Task-Level

Planning of Pick-and-Place
Robot Motions

Tomas Lozano-Pérez, Joseph L. Jones, Emmanuel Mazer, and Patrick A. O’Donnell

MIT Artificial Intelligence Laboratory

task-level robot system is one
that can be instructed in terms of
task-level goals, such as “Grasp

part A and place it inside box B.” This type
of specification contrasts sharply with that
required for existing industrial robot sys-
tems, which insist on a complete specifica-
tion of each motion of the robot and not
simply a description of a desired goal. An
important characteristic of task-level
specifications is that they are independent
of the robot performing the task, whereas a
motion specification is wedded to a spe-
cific robot.

Task-level robot systems have long been
a goal of robotics research. As early as
1961, Ernst’s PhD thesis at MIT' at-
tempted to develop such a system. Since
then, a variety of task-level robot systems
have been proposed, and several of them
have seen some level of implementation.
Lozano-Pérez and Taylor provide a survey
of previous work in this area.?

For the past three years, we have been
developing a task-level robot system
named Handey. The current system is by
no means a complete task-level system; it
is limited to pick-and-place operations,
that is, picking up a part and placing itat a
specified destination. The current implem-
entation has successfully carried out doz-
ens of pick-and-place operations involv-
ing a variety of parts in relatively complex

March 1989

The Handey system
breaks the
pick-and-place problem
into nearly independent,
computationally
feasible subproblems as
a step toward a
comprehensive
task-level system.

environments. Figure 1 shows a sequence
of intermediate steps of a pick-and-place
operation planned by Handey from a speci-
fication of the desired final position of the
part and geometric and kinematic models
of the robot and the environment. The steps
illustrated in the figure are
(1) the initial position of the robot and
the parts,
(2) grasping a part at a location chosen
by the system to avoid collisions

0018-9162/89/0300-0021$01.00© 1989 IEEE

with nearby objects,

(3) placing the part on the table,

(4) regrasping the part at a new location
compatible with the environment at
the destination,

(5) placing the part at the specified
destination, and returning to the
initial position.

The pick-and-place
problem

Consider the overall problem faced by a
task-level robot system, given a mechani-
cal assembly task and a single, sufficiently
precise robot. (In this article, we assume
that the position of all the parts are known
to high accuracy and the robot’s position-
ing accuracy is sufficient to carry out the
assembly simply by moving the part to a
fixed target position. If this assumption is
not satisfied, then assembly planning must
include fine-motion planning, that is, the
synthesis of motion strategies that can
achieve a desired goal in the presence of
sensing and control error.**) We can sum-
marize the overall assembly planning
problem, of which pick-and-place is but a
part, as follows:

« Choose an order of assembly for the

parts.

» Choose initial positions for all the

parts.

21

Figure 1. Steps 1-5 in a pick-and-
place operation planned by Handey.
Photographs courtesy of Francisco
Garcini.

Then, for each assembly step:

« Choose a grasp on the part.

* Plan a motion to grasp the part.

* Plan a motion to the assembly location
for the part.

* Plan a motion to extract the gripper.

The pick-and-place problem corresponds
to the last four steps above.

Ideally, the assembly problem will re-
duce to a number of independent sub-
problems, roughly one per line in the char-
acterization above. Unfortunately, this is
only true in extremely simple cases. In
fact, the solutions to all these problems are
tightly linked:

(1) The optimal initial placement of the
parts depends on the order of assembly.

(2) The order of assembly depends on
the feasibility of certain assembly steps,
for example, whether a subassembly can
be inserted into the main assembly in one
piece or whether it needs to be assembled
in position.

(3) The choice of a grasp on a part
depends on the environment at the initial

location, which depends on the initial
placement of nearby parts. The grasp also
depends on the placement of parts at the
target, which depends on what previous
assembly steps have been performed. The
choice of grasp depends on the range of
motions of the robot; surprisingly many
potential grasps simply will not be reach-
able.

(4) The choice of a grasp (and ungrasp)
motion depends on the choice of a grasp
and on the whole environment, especially
near the grasp and destination.

(5) The choice of an assembly motion
depends on whether a grasp compatible
with the assembly has been found; other-
wise, the part must be regrasped.

In short, all the subproblems of the as-
sembly problem are interdependent. This
also holds true for the pick-and-place prob-
lem we are considering.

One possible approach to the pick-and-
place problem, given the interdependence
of the decisions, is to treat it as a single
motion-planning problem with special

constraints., In particular, the effective
shape of the robot changes once it grasps
the object, so the constraints on its motion
change. The problem with this approach is
that it runs into significant computational
complexity; the additional degrees of free-
dom in the choice of a grasp add to the
robot’s motion freedoms. But, we expect
all complete algorithms for motion plan-
ning to have worst-case time-complexity
that is exponential in the degrees of free-

Configuration space

Robot manipulators are articulated
devices made up of a series of rigid
links connected by one-degree-of-
freedom joints. Joint motions are either
rotational or translational. The posi-
tions of all parts of a rigid robot are
completely specified by the values of
the joint parameters, known collec-
tively as the joint angles. Many robots
support an alternative specification for
desired position, namely, the position
and orientation of the robot gripper.
But, gripper position is not a unique
specification of the complete robot po-
sition; many sets of joint angles can
exist that place the gripper in the same
location.

Any set of parameters that uniquely
specify the position of every part of a
system is called a configuration, and
the space defined by those parameters
is the configuration space or C-space.
Most algorithmic approaches to motion
planning require a characterization of
those configurations of the robot that
cause collisions (or the complement of
that set). We call the collection of con-
figurations that produce collisions the
C-space obstacles.®

Consider the following simple case
(see Figure 2a). In this example, we

[]
A IB]
C)
y (@)
X P
B e
| I P o
L]
TP PRy R A |
C, Cq
I . 1]
(b)

Figure 2. Cartesian and C-space obstacles. (a) A scene with three obstacles, A,
B, and the table. The disembodied robot hand R is capable only of displace-
ments along the x and y axes. (b) The C-space for this hand is the X,y plane. The
C-space obstacles corresponding to A (C,), B(C,), and the table (C,) are seen.
The gripper is shown (in a fine dashed line) at two points of the C-space ob-

stacle boundary.

March 1989

23

dom but polynomial in the size of the
environment (Reif has shown motion plan-
ning to be PSPACE-hard®). Therefore, any
practical solution to the pick-and-place
and assembly problems must involve de-
coupling and other forms of dimensional-
ity reduction (see the accompanying side-
bar, “Configuration space”).

Approximate
approaches to the
pick-and-place
problem

The crucial step in solving the pick-and-
place problem is choosing how to grasp the
part. Once this choice has been made, the
problem boils down to separate motion-
planning problems in the robot’s C-space.
But, we cannot choose a grasp simply by
looking at the environment near the part;
we must consider the effect of the grasp on
the possibility of finding a path to the goal.
Therefore, any attempt at decoupling must
consider constraints imposed on the choice

of grasp by the environment at the goal as
well as that at the origin.

One necessary condition that the choice
of grasp point must satisfy is that there be
no collisions of the robot with any object at
either the initial or final position of the
part. In addition, there must be some path
connecting these initial and final positions
along which there are no collisions. In
practical situations, however, given safe
initial and final destinations, a path can
usually be found.

Given this heuristic assumption about
the availability of paths, there only re-
mains the problem of finding a grasp that is
reachable for the part in its initial position
and avoids collisions for the initial and
final positions. There are at least two ways
of doing this:

(1) Characterize the reachable grasps at
the initial grasp position, then characterize
the grasps that cause no collisions at the
destination. The grasps in the intersection
of these two grasp sets are collision-free at
both positions and reachable at the initial
position.

(2) Compute the transformation T
that maps the grasped part from its initial to
its final location. Apply the inverse trans-
formation T7' to a copy of the obstacles
near the final position of the part. Add
these transformed obstacles to the ob-
stacles near the initial position of the part.
Find a path to any legal grasp that avoids
both sets of obstacles (see Figure 4).

These two methods are not equivalent;
the second method will, in general, find
fewer grasps than the first method will. In
finding a path that avoids both sets of
obstacles, we have constrained the prob-
lem beyond what is strictly necessary to
guarantee finding a grasp that is reachable
at the initial position and safe at the final
one. Recall that we are planning the initial
grasp approach and not the path to the final
destination. It is not necessary, therefore,
that the complete approach path avoid the
obstacles derived from the destination,
only that the chosen grasp, that is, the final
position in the approach path, avoid the
obstacles.

We chose the second method for Handey

are limited to a disembodied robot
hand capable only of displacements
along the x and y axes, we assume
that the finger opening remains fixed to
simplify the C-space. The C-space for
this hand is the x,y plane. The C-space
obstacles corresponding to objects A
and B and the table in Figure 2a are
the objects bounded by dark lines in
Figure 2b. Every x,y point inside one of
the C-space obstacles represents an
x,y position of A's reference point (the
dark circle in Figure 2a) that causes a
collision. C, are the configurations that
cause a collision between R and A; C,
are the configurations that cause a col-
lision between R and B; C, are the
configurations that cause a collision
between R and the table.

Consider a simple robot with two ro-
tational joints, whose joint angles are
8, and 0, (see Figure 3a). A point in
the C-space specifies both joint angles
and, therefore, the position of every
part of the robot. The set of configura-
tions for which the robot is in collision
with an obstacle defines C-space ob-
stacles. In this sense, the C-space for
the robot is analogous to that of the
disembodied hand above, but the C-
space obstacles of the robot are sig-
nificantly more complex than the ones
for the hand,® (see Figure 3b). Note
that the C-space parameters of the ro-

0

1

Figure 3. C-space obstacles for a simple robot. (a) A robot with two joint
angles, 6, and 6,, and its obstacles. (b) The corresponding C-space obstacles
(the hatched regions). The joint angles are also the labels on the axes of the
C-space. A safe path in this C-space is shown, together with four configura-

tions of the arm along the path.

bot are angles. Therefore, the line at
the top of the diagram, 6, = 2n, is the
same line as the bottom of the
diagram, 6, = 0; we can say the same
for the left and right lines, 6, = 2n = 0.
We can wrap the diagram into a tube
so that the top and bottom lines meet,
then we can wrap that tube into a
doughnut (torus) to make the left and
right ends meet. Thus, the C-space
for the two-link robot is really the sur-
face of a torus.

Finding a collision-free path between
two specified configurations requires find-
ing some path in the C-space that con-
nects the two specified configurations
and does not penetrate any of the C-
space obstacles. Doing this requires
characterizing the space outside of all of
the C-space obstacles, possibly by a de-
composition into disjoint cells. A sample
path between the two arm configurations
shown in Figure 3a is shown in the C-
space of Figure 3b.

24

COMPUTER

(a)
— Al
(b)

C--ZTZ=Z=-==c==z= ,:}_Bq' I E]ﬁ
(©

Figure 4. A simple pick-and-place problem: (a) the initial position of A; (b) the
final position of A; and (c) the pick-and-place example showing the obstacles for
the final position of part A (dashed lines) superimposed on the obstacles for the

initial position (solid lines).

because it does not require characterizing
sets of grasps, whether simply collision-
free or reachable. Computing these sets
can be a burdensome task. The second
method requires only the ability to find a
path from a known initial position to some
point within a constrained set (legal
grasps).

In many cases, no grasp exists with an
approach path that avoids obstacles from
both the origin and the destination. In this
case, Handey plans a sequence of regras-
ping steps (placing the object on the table
and then regrasping it) that results in a
grasp compatible with the target position.®
Once again, we use only the necessary
condition that the grasp does not cause a
collision at the origin or destination.

Here is a more complete outline of the
solution of the pick-and-place problem in
Handey:

(1) Enumerate the possible distinct
types of grasps. Handey operates in the
domain of polyhedral models and robots
with parallel jaw grippers; therefore, the
distinct grasps are limited to pairs of part
features (either faces, edges, or vertices)
that can be in simultaneous contact with
the parallel interior faces of the gripper.
Our implementation is currently limited to
pairs of parallel faces.

(2) Rank the potential grasp faces by
the percentage of the area of intersection of
the faces that remains unobstructed after
projecting onto the face any obstacles near

March 1989

the face, at both origin and destination.

(3) Selecta potential pair of grasp faces,
and pick target points for the fingertips in
the unobstructed sections of the faces.

(4) Plan a path for the robot gripper,
constrained to move parallel to the grasp
faces, from a nearby safe point (chosen
arbitrarily) to a point close to the chosen
grasp point for which there is sufficient
overlap between the gripper and the grasp
faces. If no path can be found, select a
different grasp face and try again. The path
must avoid collisions and keep the robot
within its legal range of motion.

(5) Planacollision-free motion (using a
low-resolution approximation of C-space)
for the robot from its current position to the
arbitrarily chosen point near the initial
grasp.

(6) Plan a collision-free motion for the
robot, carrying the grasped part (using a
low-resolution approximation of C-space)
from the initial grasp position to the speci-
fied target position.

(7) When it is not possible to find a
grasp that avoids collisions at the initial
and target positions, plan a sequence of
regrasping steps that produce a grasp
compatible with the target position. For
each required grasp and placement, plan
collision-free motions for the robot.

The crucial steps in this formulation rely
on finding collision-free paths between
two known points or between a known
point and a target set.

The worst-case complexity of motion
planning is exponential in the number of
degrees of freedom of the robot; the best
motion-planning algorithm for a d-degree-
of-freedom robot has time complexity
O(n‘log n), where n is the product of the
number of faces, edges, and vertices in the
obstacles.” Although this bound is polyno-
mial in the environment size, n, this com-
plexity still makes complete motion-plan-
ning algorithms for real robots impractical
on typical serial computers. We also found
that pick-and-place planning has a higher
dimensionality than simple motion plan-
ning. Therefore, we have pursued a heuris-
tic decoupling strategy for pick-and-place
planning. To obtain good running times,
we must also pursue heuristic strategies
into the motion-planning subproblems.

Heuristic motion
planning in Handey

Earlier, we outlined an approach to
motion planning based on computing C-
space obstacles; Lozano-Pérez describes
this approach in more detail.* Although we
could use the approximate algorithms
described there to solve directly the six-
degree-of-freedom motion-planning prob-
lems required for the typical pick-and-
place problem, the running times would be
too large for practical use, even in experi-
mentation. Instead, we have adopted sev-
eral heuristic methods of reducing both the
dimensionality and the average size of
these motion-planning problems:

(1) Using a local motion planner for
small motions near obstacles together with
alow-resolution C-space for large motions
farther away from obstacles. The local
planner simulates the effect of a body being
acted on by repulsive forces from the ob-
stacles and attractive forces from the goal.
This general approach is known as the
artificial-potential-field approach.®

(2) Limiting the large motions to the

25

first three joints of the robot, but with the
ability to change the values of the last three
joints.

(3) Approximating arbitrary polyhedral
obstacles by obstacles with a constant
cross section that simplify the computation
of the low-resolution C-space obstacles.

The combination of these strategies has
significantly reduced the running times for
motion planning (from a few minutes to
perhaps 30 seconds) without significantly
reducing Handey’s ability to solve pick-
and-place problems. We describe these
methods in the following subsections.

Local planning: the quasipotential
method. In Handey, motion near an ob-
stacle happens primarily when the object is
being grasped. In those circumstances, the
robot’s motion is constrained so that the
gripper moves in the plane of the chosen
grasp faces. This means that we have a
three-degree-of-freedom planning prob-
lem instead of a six-degree-of-freedom
problem. But, those three motion freedoms
correspond to Cartesian motions of the
gripper in the grasp plane (x,y,0) and not to
individual joint motions of the robot arm.
Exploiting this reduction in dimensional-
ity requires a different planner from the
one we use for the gross motions of the
arm.

We could construct approximate x,y,0
C-space obstacles for the gripper moving
in the grasp plane and plan the gripper
motions in this space. But, instead, we
have adopted a local, incremental planner
that does not build an explicit C-space. We
chose this strategy for two reasons:

(1) In Handey, some of the obstacles
might not be modeled directly as polyhe-
dra by the system; instead, they might be
represented implicitly by an array of depth
measurements. We could have tried to
build a polyhedral approximation to this
data and use the existing C-space obstacle
algorithms for polyhedra. Instead, we
chose a method that deals with the data
more directly.

(2) Typical cases of approaching ob-
stacles within the grasp plane are simple,
and a nearly direct path exists. Incremental
methods have a lower computational over-
head in these situations. In difficult cases,
local, incremental methods fail to find an
answer. In those cases, we can fall back on
guaranteed methods.

Traditional potential methods® measure
the distance between a number of points on
the moving body (the gripper in our case)
and obstructions in the grasp plane, com-

26

B

Free motion vector

Filled grid cells
o

% Target point |
)

+— Finger
Q/ grasp point

Figure 5. Illustration of the definitions in the quasipotential method.

pute repulsive forces proportional to a
power of the distance, and sum them with
an attractive force based on the distance
from the gripper to the goal. These total
artificial forces and torques acting on the
gripper are then used to compute a motion
for the gripper via the simulated dynamics
of a viscous damper, f = bv, where f is the
total force/torque vector and v is the result-
ing velocity vector.

Our version of this method effectively
uses a potential that is a high power of the
distance. Beyond some gripper-to-ob-
stacle distance d, the force on the manipu-
lator is 0; within that distance, the force is
such as to prohibit motion toward the ob-
stacle. A grid represents the motion plane,
and obstacles correspond to filled cells in
the grid. The starting point is some point on

the edge of the grid in the same connected
component of the grid as the target point.

Surrounding the gripper at a distance d
and moving with it are bump lines, that is,
line segments on the grasp plane that are
checked each iteration for collisions with
filled grid cells (see Figure 5). A bump
vector is a unit vector perpendicular to a
bump line pointing away from the gripper.

In the absence of intervening filled grid
cells in the motion plane, the gripper’s
motion will be a simple translation along
the vector connecting the finger and target
point. We call the unit vector in this direc-
tion the goal vector.

After investigating all the bump lines for
collisions with filled cells, we construct a
unit circle and map onto it the goal vector
and the bump vectors whose correspond-

COMPUTER

Initial gripper position lr_—_

Final gripper position

Figure 6. The initial and final position of the gripper for the initial grasp of the
example in Figure 1. The dark obstacles are present at the pickup point, the
hatched obstacle is a copy of the table at the destination where the regrasp is to

be done.

ing bump lines have not detected colli-
sions. Figure 5 shows a typical situation.

To compute the translational motion of
the gripper, we compare the goal vector
with the multiplied bump vectors. If the
goal vector has no component in the direc-
tion of a zero-length bump vector, the grip-
per moves in that direction. Otherwise, as
in the figure, the gripper moves along the
nonzero bump vector closest in direction to
the goal vector.

The bump lines also provide a conven-
ient way to compute a torque to rotate the
gripper. Any colliding bump line produces
a torque whose magnitude is proportional
to the cross product of the bump vector and
a vector connecting the finger grasp point
with the center of the bump line. The total
torque on the gripper is just the sum of the
torques generated by each colliding bump
line.

The gripper is free to rotate about the
finger grasp point (shown near the finger
tip in Figure 5). Rotations and translations
are limited in such a way that no point on
the gripper moves by more than one grid
cell per iteration. This precludes the possi-
bility that any filled grid cells will pene-
trate the bump lines during an incremental
motion.

At each iteration, a check ensures that a
motion in the computed direction will yield

March 1989

areachable gripper position. If the position
is not feasible, then a different direction (if
any remain) is tried.

Every few iterations, the position of the
gripper is compared to a previous position.
If no significant progress has been made,
the path is terminated. At this point, the
position of the gripper in relation to the
target area is checked. If the fingers suffi-
ciently overlap the target (for example, the
chosen faces of a grasp), then the path is
accepted and returned; otherwise, the plan-
ner either tries to plan a path from another
starting point or tries another pair of faces.

Figure 6 shows initial and final positions
obtained by the quasipotential method for
the initial grasp of the example in Figure 1.
Note that the finger grasp point cannot
actually reach the chosen target point, but
that the grasp sufficiently overlaps the
target face.

Although this method does not guaran-
tee a solution, it has performed quite well
in most of the cases we have encountered.
We believe we can enhance the method’s
performance by improving the choice of
starting point and avoiding a reliance on a
fixed attraction point. We are currently
experimenting with a variation of the
method that picks a starting point by find-
ing the maximal clearance translational
paths from the target point to the edges of

the motion grid. The starting points are the
ends of the paths. During each iteration,
the attraction point used for computing the
artificial forces acting on the gripper will
move along the chosen path. We hope this
will avoid many of the problems of local
minima and nonconvex obstacles.

Global planning: low-resolution C-
space. The local quasipotential method is
effective near the target when we know
that a nearly direct path exists. Local meth-
ods are less effective for gross motions that
span a significant segment of the work
space, so we use a low-resolution C-space
method for these motions. Although the
basic method is that described in Lozano-
Pérez,® the implemented method uses sev-
eral heuristics to lower the average compu-
tation time.

One key approximation limits the C-
space obstacle construction to the first
three joint angles of the robot. The planner
builds three three-dimensional slices of the
underlying six-dimensional C-space. One
slice is built with the wrist angles fixed at
their value at the start of the path, another
slice with the angles set at their value at the
end of the path, and the last slice for the
range of wrist angles between the start and
the end. The free-space representation in
these three slices is linked into a single
free-space representation that can be
searched for a path.

We build the first two slices at high
resolution (quantization of one degree),
but make no attempt to build the full three-
dimensional slice of the C-space. In fact,
we make every attempt to limit the size of
the slices. The idea is to move as close as
possible to the initial and goal points within
the slice that spans the orientations of the
wrist between the initial and goal points.
Then, only the final segments need to be
traveled in the remaining two slices. The
computation of these slices, therefore,
proceeds on an “on-demand” basis. First,
we build the slice for a very narrow range

27

-
/
14,7
r A7
(a)
|
(]
TTT
(]
) S N
7 7 7/
A7 7
Y 7/
(b)

()

11
I
1

—— e — -

Bounding
cross-section
for obstacle

A throughout A8, ~

Figure 7. The gross-motion-planning problem is split into three three-degree-of-
freedom slices: (a) a low-resolution C-space slice for the total range of values of
the wrist angles, (b) a high-resolution C-space slice for the initial values of the
wrist angles, and (c) a high-resolution C-space slice for the final values of the

wrist angles.

of the first three angles. We stop if we find
a path in this range; otherwise, we widen
the range incrementally until we find a
path. This strategy is illustrated in Figure
7.

The third slice, spanning the range of
wrist angles for the motion, is built to span
the whole range of the first three joint
angles. But, we build this slice at lower
resolution (eight degrees) and approximate
the robot and the obstacles to simplify the
computation. This simplification exploits
the fact that the computation of C-space
obstacles for planar robots and obstacles is
much more efficient than that for solid
polyhedra.* We can take advantage of the
fact that the Unimation Puma 560 robot
used in Handey has, as do many commer-
cial robots, two links with parallel rotation
axes (see Figure 8). Therefore, we can ap-
proximate the arm as a planar two-link arm
operating in a plane determined by the first
joint angle. Then, we can approximate the
obstacles by tori, centered at the base of the
robot, with constant polygonal cross sec-
tions in the plane of the second and third
links of the robot (see Figure 8).

The result of this process approximates

28

the three-degree-of-freedom C-space us-
ing only planar computations. Although
this does not affect the asymptotic com-
plexity of the method, it results in a signifi-
cant speed up.

The interaction between local and
global planning. Given a problem that
requires moving from a position close to an
obstacle to another position close to an
obstacle, such as aregrasping step, Handey
proceeds as follows:

(1) Use the quasipotential planner to
move away from the initial position very
near an obstacle. Call this point /.

(2) Use the quasipotential planner to
move away from the final position very
near an obstacle. Call this point F".

(3) Use the C-space planner to move
from/ to F".

The current implementation of Handey
does not choose the points /”° and F* with
the gross motion planner in mind. In par-
ticular, there is no guarantee that these
points will be in the low-resolution free-C-
space built by the gross motion planner.
This is not a requirement, but it minimizes
the computation required to plan the com-

Figure 8. Obstacles can be approxi-
mated by tori, centered at the base of
the robot, with constant polygonal
cross sections in the plane of the sec-
ond and third links of the robot.

plete path. We could make this connection
by marking as desirable targets those grid
points (specifying the gripper position and
orientation) that map into free-C-space
points (specifying the first three joint
angles of the arm). Nevertheless, this
hybrid local/global approach to planning
motions has proven quite effective in our
experiments.

andey is unique for being the first
task-level system that has been
extensively tested in relatively

complex tasks. Since Handey operates by
locating an obstructed object placed in a
random orientation and taking it to any
specified location, it must handle quite
general motion-planning problems. But, to
be thoroughly tested, it must run in reason-
able time. This conflict has forced us to
search for simplifying assumptions that do
not significantly reduce the system’s gen-
erality. We believe that this search will be
critical to the development of task-level
robot systems. Handey’s capabilities are
only a small fraction of those required for
a comprehensive system. Other important
capabilities are

COMPUTER

* planning force-controlled motions to
assemble objects in the presence of
position error;

* planning coordinated motions for
multiple robots;

* planning the placement of the parts in
the work space to optimize task execu-
tion: and

* planning the nature and order of opera-
tions required to carry out a task, for
example, the order in which to as-
semble parts.

We are currently investigating all these ca-
pabilities within the framework of Han-
dey. -

Acknowledgments

This work was funded primarily by the Of-
fice of Naval Research under contracts NOOO14-
85-K-0214 and NO0014-86-K-0685. Addi-
tional support was provided by a National Sci-
ence Foundation Presidential Young Investiga-
tor Award (Lozano-Pérez), the French Centre
National de la Recherche Scientifique (Mazer),
and Digital Equipment Corporation. In addition
to the authors, the following people have con-
tributed to the development of Handey: Pierre
Tournassoud of INRIA (France). Alain Lanusse
of ETCA (France), and Eric Grimson of MIT.
The visits of Lanusse and Tournassoud to MIT
were funded by ETCA and INRIA, respec-
tively.

References

1. H.A. Ernst, A Computer-Controlled Me-
chanical Hand, PhD thesis, MIT, Cam-
bridge, Mass., 1961.

2. T. Lozano-Pérez and R.H. Taylor, “Geo-
metric Issues in Planning Robot Tasks,” to
be published in Problems of Robotics, MIT
Press, Cambridge, Mass., 1989.

3. M.T. Mason, “Automatic Planning of Fine
Motions: Correctness and Completeness,”
Proc. IEEE Int’'l Conf. Robotics and Auto-
mation, 1984, CS Press, Los Alamitos,
Calif., Order No. 526, pp. 492-503.

4. D.E. Whitney, “Quasistatic Assembly of
Compliantly Supported Rigid Parts,”
ASME J. Dynamic Systems, Measurement.
and Control, Vol. 104, March 1982, pp. 65-
77.

5. J.H. Reif, “Complexity of the Generalized
Mover’s Problem,” in Planning, Geometry,
and Complexity of Robot Motion, Ablex
Publishing, 1987, pp. 267-281.

6. P. Tournassoud, T. Lozano-Pérez, and E.
Mazer, “Regrasping,” Proc. IEEE Int'l
Conf. Robotics and Automation, 1987, CS
Press, Los Alamitos, Calif., Order No. 787,
pp. 1,924-1,928.

March 1989

7. J.E. Canny, The Complexiry of Robot-Mo-
tion Planning, MIT Press, Cambridge,
Mass., 1987.

8. T. Lozano-Pérez, “A Simple Motion-Plan-
ning Algorithm for General Robot
Manipulators,” IEEE J. Robotics and Auto-
mation, Vol. 3, No. 3, June 1987, pp. 224-
238.

9. O. Kathib, “Real-Time Obstacle Avoidance
for Robot Manipulator and Mobile
Robots,” Int’'1 J. Robotics Research, Vol. S,
No. 1, Spring 1986, pp. 90-98.

Tomas Lozano-Pérez is an associate professor
of computer science and engineering at the
Massachusetts Institute of Technology, where
he is a member of the Artificial Intelligence
Laboratory. His research interests are in robot-
ics and artificial intelligence; he teaches
courses in these areas at MIT. Before joining
the MIT faculty in 1981 he was on the research
staff at IBM’s T.J. Watson Research Center
during 1977 and the MIT Al Laboratory during
1974 and again during 1980. He has been co-
editor of the International Journal of Robotics
Research; co-editor of the book Robot Motion
(MIT Press, 1982); program chairman of the
1985 IEEE International Conference on Robot-
ics and Automation; and recipient of a 1985
National Science Foundation Presidential
Young Investigator Award. He is member of
the ACM and the IEEE Computer Society.

Lozano-Pérez received his BS in 1973, his
MS in 1976, and his PhD in 1980, all from MIT
in computer science.

Joseph L. Jones has been aresearch engineer at
the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology for six
years. His interests include task-level planning
and mobile robots. Previously, Jones worked as
an engineering physicist at the Bates Linear
Accelerator.

Jones received BS and MS degrees from MIT
in 1975 and 1978, respectively.

Emmanuel Mazer is a research fellow of the
Centre National de la Recherche Scientifique
(CNRS) working at the Laboratoire
d’Informatique Fondamentale et d’Intelligence
Artificielle (LIFIA) in Grenoble, France. His
current interests are highly redundant manipu-
lators, nanomanipulators, and automatic robot
programming. Mazer has been visiting scientist
at the Artificial Intelligence Laboratory of the
University of Edinburgh during 1981-1982,
research fellow at IMAG (Grenoble) during
1982-1984, technical director of ITMI Market-
ing during 1984-1986, and visiting scientist at
MIT during 1986-1988.

Mazer received a master’s degree in applied
mathematics in 1979 and a PhD in computer
science in 1988, both from Grenoble (INPG).

Patrick A. O’Donnell is currently a research
engineer at the Artificial Intelligence Labora-
tory at the Massachusetts Institute of Technol-
ogy. His current interests include robotics plan-
ning, massively parallel computing, and simu-
lation of biological structures. He is a member
of ACM, the IEEE Computer Society, the IEEE
Robotics and Automation Society, Tau Beta Pi,
and Eta Kappa Nu.

O’Donnell received the BS and MS degrees
from MIT in 1983.

Readers may contact Lozano-Pérez at the MIT Artificial Intelligence Laboratory, 545 Technology

Square, Cambridge, Mass. 02139.

29

