have been computed, the Warnock search

provides a good way of solving Findspace; since we only need
space for a point, any free area is "large enough" [ 10].
The work by Udupa, reported in [45], [46], was the first to

approach Findpath by explicitly using transformed obstacles
and a space where the moving object is a point. Udupa used
only rough approximations to the actual Cspace obstacles and
had no direct method for representing constraints on more than
three degrees of freedom. A survey of previous heuristic ap-
proaches to the Findpath problem for manipulators, for ex-
ample, [20], [31], has been given in [46]. An early paper on
Shakey [28] describes a technique for Findpath using a simple
object transformation that defines safe points for a circular
approximation to the mobile robot and uses a graph search
formulation of the problem. More recent papers on navigation
of mobile robots are also relevant to two-dimensional Findpath
[14], [26] [44]. An early paper [18] reports on a program for
planning the path of a two-dimensional sofa through a corridor.
This program does a brute-force graph search through a
quantized Cspace.
The Cspace approach to Findspace and Findpath described

here is an extension of that reported in [24]. In that paper, an
approximate algorithm for COXP(B) is described and the
Vgraph algorithm for high-dimensional Findpath is first
represented. An application of the Findpath and Findspace
approach described in the current paper to automatic planning
of manipulator motions is described in [23]. Alternative ap-
proaches to path searching in the presence of obstacles are
described in [19], [12], [23] . The visibility computation needed
in Vgraph is treated, in the context of hidden-line elimination,
in [4], [51].
The basic idea of representing position constraints as geo-

metric figures, e.g., COY(B), has been used (independently)
in [1]-[3], where an algorithm to compute COY(B) for non-
convex polygons is used in a technique for two-dimensional
layout. The template packing approach described in [13] uses
a related computation based on a chain-code description of
figure boundaries. Algorithms for packing of parallelopipeds,
in the presence of forbidden volumes, using a construct
equivalent to the COXYz(B), but defined as "the hodograph of
the close positioning function" are reported in [42]. The only
use of this construct in the paper is for computing COXY(B)
for aligned rectangular prisms.
An extension of the approach in [24] to the general Findpath

problem is proposed in [34]. The proposal is based on the use
of an exact representation of the high-dimensional Cspace
obstacles. The basic approach is to define the general config-
uration constraints as a set of multinomials in the position
parameters of A. However, the proposal still requires elabo-
ration. It defines the configuration space constraints in terms
of the relationships of vertices of one object to the faces of the
other. This is adequate for polygons, but the equations in the
paper only express the constraints necessary for vertices ofA
to be outside of B, i.e., they are of the form-of (3). They do not
account for the positions ofA where vertices ofB are in contact
with A [see (4)]. The new equations will have terms of the form
x cos 6 and y cos 0. Furthermore, the approach of defining the
configuration constraints by examining the interaction of
vertices and faces does not generalize to three-dimensional

116



LOZANO-PEREZ: SPATIAL PLANNING

polyhedra. It is not enough to consider the interaction of ver-
tices and faces; the interaction of edges and faces must also be
taken into account (see Section V and [8]).
Two recent papers describe solutions for the Findpath

problem with rotations in two [40] and three dimensions [41].
In [41], the Cspace surfaces are represented as algebraic
manifolds in a 12-dimensional space; in this way the surfaces
can be described as polynomials, allowing the use of some
powerful mathematical machinery. The resulting algorithm
has (large) polynomial time complexity, for fixed dimension-
ality of the Cspace.
A Cspace algorithm is described in [10] for solving Find-

path, allowing rotations of the moving objects. The algorithm
is based on recursively subdividing Cspace until a path of cells
completely outside of the obstacles is found.
An alternative approach to two-dimensional Findpath with

rotations is described in [9]. The algorithm is based on rep-
resenting the empty space outside the objects Bj explicitly as
generalized cones. Motions ofA are restricted to be along the
spines of the cones. The algorithm bounds the moving object
by a convex polygon and characterizes the legal rotations of
the bounding polygon along each spine.

APPENDIX I

ALGORITHM FOR COY(B)
This Appendix shows an algorithm for computing A @ B,

called SET-SUM(A, B, C), when A and B are convex polygons.
Section II used this operation to compute COj(B).

Each polygon is described in terms of its vertices and the

angles that the edges make with the positive x axis. The edges
and vertices are ordered in counterclockwise order, i.e., by
increasing angle. The implementation assumes that a POLY-
GON record is available with the following components:

1) size-number of edges in the polygon.
2) vert [1 :size + 1, 1:2]-an array of vectors representing

the coordinates of a vertex. The ith edge, i = 1, , size, has
the endpoints vert[i, k] and vert[i + 1, k], for k E 11, 21. Note
that vert[size + 1, k] = vert[1, k].

3) angle [0:size]-the edge normal's angle (in the range
[0, 27]) with the x axis, monotonically increasing. For con-
venience angle [0] = 27r - angle [size].

References to the components of a polygon, a, are written
as one of a.size, a.vert, and a.angle.
The algorithm implements the angle scan in the proof of

Theorem 2; in particular, the edges of the input polygons, a and
b, are examined in order of angle. The algorithm determines
the position of the vertices of c. It is clear that vertices can
occur only at angles where there is either a vertex of a, or a
vertex of b, or both. From Lemmas 1 and 2, it is easy to see that
the position of the vertex of c is the sum of the positions of the
corresponding vertices of a and b. The algorithm starts the scan
at the angle determined by the first edge of b, the first loop in
the program below serves to find the edges of a that straddle
that angle. From there, the algorithm increments the edge
index into a or b depending on which makes the smaller angle
increment. In general, the algorithm requires incrementing
the angle beyond 2wr so as to consider all the edges of a before
the edge found by the first loop of the program. Since the edges
are stored with angles between 0 and 2r, an offset variable is
used to add 2r to the angle when the wraparound on polygon
a is detected.

PROCEDURE setsum (a, b, c);
POLYGON a, b, c;
BEGIN INTEGER ea, eb, vc, i;

REAL ang, offset;
COMMENT Initialize an index into a, one into b, and one into c.

The value of offset will be either 0 or 2*pi, and it is used
to handle angle wraparound as described above;

ea:= 1;
eb:= 1;
vc : -1;
offset := 0;
COMMENT Find adjacent edges in a whose angles straddle the angle

of the first edge of b;
WHILE (a.angle[ea] <= b.angle[1] OR a.angle[ea - 1] >= b.angle[1])

DOea:= ea + 1;
FOR i := 1 STEP 1 UNTIL 2 DO

c. vert[1, i] := a.vert[ea, i] + b.vert[1, i];
COMMENT This loop implements the scan of Theorem 2 in the body of the

paper. The result of the loop is to fill the vertex array of c;
WHILE (eb <= b.size) DO

BEGIN
vc := vc + 1;
ang := offset + a.angle[ea];
IF (ang <= b.angle[eb])
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THEN IF (ea >= a.size)
THEN BEGIN offset := 2*pi; ea 1 END

ELSE ea:= ea + 1;
IF (ang >= b.angle[eb])
THEN eb:=eb + 1;

FOR i := 1 STEP 1 UNTIL 2 DO
c.vert[vc, i] := a.vert[ea, il + b.vert[eb, i]

END;
c.size := vc,j-
FOR i:= 1 STEP 1 UNTIL 2 DO

c.vert[vc + 1, i] c.vert[1, i];

END

APPENDIX II

PROOF OF THEOREM 6

Assume that CspaceA a y?d, let I = 11, 2, , d}and K a
I. Let I, K and I - K denote sets of indexes for the coordinates
of a E CspaceA. Define the following vectors, all in CspaceA:
b = (/3i),c = ('yi) and c' = (,y) for i E I. Then,

(PK (C, C')-b E Jdl A Yk < /k < k

4K (C) 4K (C, C)

OK(C, C')E-K(C, c') n P1_K(C, C)

These definitions are illustrated in Fig. 14.
The projection operator, denoted PK[-]: _

d =l KI iS

defined, for vectors and sets of vectors, by

PK[b] = (0k) k E K

PK[B] = $PK[b]Ib e B)
Superscripts on vectors indicate projection, e.g., bK = PK [b].
In addition, the vector in WII composed from one vector in
_4lKI and one in ]jII-KI is denoted (aI-K: bK), where
Pl_K[(aI : bK)] = aIK and PK[(as K: bK)] =bK.

In this notation, precise definitions for the notions of cross
section projection and slice projection can be provided. The
cross section projection of a CspaceA obstacle is written as

follows:

PI-K[COA(B) n +X(c)]

The slice projection, is similar to the cross section projection,

I(P-K C IC)

(cI

1=11,2 1 K=1 2 >

Fig. 14. Illustration of the definition of 'I)K(c,c') and OK(c,c').

but carried out for all configurations between two cross sec-

tions:

PI-K[COA(B) n tK(C, C)]

The K-parameters of the two configurations, c and c', define
the bounds of the slice. Similarly, the swept volume can be
defined in this notation.

Definition: The swept volume ofA over the configuration
range [c, C'IK iS

(A[c, C']K)c- U (A)a.
a e OK(c,c')

The requirement discussed in Section VII that the swept
volume of A be displaceable is embodied in the following
condition:

Va: U (A)(aI-K:xK) = (A[c, c']K)(al-K:CK) (7)
XE OK(C,C')

Note that the I - K parameters may be changed, as in (7), but
not those parameters in K. Therefore, (A[c, C']K)a is defined
only if a e <K>(C).
Theorem 6: If (7) holds, then

PI-K[COA(B) r) 'K(C, C)]

PI-KK[COA[c,c']K(B) n 4 K(C)]

Proof of Theorem: Assume that the configuration a is
in the slice projection of COA (B), that is,

a E PI-K [COA (B) nlK(C, C')
This assumption and the definition of the projection operator
allows us to deduce that some configuration in CspaceA, whose
I -K-projection is a, is in COA(B):

¢}3X1 E (kK(C, C'):((a' K:XK) E, COA(B)).
In fact, since we are only interested in the K-parameters of xl
and OK(C, c') tK(c, c'), we can assume without loss of
generality that xi is in the smaller set, i.e.,

3x] :((a' KXi) COA(B)).

Simply using the definition of COA (B), it follows that

4 (A)(aI-xKX) n B

but if A in this configuration intersects B, then any set in-
cluding A in that configuration will also intersect B. In par-
ticular,

P2 _

;2 c _ ~~~~~~~~(-)K(C,4)
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-=* U (A)(abK:xK) r B < 0
XE OK(C,C')

We are assuming that swept volumes are displaceable, i.e., that
(7) holds. Therefore, using (7), we get

(A[c, C']K)(al-K:cK) n B $0

Hence, by the definitions of COA (B) and 4.K(C),
(aI-K:cK) e COA[C,C'](B) and (aI1K.cK) E (PK(C)

Applying the definition of the projection operator completes
the proof:

.a e PI-K[CoA[c,c']K(B) nfK(C)].
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Structured Specification of Communicating
Systems

GREGOR V. BOCHMANN AND MICHEL RAYNAL

Abstract-Specification methods for distributed systems is the
underlying theme of this paper. A model of communicating processes
with rendezvous interactions is assumed as a basis for the discussion.
The possible interactions by a process, and the interconnection between
several subprocesses within a process are specified using the concept
of ports, which are specified separately. Step-wise refinement of
process specifications and associated verification rules are considered.
The step-wise refinement of port specifications and associated inter-
actions is considered as well. After the presentation of an introductory
example, the paper discusses the basic concepts of the specification
method. They are then applied to more complex examples. The step-
wise refinement of ports and interactions is demonstrated by a hard-
ware interface for which an abstract specification and a more detailed
implementation is given. Proof rules for verifying the consistency of
detailed and more abstract specifications are discussed in some de-
tail.

Index Terms-Communication processes, design verification,
distributed system design, interface specifications, parallel processing,
ports, specification consistency, specification language, specification
methods, step-wise refinement.

I. INTRODUCTION

MUCH work has been done in recent years in the area
of design methods for distributed systems. This in-

Manuscript received January 14,1982; revised July6,1982. This workwas
supported in part by the Natural Sciences and Engineering Research Council
of Canada and IRISA-INRIA, France.

G. V. Bochmann is with the Departement d'lnformatique et de Recherche
Operationnalle, Universite de Montreal, Montreal, P.Q. H3C 3J7,
Canada.

M. Raynal is with the ENST de Bretagne, BP 856, 29279 Brest-Cedex,
France.

cludes the development of languages for distributed systems,
the choice of appropriate interaction mechanisms (message
transmission, rendezvous interactions, remote procedure calls,
etc.), communication protocol design for long distance and
local computer networks, as well as for the communication
between several VLSI components within a single computer
system. As in the case of nondistributed software systems, the
notion of step-wise refinement seems to be an important design
tool for distributed systems. Some difficulty is encountered,
however, if some sort of indivisible interaction primitives are
assumed.
The specification method discussed in this paper indicates

how the step-wise refinement of distributed systems may be
described with the concept of process substructure and the
concept of interactions that may be refined. The method is
based on the concepts "process" and "port." A process is an
entity that performs some data processing and is assumed to
be the unit of specification. A port is a part of a process and
serves for the communication of that process with its envi-
ronment, i.e., other processes in the system. A process may
possess several ports for communication with different parts
of its environment. The specification of the properties of a
process or port is given at an abstract level, in the sense that
only the externally visible behavior of a process or port is de-
scribed (i.e., its communication behavior), but not the way this
behavior is realized by an internal structure of the process or
port. Process and port implementations are specified separately
as the elements for one step in the step-wise refinement of a
system description.
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