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Fig. 1. Given a tabletop scene (top), we want to estimate the types and poses
of objects in the scene using a black-box object detector. From a single Kinect
RGB-D image, however, objects may be occluded or erroneously classified.
The bottom left depicts a rendered image, with detections superimposed in
red; three objects are missing due to occlusion, and two objects have been
misidentified (second and fourth from left). The semantic attributes that result
in our representation are very sparse (bottom right; dot location is measured 2-
D pose, color represents type), but requires aggregation and association across
many partial views in order to achieve estimates such as those in figure 2.

Abstract—Autonomous mobile-manipulation robots need to
sense and interact with objects to accomplish high-level tasks
such as preparing meals and searching for objects. Behavior
in these tasks is typically guided by goals supplied to task-
level planners, which in turn assume a representation of the
world in terms of objects. In this work, we explore the use of
attribute-level perception to estimate high-level representations
of the world. We run a black-box object detector in each range
image, getting a set of detections of objects, labeled by their types
and poses. We provide a formal description of a 1-D version of
the problem, then develop three different solution approaches
based on tracking, clustering, and a combination of the two. We
evaluate the approaches empirically on data gathered by a robot
moving around a table with objects on it, using a Kinect sensor
to detect the objects from multiple viewpoints. We find that each
of the methods performs better than using raw data, and that
different methods perform best in different operational regimes.

I. INTRODUCTION

Autonomous mobile-manipulation robots need to sense and
interact with objects to accomplish high-level tasks such
as preparing meals and searching for objects. Behavior in
these tasks is typically guided by goals supplied to task-level
planners, which in turn assume a representation of the world
in terms of objects. Humans supplying goals will also refer to
objects (fetch me a cup) or attributes (find the long plastic
container), instead of using low-level geometric and visual
features such as SIFT that are prevalent in recent robotic

Fig. 2. A single viewpoint may be insufficient to identify all objects in a
scene correctly (see figure 1). The natural solution is to observe the scene from
different viewpoints, as depicted above. However, aggregating information
from views of multiple objects introduces data association issues, especially
when multiple instances of the same object type are present. From all the
object detection data, as shown (bottom) by dots (each dot is one detection),
our goal is to estimate the object types and poses in the scene (shown as
thick circles centered around location estimate; color represents type, circle
size reflects uncertainty). The estimate above identifies all types correctly.

systems. Hence higher-level representations of the world at
the level of semantic attributes and objects are necessary.

We address the problem of constructing high-level state
representations of objects from multiple noisy observations
(see figure 1). One strategy could be to perform the fusion of
point clouds at the low level, and then do object segmentation
and identification from a fused point cloud. This strategy
however becomes fragile when the scene is large, views are
cluttered, and possibly dynamic (objects may have moved)
over long periods of time. Instead, we address the problem by
performing information fusion from different views at a higher
level of abstraction, where objects are the primitive entities,
and the data are detections from an object detector.

In this work, we explore the use of attribute-level perception
to estimate high-level representations of the world. We assume
that we can run a black-box object detector in each image,
getting detections of objects (types and poses). We assume
that some low-level localization method is running sufficiently
effectively that we can treat the robot’s own pose estimates as
being accurate, allowing us to put the object detections in a
common coordinate frame. Then, using only the object type
and pose measurements, we wish to construct a probabilistic
estimate of the types and poses of the objects in the world,
as illustrated in figure 2. Although we focus only on object
type, the methods described in this work can be extended to
incorporate other semantic attributes such as color or size.



In the following, we first state a formal model for a
simplified 1-D version of the world model estimation problem
in section II. Three different solution approaches based on
tracking, clustering, and a combination of the two are then
presented in sections III–V. Extensions to 3-D world model
estimation is then briefly discussed in section VI, followed in
section VII by experimental results using data collected with
a Kinect sensor on a mobile robot.

II. THE 1-D COLORED LIGHTS DOMAIN

We first formalize the problem in a 1-D domain (R). The
world consists of an unknown number (K) of stationary lights.
Each light is characterized by its color ck and its location lk
on the real line. A finite universe of colors (of size T ) is
assumed. A robot moves along this 1-D world, occasionally
gathering partial views of the world, which are known intervals
[av, bv] ⊂ R. Within each view, Mv lights of various colors
and locations are observed, denoted by ovm ∈ [T ] , {1, . . . , T}
and xvm ∈ R respectively. These (ovm, x

v
m) pairs may be

noisy (in both color and location) or spurious (false positive)
measurements of the true lights. Also, a light may sometimes
fail to be perceived (false negative). Given these measure-
ments, the goal is to determine the posterior distribution over
configurations (number, colors, and locations) of lights in the
explored region of the world.

We assume the following form of noise models. For color
observations we assume, for each color t, a known distribution
φt ∈ ∆T that specifies how likely each color in [T ], or none
at all, is observed:

φti =

{
P(no observation for color t light), i = 0

P(color i observed for color t light), i ∈ [T ]
(1)

A similar distribution φ0 specifies the probability of observing
each color given that the observation was a false positive.1

False positives are assumed to occur in a pFP proportion of
object detections.2 For location observations, if the observation
corresponds to an actual light, then the observed location is
assumed to be Gaussian-distributed, centered on the actual lo-
cation. The variance of this distribution is not assumed known
and will be estimated for each light from measurement data.
For false positives, the location is assumed to be uniformly
distributed over the range of the view (Unif[av, bv]).

A. Data likelihood

We assume that views are independent given the hypothe-
sized configuration {(ck, lk)}Kk=1, hence the likelihood term is
a product of V terms, one for each view. To reduce clutter, in
the remainder we will focus on a single view.

Within each view, the correspondence between observations
and lights (or false positives) is unknown, and it is useful to
introduce latent variables to encode the correspondences. For

1 These distributions can be obtained from empirical perception apparatus
statistics. Also, φ0

0 = 0 since it corresponds to an inconsistent measurement.
2Each view may have multiple detections and hence multiple false pos-

itives. The false positive rate is currently independent of camera pose and
neighboring objects, an assumption that will be addressed in future work.

each observation, let zvm be the index of the light that the
observation corresponds to (ranging in [K] for a configuration
with K lights), or 0 if the observation is a false positive. Then:

P
(
{(om, xm)}Mm=1

∣∣∣ {(ck, lk)}Kk=1

)
(2)

=
∑
{zm}

P ({(om, xm)} | {zm} , {(c, l)})P ({zm} | {(c, l)})

By assuming that observations in a single view are inde-
pendent given their correspondences {zvm}, and further that
the color and location observations are independent:

P ({(om, xm)} | {zm} , {(ck, lk)}) (3)

=

M∏
m=1

{
φ0o · Unif [x ; av, bv] , zm = 0

φczo · N
(
x ; lz, σ

2
z

)
, zm ∈ [K]

Here σz is unknown; a suitable prior for it will be given in
section IV. Also, the above expression explicitly handles false
positives only; false negatives (measurement is absent for a
hypothesized light) will be handled in section V.

To combine the above equations, the final term in equation
2, P ({zvm} | {(ck, lk)}), needs to be resolved. This is the
probability of a correspondence given only the configuration
of lights (and other known parameters such as the view range
[av, bv]). Section III adapts a well-known multiple hypothesis
tracking filter to this problem. Section IV gives an alternate
clustering-based approach that is more tractable but arguably
less realistic. Section V uses a more careful approach, bor-
rowing ideas from the former approach in attempt to relax the
less realistic assumptions of the latter.

B. Posterior and predictive distributions for a single light
Before examining approaches to solve for correspondences

of measurements, we first consider the more straightforward
problem of finding the posterior distribution on color and
location for a single light, assuming we know exactly which
observations correspond to the light. The developments in this
section will be fundamental to all approaches discussed later.

Suppose we know that {(o, x)} correspond to a light with
unknown parameters (c, l). Since we assume independence be-
tween color and location, we can consider the two separately.
We assume a known discrete prior distribution π ∈ ∆(T−1)

on colors, reflecting their relative prevalence. Using the color
noise model (equation 1), the posterior distribution on c is:

P (c | {o}) ∝ P ({o} | c)P (c) ∝

[∏
o

φco

]
· πc (4)

The posterior predictive distribution for the next color obser-
vation o′, given that the observation is not a false positive, is
obtained by summing over the latent color c:

P (o′ | {o}) =

T∑
c=1

P (o′|c)P (c|{o}) =

T∑
c=1

φco′P (c | {o}) (5)

We can use this to find the light’s probability of detection:

pD , 1− P (o′ = 0 | {o}) = 1−
T∑
c=1

φc0 · P (c | {o}) (6)



Unlike the constant false positive rate pFP, the detection (and
false negative) rate is dependent on the light’s color posterior.

For location measurements, we emphasize again that both
the mean µ and precision τ of the Gaussian noise model is
unknown. Modeling the variance as unknown allows us to
attain a better representation of the inherent empirical uncer-
tainty there is in the location estimate, and not naı̈vely assume
that repeated measurements give a known fixed reduction in
uncertainty each time. Since we are ultimately interested in the
marginal distribution of the location estimate µ, the precision
uncertainty will frequently need to be integrated out. Using
a standard conjugate prior, the normal-gamma distribution
NormalGamma(µ, τ ;λ, ν, α, β), will prove convenient. In this
case, the marginal distribution on µ is a t-distribution with
mean ν, precision αλ

β(λ+1) , and 2α degrees of freedom.
To model the distribution of µk to be close to that of lk ini-

tially, which we assume to be uniform over the explored range
of the world, we use hyperparameters that are non-informative.
The typical interpretation of normal-gamma hyperparameters
is that the mean is estimated from λ observations with mean
ν, and the precision from 2α observations with mean ν and
variance β

α . Hence we set the initial λ = 0 and let ν be
arbitrary since it will not affect the posterior (the posterior
mean will simply be the empirical mean).

For a normal-gamma prior on (µ, τ) with hyperparameters
λ, ν, α, β, it is well known (e.g., [5]) that after observing n
observations with sample mean µ̂ and sample variance ŝ2, the
posterior is a normal-gamma distribution with parameters:

λ′ = λ+ n; ν′ =
λ

λ+ n
ν +

n

λ+ n
µ̂ (7)

α′ = α+
n

2
; β′ = β +

1

2

(
nŝ2 +

λn

λ+ n
(µ̂− ν)

2

)
The upshot of using a conjugate prior for location mea-

surements is that the marginal likelihood of location observa-
tions has a closed-form expression. The posterior predictive
distribution for the next location observation x′ is obtained by
integrating out the latent parameters µ, τ :

P (x′ | {x} ; λ, ν, α, β) (8)

=

∫
(µ,τ)

P (x |µ, τ)P (µ, τ | {x} ; ν, λ, α, β)

=
1√
2π

β′
α′

β+α
+

√
λ′√
λ+

Γ(α+)

Γ(α′)

where the hyperparameters with ‘′’ superscripts are updated
according to equation 7 using the empirical statistics of {x}
only (excluding x′), and the ones with ‘+’ superscripts are
likewise updated but including x′. The ratio in equation 8
assesses the fit of x′ with the existing observations {x}
associated with the light.

III. A TRACKING-BASED SOLUTION

If we consider the lights as stationary targets and the views
as a temporal sequence, a tracking filter approach can be used.

Tracking simultaneously solves the data association (measure-
ment correspondence) and target parameter estimation (light
colors and locations) problems. A wide variety of approaches
exist for this classic problem ([4]). Our problem setting has
two interesting features that will restrict the choice of potential
methods. First, estimation and prediction of target dynamics is
unnecessary since the lights do not move. Second, the number
of lights is unknown, so accounting for new targets and per-
forming track initiation is crucial. Many tracking methods are
track-oriented, focusing on tractably tracking object dynamics,
often at the expense of the second requirement (by assuming
that the number and initial parameters of tracks are known
in advance), and hence are not suitable. We therefore opt
for a multiple hypothesis filter ([15]), a measurement-oriented
approach that considers all possible correspondences of each
measurement, including the possibility of a new target.

Without loss of generality, assume that the views are in
chronological order. A multiple hypothesis tracking algorithm
maintains, at every timestep (view) v, a distribution over all
possible associations to measurements of views up to v. For
each view, let zv be the concatenation of the view’s latent
correspondence variables {zvm}

Mv

m=1. The distribution at v is:

P
({

zj
}v
j=1

∣∣∣ {{(o, x)}}vj=1

)
(9)

= P
(
zv
∣∣∣ {zj}v−1

j=1
, {{(o, x)}}vj=1

)
P
({

zj
}v−1
j=1

∣∣∣ {{(o, x)}}v−1j=1

)
∝ P

(
{(ov, xv)}

∣∣∣ zv,{zj}v−1
j=1

, {{(o, x)}}v−1j=1

)
· P
(
zv
∣∣∣ {zj}v−1

j=1
, {{(o, x)}}v−1j=1

)
P
({

zj
}v−1
j=1

∣∣∣ {{(o, x)}}v−1j=1

)
The first term is the likelihood of the current view’s ob-
servations, the second is the prior on the current view’s
correspondences given previously identified targets, and the
final term is the filter’s distribution from the previous views.

The likelihood term for view v follows mostly from the
derivation in section II-B. The observations are independent
given the view’s correspondence vector zv , and the likelihood
is a product of Mv of the following terms:

P
(
ovm, x

v
m

∣∣∣ zvm = k,
{
zj
}v−1
j=1

, {{(o, x)}}v−1j=1

)
(10)

=


φ0
o

bv−av , k = 0

P
(
ovm

∣∣∣ {{o}}1:v−1z=k

)
P
(
xvm

∣∣∣ {{x}}1:v−1z=k

)
, k 6= 0

where {{(o, x)}}1:v−1z=k refers to the observations in the pre-
vious views that were assigned to target k according to{
zj
}v−1
j=1

. In the last line, the two terms can be found from the
posterior predictive distribution (equations 5, 8 respectively).
For new targets (where k does not index an existing target),
the conditioning set of previous observations will be empty,
but can be likewise handled by the predictive distributions.
The false positive probability (k = 0) is a direct consequence
of the observation model (equation 3).

The prior on correspondences is due to Reid [15]. It assumes
that we know which of the existing targets are within view
based on the hypothesis on previous views, and can be found



by methods such as gating. Let the set {k}v denote the size-
Kv set of target indices that we hypothesize are in view v.
Another common assumption used in the tracking literature
is that in a single view, each target can generate at most one
non-spurious measurement. We will refer to this as the one-
measurement-per-light (OMPL) assumption. Based on these
assumptions, we now define validity of correspondence vectors
zv . First, by the OMPL assumption, no entry may be repeated
in zv , apart from 0 for false positives. Second, an entry must
either be 0, and target index in {k}v , or be a new (non-
existing) index; otherwise, it corresponds to an out-of-range
target. A correspondence zv is valid if and only if it satisfies
both conditions. Invalid correspondences have probability 0.

The following quantities can be found directly from zv:

n0 , Number of false positives (0 entries) (11)

n∞ , Number of new targets (non-existing indices)

δk , I {Target k is detected (∃m. zvm = k)} , k ∈ {k}v

n1 , Number of matched targets = Mk − n0 − n∞ =
∑
k

δk

Then we can split P (zv) by conditioning on these quantities:

P (zv) = P (zv |n0, n1, n∞, {δk})P (n0, n1, n∞, {δk}) (12)

By the assumed model characteristics, the second term is:

P (n0, n1, n∞, {δk}) =
∏

k∈{k}v
pδkD (k) (1− pD(k))

1−δk

· Bin (n0 ; Mv, pFP) · Bin (n∞ ; Mv, p∞) (13)

where p∞ is the probability of a new target,and pD is the
(target-specific) detection probability defined in equation 6.
Determining the correspondence given the quantities involves
assigning zvm indices to the three groups of entries and
matching {k}v to the indices in the corresponding group. A
common assumption used in tracking is that all assignments
and matches of indices are equally likely, so the first term in
equation 12 is simply the reciprocal of the number of valid
correspondence vectors given n0, n∞, {δk}, given by:(

Mk

n0, n1, n∞

)
· n1! =

Mk!

n0!n1!n∞!
· n1! =

Mk!

n0!n∞!
(14)

By combining equations 10–14, along with the filter’s
distribution over association hypothesis for previous views
(before v), we have derived all the expressions needed to use
equation 9 to update the filter’s distribution to include zv .

The main drawback of the multiple hypothesis filter is
clearly the exponential growth in the hypothesis space. View-
ing the set of hypotheses as a tree, at each step the branching
factor is the number of valid correspondences:

Mv∑
n0=0

Mv−n0∑
n∞=0

Mk!

n0!n∞!
· Kv!

n1!(Kv − n1)!
(15)

Even with 4 measurements and 3 within-range targets, the
branching factor is 304, so considering all hypotheses is clearly
intractable. Many hypothesis-pruning strategies have been

devised ([12, 7]), the simplest of which include keeping the
best hypotheses or hypotheses with probability above a certain
threshold. More complex strategies to combine similar tracks
and reduce the branching factor have also been considered.
In the experiments of section VII we simply keep hypotheses
with probability above a threshold of 0.01.

IV. A CLUSTERING-BASED SOLUTION

If we consider all the measurements together and disregard
their temporal relationship, we expect the measurements to
form clusters in the product space of colors and locations
([T ] × R), and estimates of the number of lights and their
parameters can be derived from these clusters. In probabilistic
terms, the measurements are generated by a mixture model,
where each mixture component is parameterized by the un-
known parameters of a light. Since the number of lights in the
world is unknown, we also do not want to a priori limit the
number of mixture components.

A recently popular model for performing clustering with
an unbounded number of clusters is the Dirichlet process
mixture model (DPMM) ([2, 13]), a Bayesian non-parametric
approach that can be viewed as an elegant extension to finite
mixture models. The Dirichlet process (DP) acts as a prior
on distributions over the cluster parameter space. A random
distribution over cluster parameters G is first drawn from the
DP, then a countably infinite number of cluster parameters are
drawn from G, from which the measurement data is finally
drawn according to our assumed observation models. Although
the model can potentially be infinite, the number of clusters is
finite in practice as they will be bounded by the total number of
measurements (typically significantly fewer if the data exhibits
clustering behavior). The flexibility of the DPMM clustering
model lies in its ability to ‘discover’ the appropriate number
of clusters from the data.

We now derive the DPMM model specifics and inference
procedure for the colored lights domain. A few more assump-
tions need to be made and parameters defined first. Our model
assumes that the cluster parameter distribution G is drawn
from a DP prior DP(α,H), where H is the base distribution
and α is the concentration hyperparameter (controlling the
likeness of G and H , and also indirectly the number of
clusters). H acts as a ‘template’ for the DP, and is hence also a
distribution over the space of cluster parameters. We set it to be
the product distribution of π, the prior on colors, and a uniform
distribution over the explored region. To accommodate false
positives, which occur with probability pFP, we scale G from
the DP prior by a factor of (1− pFP) for true positives.

For ease of notation when deriving the inference procedure,
we express the DP prior in an equivalent form based on the
stick-breaking construction ([16]):

θ ∼ GEM(α) (16)

(ck, lk) ∼ H , π · Unif[A;B]

where GEM is the distribution over stick weights θ. By defin-
ing G(c, l) ,

∑∞
k=1 θk · I [(c, l) = (ck, lk)], G is a distribution

over the cluster parameters and is distributed as DP(α,H).
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Fig. 3. Graphical model for DPMM-based solution; see section IV for details.

The graphical model of the generative procedure is depicted
in figure 3. The remainder of the process is as follows:

θ′k =

{
pFP, k = 0

(1− pFP) θk, k 6= 0
(17)

zvm ∼ θ′, m ∈ [Mv], v ∈ [V ]

µk, τk ∼ NormalGamma(ν, λ, α, β)

ovm ∼

{
φ0, zvm = 0

φcz , zvm 6= 0
; xvm ∼

{
Unif[av, bv], zvm = 0

N
(
µk, τ

−1
k

)
, zvm 6= 0

The most straightforward way to perform inference in a
DPMM is by Gibbs sampling. In particular, we will derive
a collapsed Gibbs sampler for the cluster correspondence
variables z and integrate out the other latent variables c, µ, τ, θ.
In Gibbs sampling, we iteratively sample from the conditional
distribution of each zvm, given all other correspondence vari-
ables (which we will denote by z−vm). By Bayes’ rule:

P
(
zvm = k

∣∣ z−vm, {{(o, x)}}
)

(18)

∝P
(
ovm, x

v
m

∣∣∣ zvm = k, z−vm, {{(o, x)}}−vm
)

·P
(
zvm = k

∣∣∣ z−vm, {{(o, x)}}−vm
)

∝P
(
ovm, x

v
m

∣∣∣ {{(o, x)}}−vmz=k

)
P
(
zvm = k

∣∣ z−vm)
In the final line, the first term can be found from the posterior
predictive distributions (equations 5, 8), noting that the ob-
servations being conditioned on exclude (ovm, x

v
m) and depend

on the current correspondence variable samples (to determine
which observations belong to cluster k).

The second term is given by the Chinese restaurant process
(CRP), obtained by integrating out the DP prior on θ. Together
with our prior on false positives:

P
(
zvm = k

∣∣ z−vm) =


(1− pFP)

N−vm
k

α+N−1 , k exists
(1− pFP) α

α+N−1 , k new
pFP, k = 0

(19)

where N−vmk is the number of observations excluding (v,m)
that is currently assigned to cluster k, and N is the total
number of non-false-positive observations across all views.

By combining equations 18, 19, we have a method of
sampling from the conditional distribution of individual cor-
respondences zvm. Although the model supports an infinite
number of clusters, the modified CRP expression (19) shows

that we only need to compute k + 2 values for one sampling
step, which is finite as clusters without data are removed.

One sampling sweep over all correspondence variables
{{z}} constitutes one sample from the DPMM. Given the
correspondence sample, finding the posterior configuration
sample is simple. The number of lights is given by the
number of non-empty clusters. Equation 4 applied with all data
belonging to one cluster provides the posterior distribution on
the light’s color. The hyperparameter updates in equation 7
similarly gives the posterior joint distribution on the light’s
location and precision of the observation noise model.

V. A LOCAL VIEW CORRESPONDENCE (VC) PROBLEM

The DPMM-based solution to the colored lights problem
is relatively straightforward, but it makes a few unrealistic
assumptions. In this section, we attempt to correct three issues:

1) The known view range limits av, bv provide hard con-
straints on the correspondences {zv}, in that they can
only correspond to clusters likely within range. This
information is not used; the only term preventing an
observation from being assigned to a far-away cluster is
the Gaussian location observation model.

2) The possibility of false negatives, are likewise absent
in the DPMM. This may lead to clusters being posited
for spurious measurements when its absence in repeated
measurements would have suggested otherwise.

3) The DPMM ignores the OMPL assumption described
in section III. If we consider a scenario where two red
lights are placed very close to each other, the DPMM
may associate both to the same cluster, even if two
measurements are observed in every view of the lights.

Fig. 4. The DPMM ignores the OMPL assumption and may merge clusters.

In the tracking approach, the prior on correspondences
described in equations 12–14 handles all three issues. The
first two problems require the correspondences {zv} to depend
on more information, namely the view range and all cluster
parameters respectively. The final problem is due to the strong
independence assumptions made by the DPMM on {zv}.
The OMPL assumption creates strong exclusion dependencies
within a single view, and is impossible to enforce in a DPMM.
The solution then is to couple the correspondences within
a single view and consider the joint correspondence zv . To
address the first two problems, we allow zv to depend on the
view parameters and cluster locations, as shown in figure 5.

First suppose we knew which Kv of the existing K lights
lie within the view, i.e., {k}v from section III. By combining
the CRP model of assigning cluster weights in equation 19
and the correspondence prior used in tracking, we attempt at
a reasonable definition of a conditional distribution on zv:

P
(
zv
∣∣∣ z−v, {{(o, x)}}−v , {k}v

)
(20)



θα

θ′pFP

z

a b

o x

φ cπ

µ τ

λ, ν, α, β

Mv
V

∞

T

Fig. 5. Graphical model for the view correspondence extension to the
DPMM; see section V for details. Also compare with the DPMM in figure 3.

Recall the definition of validity of correspondence vectors,
and the definition of n0, n1, n∞, {δk} from equation 11. We
account for false negatives of within-view clusters (targets) in
the same way as in tracking (equation 13):

P ({δk}) =
∏

k∈{k}v
pδkD (k) (1− pD(k))

1−δk (21)

For the probability of zv we use the DPMM instead of the
tracking prior. We will use the CRP values given in equation 19
for each of the Mv indices. By exchangeability of the CRP, the
probability will therefore be the same regardless of the order
of the indices. This is convenient because the correspondence
prior assumption remains valid, that all correspondences with
the same n0, n1, n∞ values (i.e., only involving a permutation
of entries) are equally likely. The probability is: ∏

{m}1

(1− pFP)N−vzm

α+N − n1 − n∞ +m− 1

 (22)

·

[
n∞∏
m=1

(1− pFP)α

α+N − n∞ +m− 1

]
·

[
n0∏
m=1

pFP

]

=
pn0

FP (1− pFP)
(n1+n∞)

αn∞
∏
{m}1

N−vzm∏(n1+n∞)
m=1 α+N −m

where {m}1 is the set of indices that are matched to existing
targets (i.e., n1 = | {m}1 |). Note however that the expression
above gives non-zero probability to invalid correspondence
vectors as well (such as those those that do not satisfy
the OMPL assumption), which we must disallow. Hence to
achieve a distribution over valid correspondences, we define
the conditional distribution 20 to be proportional to the product
of equations 21, 22 for valid correspondences, and 0 otherwise.

To remove the assumption that we know {k}v , we need
to integrate it out using the posterior distribution on cluster
locations after observing {{x}}−v:

P
(
zv
∣∣∣ z−v, {{(o, x)}}−v

)
(23)

=

∫
{lk}

P
(
zv
∣∣∣ z−v, {{o}}−v , {k}v)P({lk} ∣∣∣ {{x}}−v)

The integral is deceptively simple but intractable even though
we know that the locations have a t-distribution poste-
rior. However, since it is straightforward to sample from t-
distributions, we can compute the first term in the integral
for every set of location samples

{
l̂k

}
, and average the

result to produce a Monte Carlo estimate of the integral. The
approximate conditional distribution for correspondences can
then be used in conjunction with a likelihood term similar to
equation 9 to give a conditional distribution similar to equation
that in 18 for Gibbs sampling. In practice, because we limit
estimation only to lights that are likely (above some threshold)
to be in the view, and assuming that there are neither many
measurements nor lights within a view (∼ 5), brute-force
enumeration remains tractable. More sophisticated techniques
to sample correspondences exist ([9]) but were not considered.

VI. APPLICATION TO WORLD MODEL ESTIMATION

Returning to world model estimation, the solutions above
can be directly applied to object type and pose measurements
by mapping them to the concepts of ‘colors’ and ‘locations’
respectively. Since we are interested in 3-D location estimates,
and ultimately 4-D or 6-D poses, the approaches must be
extended to handle higher-dimensional measurements. In all
three methods, the observations only affect the probabilities
through the observation model (equation 3); the correspon-
dence priors do not depend on the observations. Hence we
only need to extend the observation (location) model, of
which a natural multivariate extension exists–a normal-Wishart
prior.3 As for attributes besides object type, if desired, it is
again straightforward to treat them as independent and let the
extended observation model be a product of the individual
observation distributions, or to construct factored joint distri-
butions (conditioned on the state) for dependent attributes.

VII. RESULTS

We tested all three world model estimation approaches using
a mobile robot with a Kinect sensor. The sensor yields three-
dimensional point clouds; a ROS perception service attempts
to detect instances of the known shape models in a given point
cloud. This is done by locating horizontal planes in the point
cloud, finding clusters of points resting on the surface, and
then doing stochastic gradient descent over the space of poses
of the models to find the pose that best matches the cluster.
Example matches for a scene are illustrated in figure 1.

Objects of 4 distinct types were placed on a table, as shown
in the 6 scenarios of the left column of figure 6. Note that the
bird’s-eye view shown is for comparison convenience only; the
camera’s viewing height is much closer to the table height, as
shown in figure 1, so in each view only a subset of objects is
observable. As illustrated in the figure, objects may be partially
or fully occluded, object types can be confused (the white L-
shaped block on the left), and pose estimates are noisy (the
orange box in the center). In all cases, one or two object types

3 For simplicity in the current implementation, we will assume that the
error covariance is axis-aligned and use an independent normal-gamma prior
for each dimension, but it is straightforward to extend to general covariances.



had multiple instances on the table to increase association
difficulty. The robot moved around the table in a circular
fashion, obtaining 20–30 views in the process.

Some qualitative results are shown in figure 6, showing the
best hypothesis for tracking (MHTF) and the final sample
for clustering (DPMM, DPMM-VC). All approaches work
similarly well for the first two scenarios, where objects are
spaced relatively far apart. As objects of similar type are
placed near each other, DPMM tends to combine clusters
since it ignores the OMPL assumption (which the other two
methods satisfy). This is most apparent in the fifth scenario,
where four nearby soup cans (red) are combined into one large
cluster. Although this cluster has many points, the variance
is large, from which we see the utility of our normal-gamma
prior compared to a fixed observation variance. By monitoring
the variance, a higher-level process could prompt the robot to
take more views to try to obtain a more accurate estimate.
In the last scenario, there is significant occlusion early in
the sequence, which throws off MHTF, causing it to make
incorrect associations which result in poor pose estimates.

Quantitative metrics are given in table I, averaged over the
association hypotheses for MHTF and over 60 samples (after
discarding burn-in) for DPMM and DPMM-VC. To evaluate
predicted targets and clusters against our manually-collected
ground truth, for each ground truth object, the closest cluster
within a 5 cm radius is considered to be the estimate of the
object. If no such cluster exists, then the object is considered
missed; all predicted clusters not assigned to objects at the
end of the process are considered spurious. Raw is a baseline
approach that does not perform any data association. It uses
the object types and poses perceived in each view directly as
a separate prediction of the objects present within the visible
range. The metrics in the table are evaluated for each view’s
prediction, and the raw table rows show the average value
over all views. The first two metrics are only computed for
clusters assigned to detected objects, i.e., the clusters whose
number is being averaged in the third metric.

Ultimately for robot tasks, we are interested in the estimates
of object types and poses, and we see from the first two
metrics that all three data association approaches work better
than the baseline in most scenarios. The differences in location
estimate between the three approaches is not signficant except
in the final scenario. For type estimates, MHTF has slightly
better performance overall. As for detection characteristics
considered by the final three metrics, we see that the baseline
does significantly worse in the number of missed objects,
which affects the number of correct clusters as well. Here we
see that considering multiple views is beneficial, and further
considering the correspondence problem in views helps even
more. The clustering approaches tend to have more spurious
clusters because we chose hyperparameters that encourage
positing new clusters and faster exploration of the associa-
tion space (high concentration parameters), but this can be
corrected at the expense of convergence speed.

The final scenario highlights the risks of using a tracking
filter. Here two closely-arranged orange boxes are placed near

TABLE I
AVERAGE ACCURACY METRICS FOR FIGURE 6 SCENARIOS

Metric Method 1 2 3 4 5 6
Error in Raw 2.54 3.20 2.69 1.90 2.24 2.07
location MHTF 2.04 2.17 2.78 1.89 1.32 2.64
estimate DPMM 1.94 1.98 2.64 2.17 1.51 2.83

(cm) DPMM-VC 1.95 2.04 2.63 1.82 1.34 2.02
% most Raw 98 93 93 67 85 56
likely MHTF 100 100 100 88 100 100
type is DPMM 95 95 95 88 92 92
correct DPMM-VC 95 95 95 84 95 94
Num. Raw 8.0 4.6 3.3 1.6 5.3 1.0

clusters MHTF 10.0 7.0 7.0 6.0 10.0 2.4
assigned DPMM 9.2 6.6 5.5 4.6 7.2 2.3

to objects DPMM-VC 9.5 6.7 6.7 6.0 9.5 2.8
Num. Raw 0.8 1.5 1.3 0.3 0.1 0.7

spurious MHTF 1.0 0.3 0.4 0.7 0.5 0.6
clusters DPMM 1.2 1.3 1.8 0.5 2.1 0.1

DPMM-VC 2.4 1.3 2.2 3.1 2.5 0.1
Num. Raw 2.0 2.4 3.7 5.4 4.7 2.0

missed MHTF 0.0 0.0 0.0 1.0 0.0 0.6
objects DPMM 0.8 0.4 1.5 2.4 2.8 0.7

DPMM-VC 0.5 0.3 0.3 1.0 0.5 0.2

a shelf, such that from most views at most one of the two
boxes can be seen. Only in the final views of the sequence
can both be seen (imagine a perspective from the bottom-
left corner of the image). Due to the proximity of the boxes,
and the fact that consistently in the early views at most one
was visible, MHTF eventually pruned all the then-unlikely
hypotheses positing that the measurements came from two
objects. When finally both can be seen together, although a
hypothesis with two orange boxes resurfaces, it is too late:
the remaining association hypotheses already associate all
previous measurements of the boxes to the same target, in turn
giving an inaccurate location estimate. In contrast, DPMM-
VC is allowed to re-examine previous associations (in the
next sampling iteration) after the two boxes are seen together,
and hence does not suffer from this problem. One way to
consider this difference is that DPMM-VC can essentially
perform smoothing in the association space, whereas MHTF
is simply a forward filter and does not have this capability.

VIII. RELATED WORK

Cox and Leonard ([8]) first considered data association for
world modeling, using a multiple hypothesis approach as well,
but for low-level sonar features. The motion correspondence
problem, which is similar to ours, has likewise been studied
by many ([6, 9]), but typically again using low-level geometric
and visual features only. For additional work in tracking and
clustering, please refer to the respective sections (III, IV).

The important role of objects in semantic mapping was
explored by Ranganathan and Dellaert ([14]), although their
focus was on place modeling and recognition. Anati et al. ([1])
have also used the notion of objects for robot localization, but
did not explicitly estimate their poses; instead, they used “soft”
heatmaps of local image features as their representation.

Active perception has also been applied to object pose
estimation in complex and potentially cluttered scenes (e.g.,
[10, 3]). This approach determines the next best view (camera
pose) where previously occluded objects may be visible,
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(a) Scene from above (b) MHTF (most likely hypothesis) (c) DPMM (final sample) (d) DPMM-VC (final sample)

Fig. 6. Qualitative results for the three approaches in six scenarios (four shown). The bird’s-eye view of the scenes is for comparison convenience only; the
actual viewing height is much closer to the table. The clusters are color-coded by the most likely posterior object type: red = red soup can, black = orange
soda box, green = white L-shaped block, blue = blue rectangular cup. Thickness in lines is proportional to cluster size. See text in section VII for details.

typically by formulating the problem as a POMDP. Our work
differs in that we place no assumptions on how camera poses
were chosen, and we have emphasized data association issues.

Perhaps most similar to our problem and approach is the
recent work of Elfring et al. ([11]), which considers attribute-
based anchoring and world modeling, likewise with a multiple
hypothesis approach. However, our application of DPMM
clustering to the world modeling problem, as well as the view
correspondence in section V, appears to be novel.

IX. DISCUSSION

Through our exploration of three different approaches to
the world model estimation problem, we have found that both
a multiple hypothesis tracking filter and a Dirichlet process
mixture model with view correspondence constraints perform
very well, with complementary strengths in different scenarios.
A generic Dirichlet process model is less robust and prone
to over-association. From a practical standpoint, however, all
three approaches perform similarly well when objects are
either spaced sufficiently far apart or are not easily confusable.
If that is the case, DPMM offers significant computational
advantages, since in each view the computational time is linear
in the number of observations, instead of the combinatorial ex-
pression in equation 15. Although the relative speeds depends
on the difficulty of the scenario and the heuristics employed,
in our implementation we observed that DPMM is always
one to two orders of magnitude faster. Characterizing the
regimes where each approach dominates more thoroughly and
designing a scalable hybrid system that takes advantage of
their differences is the subject of future work.
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