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Abstract

In many applications that involve processing high-
dimensional data, it is important to identify a small
set of entities that account for a significant frac-
tion of detections. Rather than formalize this as
a clustering problem, in which all detections must
be grouped into hard or soft categories, we formal-
ize it as an instance of the frequent items or heavy
hitters problem, which finds groups of tightly clus-
tered objects that have a high density in the feature
space. We show that the heavy hitters formulation
generates solutions that are more accurate and ef-
fective than the clustering formulation. In addition,
we present a novel online algorithm for heavy hit-
ters, called HAC, which addresses problems in con-
tinuous space, and demonstrate its effectiveness on
real video and household domains.

1 Introduction
Many applications require finding entities in raw data, such
as individual objects or people in image streams or particu-
lar speakers in audio streams. Often, entity-finding tasks are
addressed by applying clustering algorithms such as k-means
(for instance in [Niebles et al., 2008]). We argue that instead
they should be approached as instances of the frequent items
problem, also known as the heavy hitters problem. The clas-
sic frequent items problem assumes discrete data and involves
finding the most frequently occurring items in a stream of
data. We propose to generalize it to continuous data.

Figure 3 shows examples of the differences between clus-
tering and entity finding. Some clustering algorithms fit a
global objective assigning all/most points to centers, whereas
entities are defined locally leading to more robustness to noise
(1a). Others, join nearby dense groups while trying to detect
sparse groups, whereas entities are still distinct (1b). These
scenarios are common because real world data is often noisy
and group sizes are often very unbalanced [Newman, 2005].

We characterize entities using two natural properties: sim-
ilarity - the feature vectors should be similar according to
some (not necessarily Euclidean) distance measure, such as
cosine distance, and salience - the region should include a
sufficient number of detections over time.

(a) Noisy environment: outliers (red points) greatly influence clus-
tering. Entities, defined locally, are robust to large amounts of noise.

(b) Groups of different sizes: clustering tends to join nearby
groups; entities may be close together yet distinct.

Figure 1: In clustering all/most points belong to a group, forming
big clusters which are defined globally. In entity finding some points
belong to a group, forming small tight regions defined locally.

Even though our problem is not well-formulated as a clus-
tering problem, it might be tempting to apply clustering al-
gorithms to it. Clustering algorithms optimize for a related,
but different, objective. This makes them less accurate for
our problem; moreover, our formulation overcomes typical
limitations of some clustering algorithms such as relying on
the Euclidean distance metric and performing poorly in high-
dimensional spaces. This is important because many natural
embeddings, specially those coming from Neural Networks,
are in high dimensions and use non-Euclidean metrics.

In this paper we suggest addressing the problem of entity
finding as an extension of heavy hitters, instead of clustering,
and propose an algorithm called HAC with multiple desirable
properties: handles an online stream of data; is guaranteed to
place output points near high-density regions in feature space;
is guaranteed to not place output points near low-density re-
gions (i.e., is robust to noise); works with any distance metric;
can be time-scaled, weighting recent points more; is easy to
implement; and is easily parallelizable.

We begin by outlining a real-world application of tracking
important objects in a household setting without any labeled
data and discussing related work. We go on to describe the
algorithm and its formal guarantees and describe experiments
that find the main characters in video of a TV show and that
address the household object-finding problem.
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1.1 Household Setting
The availability of low-cost, network-connected cameras pro-
vides an opportunity to improve the quality of life for people
with special needs, such as the elderly or the blind. One ap-
plication is helping people to find misplaced objects.

More concretely, consider a set of cameras recording video
streams from some scene, such as a room, an apartment or a
shop. At any time, the system may be queried with an image
or a word representing an object, and it has to answer with
candidate positions for that object. Typical queries might
be: ”Where are my keys?” or ”Warn me if I leave without
my phone.” Note that, in general, the system won’t know the
query until it is asked and thus cannot know which objects in
the scene it has to track. For such an application, it is impor-
tant for the system to not need specialized training for every
new object that might be the focus of a query.

Our premise is that images of interesting objects are such
that 1) a neural network embedding [Donahue et al., 2014;
Johnson et al., 2016; Mikolov et al., 2013] will place them
close together in feature space, and 2) their position stays
constant most of the time, but changes occasionally. There-
fore objects will form high-density regions in a combined
feature×position space. Random noise, such as people mov-
ing or false positive object detections, will not form dense
regions. Objects that don’t move (walls, sofas, etc) will
be always dense; interesting objects create dense regions in
feature×position space, but eventually change position and
form a new dense region somewhere else. We will exploit the
fact that our algorithm is easy to scale in time, to detect theses
changes over time.

1.2 Related work
Our algorithm, HAC, addresses the natural generalization of
heavy hitters, a very well-studied problem, to continuous set-
tings. In heavy hitters we receive a stream of elements from
a discrete vocabulary and our goal is to estimate the most
frequently occurring elements using a small amount of mem-
ory, which does not grow with the size of the input. Optimal
algorithms have been found for several classes of heavy hit-
ters, which are a logarithmic factor faster than our algorithm,
but they are all restricted to discrete elements [Manku and
Motwani, 2002]. In our use case (embeddings of real-valued
data), elements are not drawn from a discrete set, and thus
repetitions have to be defined using regions and distance met-
rics. Another line of work [Chen and Zhang, 2016] estimates
the total number of different elements in the data, in contrast
to HAC that finds (not merely counts) different dense regions.

Our problem bears some similarity to clustering but the
problems are fundamentally different (see figure 3). The clos-
est work to ours within the clustering literature is density-
based (DB) clustering. In particular, they first find all dense
regions in space (as we do) and then join points via paths in
those dense regions to find arbitrarily-shaped clusters. In con-
trast, we only care about whether a point belongs to one of the
dense regions. This simplification has two advantages: first, it
prevents joining two close-by entities, second, it allows much
more efficient, general and simple methods.

The literature on DB clustering is very extensive. Most of
the popular algorithms, such as DBScan [Ester et al., 1996]

and Level Set Tree Clustering [Chaudhuri and Dasgupta,
2010], as well as more recent algorithms [Rodriguez and
Laio, 2014], require simultaneous access to all the points and
have complexity quadratic in the number of points; this makes
them impractical for big datasets and specially streaming
data. There are some online DB clustering algorithms [Chen
and Tu, 2007], [Wan et al., 2009],[Cao et al., 2006], but they
either tessellate the space or assume a small timescale, tend-
ing to work poorly for non-Euclidean metrics and high di-
mensions.

Two pieces of work join ideas from clustering with heavy
hitters, albeit in very different settings and with different
goals. [Larsen et al., 2016] uses graph partitioning to attack
the discrete lp heavy hitters problem in the general turnstile
model. [Braverman et al., 2017] query a heavy hitter algo-
rithm in a tessellation of a high dimensional discrete space, to
find a coreset which allows them to compute an approximate
k-medians algorithm in polynomial time. Both papers tackle
streams with discrete elements and either use clustering as an
intermediate step to compute heavy hitters or use heavy hit-
ters as an intermediate step to do clustering (k-medians). In
contrast, we make a connection pointing out that the general-
ization of heavy hitters to continuous spaces allows us to do
entity finding, previously seen as a clustering problem.

We illustrate our algorithm in some applications that have
been addressed using different methods. Clustering faces
is a well-studied problem with commercially deployed so-
lutions. However, these applications generally assume we
care about most faces in the dataset and that faces occur in
natural positions. This is not the case for many real-world
applications, where photos are taken in motion from multi-
ple angles and are often blurry. Therefore, algorithms that
use clustering in the conventional sense, [Schroff et al., 2015;
Otto et al., 2017], do not apply.

[Rituerto et al., 2016] proposed using DB-clustering in a
setting similar to our object localization application. How-
ever, since our algorithm is online, we allow objects to change
position over time. Their method, which uses DBScan, can be
used to detect what we will call stable objects, but not mov-
able ones (which are generally what we want to find). [Nirjon
and Stankovic, 2012] built a system that tracks objects assum-
ing they will only change position when interacting with a
human. However, they need an object database, which makes
the problem easier and the system much less practical, as the
human has to register every object to be tracked.

2 Problem setting
In this section we argue that random sampling is surprisingly
effective (both theoretically and experimentally) at finding
entities by detecting dense regions in space and describe an
algorithm for doing so in an online way. The following defi-
nitions are of critical importance.

Definition 2.1. Let d(·, ·) be the distance metric. A point p is
(r, f)-dense with respect to dataset D if the subset of points
in D within distance r of p represents a fraction of the points
that is at least f . If N = |D|; then p must satisfy:

|{x ∈ D | d(x, p) ≤ r}| ≥ fN.



(a) f = 7% (b) f = 15%

Figure 2: Varying fraction f with fixed radius r. Data comes from
3 Gaussians plus uniform random noise. A circle of radius r near
the sparsest Gaussian captures more than 7% of the data but less
than 15%; thus being dense in (a), but not in (b).

Figure 3: Varying radius r with fixed frequency f . We can detect
Gaussians with different variances by customizing r for each output.
The goal isn’t to cover the whole group with the circle but to return
the smallest radius that contains a fraction f of the data. Points near
an output are guaranteed to need a similar radius to contain the same
fraction of data.

Definition 2.2. A point p is (r, f)-sparse with respect to
dataset D if and only if it is not (r, f)-dense.

The basic version of our problem is the natural generaliza-
tion of heavy hitters to continuous spaces. Given a metric
d, a frequency threshold f , a radius r and a stream of points
D, after each input point the output is a set of points. Every
(r, f)-dense point (even those not in the dataset) has to be
close to at least one output point and every (r, f/2)-sparse
region has to be far away from all output points.

Our algorithm is based on samples that hop between data
points and count points nearby; we therefore call it Hop And
Count (HAC).

2.1 Description of the algorithm
A very simple non-online algorithm to detect dense regions is
to take a random sample ofm elements and output only those
samples that satisfy the definition of (r, f)-dense with respect
to the whole data set. For a large enough m, each dense re-
gion in the data will contain at least one of the samples with
high probability, so the output will include a sample from this
region. For sparse regions, even if they contain a sampled
point, this sample will not be in the output since it will not

pass the denseness test.
Let us try to make this into an online algorithm. A known

way to maintain a uniform distribution in an online fashion is
reservoir sampling[Vitter, 1985]: we keep m stored samples.
After the i-th point arrives, each sample changes, indepen-
dently, with probability 1/i to this new point. At each time
step, samples are uniformly distributed over all the points in
the data. However, once a sample has been drawn we cannot
go back and check whether it belongs to a dense or sparse
region of space, since we have not kept all points in memory.

The solution is to keep a counter for each sample in mem-
ory and update the counters every time a new point arrives. In
particular, for any sample x in memory, when a new point p
arrives we check whether d(x, p) ≤ r; if so, we increase x’s
counter by 1. When the sample hops to a new point x′, the
counter is no longer meaningful and we set it to 0.

Since we are in the online setting, every sample only sees
points that arrived after it and thus only the first point in a re-
gion sees all the other points in that region. Therefore, if we
want to detect a region containing a fraction f of the data, we
have to introduce an acceptance threshold lower than f , for
example f/2, and only output points with frequency above
it. The probability of any sample being in the first half of
any dense region is at least f/2 and thus, for a large enough
number of samples m, with high probability every dense re-
gion will contain a sample detected as dense. Moreover, since
we set the acceptance threshold to f/2, regions much sparser
than f will not produce any output points. In other words, we
will have false positives but they will be good false positives,
since those points are guaranteed to be in regions almost as
dense as the target dense regions we actually care about. In
general we can change f/2 to (1−ε)f with ε trading memory
with performance. Finally, note that this algorithm is easy to
parallelize because all samples and their counters are com-
pletely independent.

2.2 Multiple radii
In the previous section we assumed a specific known thresh-
old r. What if we don’t know r, or if every dense region has
a different diameter? We can simply have counts for mul-
tiple values of r for every sample. In particular, for every
x in memory we maintain a count of streamed points within
distance r for every r ∈ {r0 = rmin, r0γ, r0γ

2, . . . , r0γ
c =

rmax}. At output time we can output the smallest ri such
that the x is (ri, f)-dense. With this exponential sequence we
guarantee a constant-factor error while only losing a logarith-
mic factor in memory usage. r0 and c may be user-specified
or automatically adjusted at runtime.

Following is the pseudo-code version of the algorithm with
multiple specified radii. Note that the only data-dependent
parameters are r0 and c, which specify the minimum and
maximum radii, and f0 which specifies the minimum frac-
tion that we will be able to query. The other parameters (ε, δ,
γ) trade off memory vs. probability of statisfying guarantees.

2.3 Guarantees
We make a guarantee for every dense or sparse point in space,
even those that are not in the dataset. Our guarantees are



Algorithm Hop And Count Processing(f0, ε, δ, r0, γ, c)
1 m← log (f−1

0 δ−1)/f0ε // to satisfy guarantees

2 Mem← [∅, (m). . . , ∅] ; Counts← Zeros(m, c)
3 t = 0
4 for p in stream do
5 t + = 1
6 for 0 ≤ i ≤ m do
7 if Bernoulli(1/t) then
8 Mem[i]← p // hop

9 for 0 ≤ r ≤ c do
10 Counts[i][r]← 0 // reset counters

11 r ← max
(
0, ceil

(
logγ (d(Mem[i], p)/r0)

))
12 if r ≤ c then
13 Counts[i][r] + = 1

Algorithm Hop And Count Query(f , t, ε, Mem, Counts)
14 for 0 ≤ i < len(Counts) do // 0 ≤ i < m
15 count← 0

for 0 ≤ r < len(Counts[i]) do // 0 ≤ r < c
16 count← count+Mem[i][r]
17 if count ≥ (1− ε)ft then
18 output (Mem[i], r)
19 break

probabilistic; they hold with probability 1 − δ where δ is a
parameter of the algorithm that affects the memory usage. We
have three types of guarantees, from loose but very certain, to
tighter but less certain. For simplicity, we assume here that
rmin = rmax = r. Here, we state the theorems; the proofs
are available in appendix A.

Definition 2.3. rf (p) is the smallest r s.t. p is (r, f)-dense.
For each point p we refer to its circle/ball as the sphere of
radius rf (p) centered at p.

Theorem 2.1. For any tuple (ε < 1, δ, f), with probability
1 − δ, for any point p s.t. rf ≤ rmax/2γ our algorithm will
give an output point o s.t. d(o, p) ≤ 3rf (p).
Moreover, the algorithm always needs at most
Θ
(

log(fδ)
εf logγ

(
rmax

rmin

))
memory and Θ( log(fδ)

εf ) time

per point. Finally, it outputs at most Θ
(

log(fδ)
εf

)
points.

Lemma 2.2. Any (∆, (1− ε)f)-sparse point will not have an
output point within ∆− 2rmax.

Notice that we can use this algorithm as a noise detector
with provable guarantees. Any (rmax, f)-dense point will be
within 3rmax of an output point and any (5rmax, (1 − ε)f)-
sparse point will not.

Theorem 2.3. For any tuple (ε, δ, f), with probability (1−δ),
for any (r, f)-dense point p our algorithm will output a point
o s.t. d(o, p) ≤ r with probability at least (1− δf).

Theorem 2.4. We can apply a post-processing algorithm that
takes parameter γ in time Θ

(
log(fδ)
εf2

)
to reduce the number

of output points to (1+2ε)/f while guaranteeing that for any
point p there is an output within (4γ+ 3)rf (p). The same al-
gorithm guarantees that for any (rmax, f)-dense point there
will be an output within 7rmax.

Note that the number of outputs can be arbitrarily close to
the optimal 1/f .

The post-processing algorithm is very simple: iterate
through the original outputs in increasing rf (p). Add p to
the final list of outputs O if there is no o ∈ O s.t. d(o, p) ≤
rf (p) + rf (o). See appendix A for a proof of correctness.

In high dimensions many clustering algorithms fail; in con-
trast, our performance can be shown to be provably good in
high dimensions. We prove asymptotically good performance
for dimension d → ∞ with a convergence fast enough to be
meaningful in real applications.

Theorem 2.5. With certain technical assumptions on the data
distribution, if we run HAC in high dimension d, for any
(r, 1.05f)-dense point there will be an output point within
(1 +α)r, with α = O(d−1/2), with probability (0.95− δf −
O(e−fn)), where n is the total number of datapoints.
Moreover, the probability that a point p is (r, 0.98(1 − ε)f)-
sparse yet has an output nearby is at most 0.05 + O(e−fn).

We refer the reader to appendix A for a more detailed defi-
nition of the theorem and its proof.

The intuition behind the proof is the following: let us
model the dataset as a set of high-dimensional Gaussians plus
uniform noise. It is well-known that most points drawn from
a high dimensional Gaussian lie in a thin spherical shell. This
implies that all points drawn from the same Gaussian will be
similarly dense (have a similar rf (p)) and will either all be
dense or all sparse. Therefore, if a point is (r, f)-dense it is
likely that another point from the same Gaussian will be an
output and will have a similar radius. Conversely, a point that
is (r, (1−ε)f)-sparse likely belongs to a sparse Gaussian and
no point in that Gaussian can be detected as dense.

Note that, for d, n → ∞ and δ → 0 the theorem guaran-
tees that any (r, f)−dense point will have an output within r
with probability 95% and any (r, (1 − ε))-sparse point will
not, with probability 5%; close to the ideal guarantees. Fur-
thermore, in the appendix we show how these guarantees are
non-vacuous for values as small as n = 5000, d = 128: the
values of the dataset in section 3.

2.4 Time scaling
We have described a time-independent version of HAC in
which all points have equal weight, regardless of when they
arrive. However, it is simple and useful to extend this algo-
rithm to make point i have weight proportional to e−(t−ti)/τ
for any timescale τ , where t is the current time and ti is the
time when point i was inserted.

Trivially, a point inserted right now will still have weight
1. Now, let t′ be the time of the last inserted point. We can
update all the weights of the previously received points by a
factor e−(t−t

′)/τ . Since all the weights are multiplied by the
same factor, sums of weights can also be updated by multi-
plying by e−(t−t

′)/τ .
We now only need to worry about hops. We can keep a

counter for the total weight of the points received until now.
Let us define wj,k as the weight of point pj at the time point
k arrives. Since we want to have a uniform distribution over
those weights, when the i-th point arrives we simply assign
the probability of hopping to be 1/

∑
j≤i wj,i. Note that for



Figure 4: Identifying the main n characters for n ∈ {1, 5, 8}. We ask each algorithm to give n outputs and compute the fraction of main
n characters found in those n outputs. We report the average of 25 different random seeds sampling the original dataset for 70% of the
data. There are 3 ways of missing: Wrong: a noisy image (such as figure 5a) or unpopular character, Duplicate: an extra copy of a popular
character, Missing: the algorithm is unable to generate enough outputs. Despite being online, HAC outperforms all baselines.

the previous case of all weights being 1 (i.e. τ = ∞) this
reduces to a probability of 1/i as before.

We prove in the appendix that by updating the weights and
modifying the hopping probability, the time-scaled version
has guarantees similar to the original ones.

2.5 Fixing the number of outputs
We currently have two ways of querying the system: 1) Fix a
single distance r and a frequency threshold f , and get back all
regions that are (r, f)-dense; 2) Fix a frequency f , and return
a set of points {pi}, each with a different radius {ri} s.t. a
point p near output point pi is guaranteed to have rf (p) ≈ ri.

It is sometimes more convenient to directly fix the number
of outputs instead. With HAC we go one step further and re-
turn a list of outputs sorted according to density (so, if you
want o outputs, you pick the first o elements from the out-
put list). Here are two ways of doing this: 1) Fix radius r.
Find a set of outputs pi each (r, fi)-dense. Sort {pi} by de-
creasing fi, thus returning the densest regions first. 2) Fix
frequency f , sort the list of regions from smallest to biggest
r. Note, however, that the algorithm is given a fixed memory
size which governs the size of the possible outputs and the
frequency guarantees.

In general, it is useful to apply duplicate removal. In our
experiments we sort all (r, f)-dense outputs by decreasing f ,
and add a point to the final list of outputs if it is not within
rd of any previous point on the list. This is similar to but not
exactly the same as the method in theorem 2.4; guarantees for
this version can be proved in a similar way.

3 Identifying people
As a test of HAC’s ability to find a few key entities in a large,
noisy dataset, we analyze a season of the TV series House
M.D.. We pick 1 frame per second and run a face-detection
algorithm (dlib [King, 2009]) that finds faces in images and
embeds them in a 128-dimensional space. Manually inspect-
ing the dataset reveals a main character in 27% of the images,
a main cast of four characters appearing in 6% each and three
secondary characters in 4% each. Other characters account
for 22% and poor detections (such as figure 5a) for 25%.

We run HAC with r = 0.5 and apply duplicate reduction
with rd = 0.65. These parameters were not fine-tuned; they
were picked based on comments from the paper that created
the CNN and on figure 6. We fix ε = δ = 0.5 for all exper-
iments; these large values are sufficient because HAC works
better in high dimensions than guaranteed by theorem 2.1.

(a) (b)

Figure 5: Shortcomings of clustering algorithms in entity finding.
(a) The closest training example to the mean of the dataset (1-output
of k-means) is a blurry misdetection. (b) DBSCAN merges different
characters through paths of similar faces.

We compare HAC against several baselines to find the most

Figure 6: Most (r, f)-dense points are within r of an output, most
(r, (1− ε)f)-sparse points are not, as predicted by theorem 2.5.
We run HAC with f=0.02, r = 0.4. We compare two probability
distributions: distance to the closest output for dense points and for
sparse points. Ideally, we would want all the dense points (blue
distribution) to be to the left of the threshold r and all the sparse
points (green) to be to its right; which is almost the case.
Moreover, notice the two peaks in the frequency distribution (intra-
entity and inter-entity) with most uncertainty between 0.5 and 0.65.

frequently occurring characters. For n = {1, 5, 8} we ask
each algorithm to return n outputs and check how many of the
top n characters it returned. The simplest baseline, Random,
returns a random sample of the data. Maximal Independent
Set starts with an empty list and iteratively picks a random
point and adds it to the set iff it is at least r = 0.65 apart from
all points in the list. We use sklearn [Pedregosa et al., 2011]
for both k-means and DBSCAN. DBSCAN has two parame-
ters: we set its parameter r to 0.5, since its role is exactly the
same as our r and grid-search to find the best ε. For k-means



we return the image whose embedding is closer to each center
and for DBSCAN we return a random image in each cluster.

As seen in figure 4, HAC consistently outperforms all base-
lines. In particular, k-means suffers from trying to account
for most of the data, putting centers near unpopular charac-
ters or noisy images such as figure 5a. DBSCAN’s problem
is more subtle: to detect secondary characters, the threshold
frequency for being dense needs to be lowered to 4%. How-
ever, this creates a path of dense regions between two main
characters, joining the two clusters (figure 5b).

While we used offline baselines with fine-tuned parameters,
HAC is online and its parameters do not need to be fine-tuned.
Succeeding even when put at a disadvantage, gives strong ev-
idence that HAC is a better approach for the problem.

Finally, with this data we checked the guarantees of theo-
rem 2.5: most (f, r)-dense points have an output within dis-
tance r, 95%, whereas few (r, (1− ε))-sparse points do: 6%.
This is shown in figure 6.

4 Object localization
In this section we show an application of entity finding that
cannot be easily achieved using clustering. We will need the
flexibility of HAC: working online, with arbitrary metrics and
in a time-scaled setting as old observations become irrelevant.

4.1 Identifying objects
In the introduction we outlined an approach to object local-
ization that does not require prior knowledge of which ob-
jects will be queried. To achieve this we exploit many of the
characteristics of the HAC algorithm. We assume that: 1) A
convolutional neural network embedding will place images of
the same object close together and images of different objects
far from each other. 2) Objects only change position when a
human picks them up and places them somewhere else.

Points in the data stream are derived from images as fol-
lows. First, we use SharpMask[Pinheiro et al., 2016] to seg-
ment the image into patches containing object candidates (fig-
ure 7). Since SharpMask is not trained on our objects, pro-
posals are both unlabeled and very noisy. For every patch,
we feed the RGB image into a CNN (Inception-V3 [Szegedy
et al., 2016]), obtaining a 2048-dimensional embedding. We
then have 3 coordinates for the position (one indicates which
camera is used, and then 2 indicate the pixel in that image).

We need a distance for this representation. It is natural
to assume that two patches represent the same object if their
embedding features are similar and they are close in the 3-D
world. We can implement this with a metric that is the max-
imum between the distance in feature space and the distance
in position space:

d((p1, f1), (p2, f2)) = max(dp(p1, p2), df (f1, f2))

We can use cosine distance for df and l2 for dp; HAC allows
for the use of arbitrary metrics. However, for good perfor-
mance, we need to scale the distances such that close in po-
sition space and close in feature space correspond to roughly
similar numerical values.

We can now apply HAC to the resulting stream of points. In
contrast to our previous experiment, time is now very impor-

Figure 7: All the candidate objects from a random camera and time.
Only a few proposals (first 6) capture objects of actual interest.

tant. In particular, if we run HAC with a large timescale τl and
a small timescale τs, we’ll have 3 types of detections:
• Noisy detections (humans passing through, false positive

camera detections): not dense in either timescale;
• Detections from stable objects (sofas, walls, floor): dense

in both timescales; and
• Detections from objects that move intermittently (keys,

mugs): not dense in τl, and alternating dense and sparse
in τs. (When a human picks up an object from a location,
that region will become sparse; when the human places it
somewhere else, a new region will become dense.)

We are mainly interested in the third type of detections.

4.2 Experiment: relating objects to humans
We created a dataset of 8 humans moving objects around 20
different locations in a room; you can find it on http://
lis.csail.mit.edu/alet/entities.html. Lo-
cations were spread across 4 tables with 8, 4, 4, 4 on each
respectively. Each subject had a bag and followed a script
with the following pattern: Move to the table of location A;
Pick up the object in your location and put it in your bag;
Move to the table of location B; Place the object in your bag
at your current location.

The experiment was run in steps of 20 seconds: in the first
10 seconds humans performed actions, and in the last 10 sec-
onds we recorded the scene without any actions happening.
Since we’re following a script and humans have finished their
actions, during the latter 10 seconds we know the position
of every object with an accuracy of 10 centimeters. The to-
tal recording lasted for 10 minutes and each human picked
or placed an object an average of 12 times. In front of every
table we used a cell phone camera to record that table (both
human faces and objects on the table).

We can issue queries to the system such as: Which hu-
man has touched each object? Which objects have not been
touched? Where can I find a particular object? Note that if
the query had to be answered based on only the current cam-
era image, two major issues would arise: 1) We would not
know whether an object is relevant to a human. 2) We would
not detect objects that are currently occluded.

This experimental domain is quite challenging for several
reasons: 1) The face detector only detects about half the
faces. Moreover, false negatives are very correlated, some-
times missing a human for tens of seconds. 2) Two of the 8
subjects are identical twins. We have checked that the face
detector can barely tell them apart. 3) The scenes are very
cluttered: when an interaction happens, an average of 1.7

http://lis.csail.mit.edu/alet/entities.html
http://lis.csail.mit.edu/alet/entities.html


Figure 8: When an object is placed, its frequency starts grow-
ing. It takes on the order of the timescale τ to reach its stationary
value, surpassing the threshold frequency. When an object becomes
dense/sparse we assume a human placed/picked it, go τ back time
and mark the pair (obj, human). This system is completely unla-
beled; obj and human are both just feature vectors.

other people are present at the same table. 4) Cameras are
2D (no depth map) and the object proposals are very noisy.

We focus on answering the following query: for a given
object, which human interacted with it the most? The algo-
rithm doesn’t know the queries in advance nor is it provided
training data for particular objects or humans. Our approach,
shown in figure 8, is as follows:
• Run HAC with τl = ∞ (all points have the same weight

regardless of their time), τs = 10 seconds, f = 2.5% and
a distance function and threshold which link two detec-
tions that happen roughly within 30 centimeters and have
features that are close in embedding space.

• Every 10s, query for outputs representing dense regions.
• For every step, look at all outputs from the algorithm and

check which ones do not have any other outputs nearby in
the previous step. Those are the detections that appeared.
Similarly, look at the outputs from the previous step that
do not have an output nearby in the current step; those are
the ones that disappeared.

• (Figure 8) For any output point becoming dense/sparse on
a given camera, we take its feature vector (and drop the
position); call these features v and the current time t. We
then retrieve all detected faces for that camera at times
[t−2τs, t−τs], which is when a human should have either
picked or placed the object that made the dense region ap-
pear/disappear. For any face fi we add the pair (v, fi) to
a list with a score of 1/|fi|, which aims at distributing the
responsibility of the action between the humans present.

Now, at query time we want to know how much each human
interacted with each object. We pick a representative picture
of every object and every human to use as queries. We com-
pute the pair of feature vectors, compare against each object-
face pair in the list of interactions and sum its weight if both
the objects and the faces are close. This estimates the number
of interactions between human and object.

Results are shown in table 1. There is one row per ob-
ject. For each object, there was a true primary human who
interacted with it the most. The columns correspond to: the
number of times the top human interacted with the object,
the number of times the system predicted the top human in-
teracted with the object, the rank of the true top human in

#pick/place #pick/place Rank pred. Explanation
top human pred. human human (of 8)

12 12 1
8 8 1
7 7 1
6 6 1
6 6 1
6 6 1
4 2 2 (a)
4 2 2 (b)
4 2 2 (c)
0 - - (d)

Table 1: Summary of results. The algorithm works especially well
for more interactions, where it is less likely that someone else was
also present by accident. (a) Predicted one twin, correct answer was
the other. (b) Both twins were present in many interactions by coin-
cidence, one of them was ranked first. (d) Failure due to low signal-
to-noise ratio. (d) Untouched object successfully gets no appear-
ances or disappearances matched to a human.

the predictions, and explanations. HAC successfully solves
all but the extremely noisy cases, despite being a hard dataset
and receiving no labels and no specific training.

5 Conclusion
In many datasets we can find entities, subsets of the data with
internal consistency, such as people in a video, popular topics
from Twitter feeds, or product properties from sentences in
its reviews. Currently, most practitioners wanting to find such
entities use clustering.

We have demonstrated that the problem of entity finding
is well-modeled as an instance of the heavy hitters problem
and provided a new algorithm, HAC, for heavy hitters in con-
tinuous non-stationary domains. In this approach, entities
are specified by indicating how close data points have to be
in order to be considered from the same entity and when a
subset of points is big enough to be declared an entity. We
proved, both theoretically and experimentally, that random
sampling (on which HAC is based), works surprisingly well
on this problem. Nevertheless, future work on more complex
or specialized algorithms could achieve better results.

We used this approach to demonstrate a home-monitoring
system that allows a wide variety of post-hoc queries about
the interactions among people and objects in the home.
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A Appendix: proofs and detailed theoretical
explanations

Thm. A.3 and corollary A.2.1 prove that with high probability:
All (r, f)-dense pts will

have an output within 3rAll (5r, (1− ε)f)-sparse pts won’t
For HAC with radius 2r, thm. A.1 and corollary A.2.1 prove:
Most (r, f)-dense pts will

have an output within rAll (3r, (1− ε)f)-sparse pts won’t
Fig. 6 and thm A.11 show that in high dimensions:
Most ((1 + ∆)r, f)-dense pts will

” ” ” within (1 + ∆2)r
Most ((1 + ∆)r, (1 − ε)f)-sparse pts won’t

Table 2: Summary of guarantees. ε is a parameter of the algorithm
that affects memory and runtime. Different levels of guarantees have
different levels of certainty. Guarantees are constructed to be easy
to verify experimentally.

We make a guarantee for every dense or sparse point in
space, even those that are not in the dataset. Our guarantees
are probabilistic; they hold with probability 1−δ where δ is a
parameter of the algorithm that affects the memory usage. We
have three types of guarantees, from loose but very certain, to
tighter but less certain. Those guarantees are summarized in
table 2. For simplicity, the guarantees in that table assume
that there’s a single radius rmin = rmax = r. We also start by
proving properties of the single radius algorithm.

First we prove that if we run HAC(f, ε, δ, 2r) most (r, f)-
dense points will have an output within distance r using a
small amount of memory (and, in particular, not dependent
of the length of the stream). Notice that, for practical values
such as f = 2%, δ = 0.5 we’re guaranteeing that an (r, f)-
dense point will be covered with 99% probability.

Theorem A.1. Let ε < 1. For any (r, f)-interesting point
p, HAC(f, ε, δ, 2r) outputs a point within distance r with
probability (1 − fδ). Moreover, it always needs at most
Θ( log(fδ)d

εf ) memory and Θ( log(fδ)
εf ) time per point. Finally,

it outputs at most Θ( log(fδ)
εf ) points.

Proof We maintain m independent points that hop to the t-
th point with probability 1

t . They carry an associated counter:
the number of points that came after its last hop and were
within 2r of its current position. When the algorithms is
asked for centers, it returns every point in memory whose
counter is greater than (1− ε)fN .

By triangular inequality any point within p’s ball will count
towards any other point in the sphere, since we’re using a
radius of 2r. Moreover, the first εf points within p’s sphere
will come before at least a fraction (1 − ε)f of points that
within p’s ball. Therefore there’s at least a fraction (1 − ε)f
of points within distance r of point p that, if sampled, would
be returned.

We have m = log (f−1δ−1)
fε samples. The probability that

none of that (1− ε)f fraction gets sampled is:

(1− εf)
m ≤ e−εfm = e−εf

log (f−1δ−1)
fε = elog (fδ) = fδ

Therefore the probability that at least one sample is within

that fraction (and therefore at least there’s an output within r
of p) is at least (1− fδ). �

Now we want to prove that the same algorithm will not
output points near sufficiently sparse points.
Lemma A.2. If we run HAC(f, ε, δ, R), any (∆, (1 − ε))-
sparse point will not have an output point within ∆−R.

Let us prove it by contradiction. Let p be a (∆, (1 − ε))-
sparse point. SupposeHAC(f, ε, δ, R) outputs a point within
distance ∆−R of p. By triangular inequality, any point within
distance R of the output is also within distance ∆ of p. Since
to be outputed a point has to have at least a fraction (1− ε)f
within distance R that implies there is at least a fraction (1−
ε)f within ∆ of p. However, this contradicts the definition
that p was (∆, (1− ε)f)-sparse. �

Corollary A.2.1. If we run HAC(f, ε, δ, 2r), any (3r, (1 −
ε)f)-sparse point will not have an output within r and any
(5r, (1− ε)f)-sparse point will not have an output within 3r.

Proof Use R = 2r and ∆ = 3r,∆ = 5r in the previous
lemma. �

We have shown that runningHAC(f, ε, δ, 2r), most (f, r)-
dense points will have an output within r and none of the
(3r, (1 − ε))-sparse will. Therefore we can use HAC as a
dense/noise detector by checking whether a point is within r
of an output.

We now want a probabilistic guarantee that works for all
dense points, not only for most of them. Notice there may be
an uncountable number of dense points and thus we cannot
prove it simply using probability theory; we need to find a
correlation between results. In particular we will create a fi-
nite coverage: a set of representatives that is close to all dense
points. Then we will apply theorem A.1 to those points and
translate the result of those points to all dense points.
Theorem A.3. Let ε < 1. With probability 1 − δ, for
any (r, f)-interesting point p, HAC(f, ε, δ, 2r) outputs a
point within distance 3r. Moreover, it always needs at most
Θ( log(fδ)d

εf ) memory and Θ( log(fδ)
εf ) time per point. Finally,

it outputs at most Θ( log(fδ)
εf ) points.

Proof Let D be the set of (r, f)-dense points. Let D∗ =
{p1, p2, . . . } be the biggest subset of D such that B(pi, r) ∩
B(pj , r) = ∅ for any i 6= j. Since the pairwise inter-
section is empty and |B(pi, r)| ≥ fN for any i, we have
|
⋃
iB(pi, r)| =

∑
i |B(pi, r)| ≥ |D∗| · fN . However,

N ≥ |
⋃
iB(pi, r)|, so we must have |B∗| ≤ 1

f .
We now look at a single run of HAC(f, ε, δ, 2r). Using

theorem A.1, for any pi ∈ D∗ the probability of having a
center within r is at least 1− δf . Therefore, by union bound
the probability that all pi ∈ D∗ have a center within r is at
least: 1− δf 1

f = 1− δ.
Let us assume that all points in D∗ have an output within

r. Let us show that this implies something about all dense
points, not just those in the finite coverage. For any point
p /∈ D∗∃pi ∈ D∗ s.t. B(p, r) ∩ B(pi, r) 6= ∅. If that were
not the case, we could add p to D∗, contradicting its max-
imality. Since their balls of radius r intersect this implies
their distance is at most 2r. We now know ∃pi ∈ D∗ s.t.



d(p, pi) ≤ 2r and that ∃ center c s.t. d(c, pi) ≤ r. Again
by triangular inequality, point p will have a center within dis-
tance 3r.

Both runtime and memory are directly proportional to
the number of samples, which we specified to be m =
log (f−1δ−1)

fε . �
Let us now move to the multiple radii case. For that we

need the following definition:
Definition A.1. rf (p) is the smallest r s.t. p is (r, f)-dense.
For each point p we refer to its circle/ball as the sphere of
radius rf (p) centered at p.

Note that now any point will be dense for some r. Given
that all points are dense for some r, there are two ways of
giving guarantees:
• All output points are paired with the radius needed for

them to be dense. Then, guarantees can be made about
outputs of a specific radius.
• We can still have a rmax, for which all guarantees for the

single radius case apply directly.
When we pair outputs with radius we call an output of ra-

dius r to an output that needed a radius r to be dense. In that
case, we can make a very general guarantee about not putting
centers near sufficiently sparse regions, where sparsity is a
term relative to rf .
Lemma A.4. If we run HAC(f, ε, δ); for any point p, there
will not be an output o of radius r(o) within distance less than
r(1−ε)f (p)− r(o).

Proof Similar to A.2, we can assume there is an output
point within that distance and apply triangular inequality. We
then see that all points within distance r(o) of the output
would be within distance r(1−ε)f (p) of p. However, we know
that the output has at least a fraction (1− ε)f within distance
r(o), contradicting the minimality of r(1−ε)f (p). �

Theorem A.5. For any tuple (ε < 1, δ, f, γ > 1), for any
point p s.t. rf ≤ rmax

2γ our algorithm will give an output
point within rf (p) of at most radius 2γrf (p) with probability
at least 1− δf .
Moreover, the algorithm always needs at most
Θ
(

log(fδ)
εf logγ

(
rmax

rmin

))
memory and Θ( log(fδ)

εf ) time

per point. Finally, it outputs at most Θ
(

log(fδ)
εf

)
points.

Proof Let us run our algorithm with multiple radius and
then filter only the outputs of radius less than 2γrf (p). Since
radius are discretized we are actually filtering by the biggest
radius of the form r0γ

c. Nevertheless, since there’s one of
those radii for every γ scale, there must be one between
2rf (p) and 2γrf (p), let’s call it r′. Running the multiple radii
version then filtering by r′ is equivalent to running the single
radius version with radius r′. Since r′ ≥ 2rf (p), counters for
r′ must all be at least as big as for 2rf (p) and thus the outputs
for r′ are a superset of those for 2rf (p). We can apply the
equivalent theorem for a single radius (thm A.1) to know that
if we had run the single radius version HAC(f, ε, δ, 2rf (p))
we would get an output within rf (p) with probability at least
1 − δf . Therefore the filtered version of multiple radii must

also do so. Since we have filtered at least an output of radius
less than r′ ≤ 2γrf (p) within distance rf (p) that means the
multiple radii version will output such a center with probabil-
ity at least 1− δf .

Since memory mainly consists of an array of dimensions
m = log(f−1δ−1)

fε , c = logγ
rmax

rmin
, the memory cost is

Θ
(

log(fδ)
εf logγ

(
rmax

rmin

))
. Notice that, to process a point we

do not go over all discrete radii but rather only add a counter
to the smallest radius that contains it, therefore the processing
time per point is Θ(m) = Θ

(
log(fδ)
εf

)
. �

Theorem A.6. For any tuple (ε < 1, δ, f, γ > 1), with
probability 1 − δ, for any point p s.t. rf ≤ rmax

2γ our
algorithm will give an output point within 3rf (p) of at most
radius 2γrf (p).
Moreover, the algorithm always needs at most
Θ
(

log(fδ)
εf logγ

(
rmax

rmin

))
memory and Θ( log(fδ)

εf ) time

per point. Finally, it outputs at most Θ
(

log(fδ)
εf

)
points.

Proof The exact same reasoning of a finite coverage of the-
orem A.3 can be applied to deduce this theorem from theorem
A.5 changing r to rf (p). �

Notice how we can combine lemma A.4, that proves that
sparse enough points will not get an output nearby, with theo-
rems A.5, A.6 to get online dense region detectors with guar-
antees.

Note that we proved guarantees for all points and for all
possible metrics. Using only triangular inequality we were
able to get reasonably good guarantees for a non-countable
amount of points, even those not on the dataset. We finally
argue that the performance of HAC in high dimensions is guar-
anteed to be almost optimal.

A.1 The blessing of dimensionality: stronger
guarantees in high dimensions

Intuition In high dimensions many clustering algorithms
fail; in contrast, our performance can be shown to be prov-
ably good in high dimensions. We will prove asymptotically
good performance for dimension d→∞ with a convergence
fast enough to be meaningful in real applications. In particu-
lar, we will prove the following theorem:

Theorem. Let κ = 4
c2 e
−c2/4, l = e−β/(1− κ), f̂ = f/(1−

2κ), ∆1 = c
√

2
d+O(d−1), ∆2 = 2c

√
2
d+O(d−1). Letmd-

dimensional samples come from Gaussians Z1, . . . , Zk with
means infinitely far apart, unit variance and empirical fre-
quencies f1, . . . , fk. If we run HAC with radius r = U+2c =√

2
√
d+ 2

√
dβ + 2β+2c and frequency f , any point p with

rf̂ (p) ≤ r will have an output o within (1 + ∆1)rf (p) with
associated radius (r) at most (1 + ∆2)rf (p) with probability
at least

(
1− κ− δf − e−fn/3

(
eκ + el

))
.

Moreover, the probability that a point p has
r(1−ε)(1−2l)f (p) > r yet has an output nearby is at
most

(
κ+ e−fn/3

)



Figure 9: Fixing a point p, distp(q) = |q − p|, q ∼ Zk is a random
variable that, for high dimensions, is well concentrated. If f/fk = x
then rf (p) = φx(p), the empirical quantile (colored dots in the
bottom figure).
We want to prove that empirical quantiles φx are pretty close to one
another, which would imply that all points have very similar rf (p).
For example, in this case all samples from φx for 0.05 ≤ x ≤ 0.95
are inside [8,12].
Our proof will first look at the theoretical quantiles Φx(p) and then
bound φx(p).

Later, we will add 2 conjectures that make guarantees ap-
plicable to our experiments. Since the proof is rather long,
we first give a roadmap and intuition.

If we fix a point p in Gaussian Zk we can look at other
points q ∼ Zk and their distance to p, we call this distribution
distp. rf (p) is the distance for which a fraction f of the
dataset is within rf (p) of p. Since all but fk of points are
infinitely far away; rf (p) is equivalent to the f/fk quantile of
distp. One problem is that this quantile is a random variable;
which we will have to bound probabilistically. Remember
that quantile x of the theoretical distribution is simply the
inverse of the Cumulative Density Function; i.e. there is a
probability x that a sample is smaller than the x quantile. We
denote the quantile for distp by Φx(p), sometimes omitting
p when implicit; notice Φx(p) is a function. For finite data,
samples don’t follow the exact CDF and therefore quantiles
are random variables; we denote these empirical quantiles by
φx(p). We refer to figure 9 for more intuition.

1. Model the data as a set of d-dimensional Gaussians with
the same variance σ2 ·Id but different means. If we want

to have uniform noise, we can have many Gaussians with
only 1 sample.

2. Without loss of generality (everything is the same up to
scaling) assume σ = 1.

3. Most points in a high dimensional Gaussian lie in a shell
between

√
d− 1−c and

√
d+ 1+c, for a small constant

c (lemma A.7). We will restrict our proof to points p in
that shell.

4. The function we care about, distp, from a particular
fixed point p to points coming from the same Gaussian
follows a non-central chi distribution, a complex distri-
bution with few known bounds, we will thus try to avoid
using it.

5. The distribution dist(p, q)2 where p, q ∼ N(0, 1) fol-
lows a (central) chi-squared distribution, χ2

d, a well stud-
ied distribution with known bounds.

6. dist(p, q)2 where p, q ∼ N(0, 1) and dist(p, q)2 where
p, q ∼ N(0, 1), p ∈ shell are very similar distributions
because most p ∼ N(0, 1) are in the shell. Bounds on
the former distribution will imply bounds on the latter.

7. We need to fix p and only sample q. We show quantiles
of the distribution are 1-Lipschitz and use it along with
Bolzano’s Theorem to get bounds with fixed p ∈ shell.

8. Since we care about finite-data bounds we need to get
bounds on empirical quantiles, we bridge the gap from
theoretical quantiles using Chernoff bounds.

9. We will see that quantiles are all very close together
because in high dimensional Gaussians most points are
roughly at the same distance. For any point p we will
be able to bound its radius rf (p) using the bounds on
quantiles of the distance function.

10. With this bound we will be able to bound the ratio be-
tween the radius of a point p and the distance to its clos-
est output or the radius of such output.

11. We join all the probabilistic assertions made in the pre-
vious steps via the union bound, getting a lowerbound
for all the assertions to be simultenously true.

Proof In high dimensions, Gaussians look like high dimen-
sional shells with all points being roughly at the same dis-
tance from the center of the cluster, which is almost empty.
We will first assume Gaussians are infinitely far away and
Gaussians of variance 1. For many lemmas we will assume
mean 0 since it doesn’t lose generality for those proofs.

We first use a lemma 2.8 found in an online version of
[Blum et al., 2016] 1, which was substituted by a weaker
lemma in the final book version. This lemma formalizes the
intuition that most points in a high dimensional Gaussian are
in a shell:
Lemma A.7. For a d-dimensional spherical Gaussian of
variance 1, a sample p will be outside the shell

√
d− 1− c ≤

|p| ≤
√
d− 1 + c with probability at most 4

c2 e
−c2/4 for any

c > 0.
1https://www.cs.cmu.edu/˜venkatg/teaching/

CStheory-infoage/chap1-high-dim-space.pdf

https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/chap1-high-dim-space.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/chap1-high-dim-space.pdf


Figure 10: The CDF for p ∈ shell (in deep blue) creates a small
interval (light blue) for the CDF for unbounded p.

We will prove that things work well for points inside the
shell; which for c = 3 it’s 95% of points and c = 4 it’s 99.6%.
For future proofs let us denote κ(c) = 4

c2 e
−c2/4; to further

simplify notation we will sometimes omit the dependence on
c.

Lemma A.8. Let dist(p, q) = |q − p| with p, q ∼ N(0, 1)
and |p| ∈ [

√
d− 1− c,

√
d− 1 + c], but no restriction on the

norm of q. Then:

Prob

(
dist(p, q) ≤

√
2

√
d+ 2

√
β · d+ 2β

)
≤ e−β

κ

and

Prob

(
dist(p, q) ≤

√
2

√
d+ 2

√
β · d+ 2β

)
≤ e−β

1− κ

Proof If we forget for a moment about the shell and
consider a, b ∼ N(0, 1) then (a − b) ∼ N(0,

√
2) and

dist(a, b)2 = |a− b|2 ∼ 2χ2
d.

We now observe that there are two options for a, either it is
inside the shell (|a| ∈ [

√
d− 1 − c,

√
d− 1 + c]) or outside.

Since the probability of being inside the shell is very high,
dist(a ∈ shell, b) and dist(a, b) are very close. In the worst
case, using that a and b are chosen independently, we have:

CDF [dist(a, b)] =(1− κ) · CDF [dist(a ∈ shell, b)]
+ κ · CDF [dist(a /∈ shell, b)]

using 0 ≤ CDF [dist(a /∈ shell, b)] ≤ 1 we can get the
following inequalities:

CDF [dist(a ∈ shell, b)](1− κ) ≤ CDF [dist(a, b)]

κ+CDF [dist(a ∈ shell, b)](1− κ) ≥ CDF [dist(a, b)]

P (dist(a ∈ shell, b) ≤ y) ≤ P (dist(a, b) ≤ y)

1− κ

P (dist(a ∈ shell, b) ≥ y) ≤ P (dist(a, b) ≥ y)

1− κ

Now [Laurent and Massart, 2000] shows that:

P
(
χ2
d ≤ d− 2

√
βd
)

≤ e−β

P
(
χ2
d ≥ d+ 2

√
βd+ 2β

)
≤ e−β

Remember that dist(a, b) ∼
√

2χd, we transform χ2
d into√

2χd by taking the square root and multiplying by
√

2:

P

(
dist(a, b) ≤

√
2

√
d− 2

√
dβ

)
≤ e−β

P

(
dist(a, b) ≥

√
2

√
d+ 2

√
dβ + 2β

)
≤ e−β

To shorten formulas let us denote the lowerbound by
L =

√
2
√
d− 2

√
dβ) and the upperbound by U =√

2
√
d+ 2

√
dβ + 2β. Finally, if we look at the e−β and

(1 − e−β) quantiles we know from the equations above that
they must be above L and below U .

Note that setting β = 3 we get bounds on quantiles
5%, 95% and setting β = 4 we get bounds on quantiles
2%, 98%.

We now have bounds on theoretical quantiles for
dist(a, b); as mentioned before we can translate them to
bounds on dist(a ∈ shell, b) getting probabilities bounded
by l = e−β

1−κ .
�

Up until now we have proved things about arbitrary a, b ∼
N(0, 1). Our ultimate goal is proving that the radius for a
particular point p in the shell cannot be too big or too small.
To reflect this change in goal we change the notation from a, b
to p, q. rf (p) is defined as the minimum distance for a frac-
tion f of the dataset to be within distance r of p. Therefore
we care about samples from dist(p, q) with constant p. Since
p is sampled only once those samples are correlated and we
have to get different bounds.

Lemma A.9. Let p, |p| ∈ [
√
d− 1− c,

√
d− 1 + c] be fixed.

Let distp be the theoretical dist(p, q), q ∼ N(0, 1). Then the
quantiles l and 1− l are both contained in [L− 2c, U + 2c].

Proof From the previous lemma A.8 we know that when p
is not fixed, the quantiles l and 1− l from that distribution are
in [L,U ].

By rotational symmetry of the Gaussian we know that this
distribution only depends on the radius |p|; overriding nota-
tion let us call it dist|p|.

Let us now consider two radius r, r′. We can consider
the path from p, |p| = r to q ∼ N(0, 1) passing through
p′ = p · r

′

r , which upperbounds the distance from p to q by
triangular inequality. The shortest path from p to p′ = p · r

′

r is
following the line from p to the origin taking length |r − r′|.

We thus have that |dist(p, q) − dist(p · r
′

r )| ≤ |r − r′|
and thus the Cumulative Density Function of distr is upper-
bounded by distr′ shifted by |r − r′| = dist(p, p′).



Figure 11: Shifting the CDF simply adds a factor 2c or −2c to its
quantiles

Figure 12: Bolzano’s Theorem guarantees there’s a point (?,? in the
figure) where Φx(p ∈ shell) = Φx(rBolzano(x)). From there we
use that Φx(r) is 1-Lipschitz to delimit a cone for all points in the
shell.

As figure 11 illustrates, this implies that the quantiles of
dist|p| are 1-Lipschitz and, in particular, also continuous. Re-
member that a function f(x) is 1-Lipschitz if |f(x)−f(y)| ≤
|x− y|.

Since p and q are chosen independently, we can first select
p then q. Let us consider three options:

1. Φx(r) < Φx(p ∈ shell)∀r ∈ [
√
d− 1 − c,

√
d− 1 +

c]. Taking the lower x fraction for every p represents
fraction x of the total samples (p, q). We have data of
fraction x all less than Φx(p ∈ shell). This contradicts
the definition of quantile.

2. Φx(r) > Φx(p ∈ shell)∀r ∈ [
√
d− 1− c,

√
d− 1 + c].

By definition of Φx(r) no other sample can be below
Φx(p ∈ shell) which implies that the x quantile is above
Φx(p ∈ shell). Again this contradicts the definition of
quantile.

3. ∃r1 s.t. Φx(r1) ≤ Φx(p ∈ shell) and ∃r2 s.t. Φx(r2) ≥
Φx(p ∈ shell). Since Φx(r) is continuous, by Bolzano’s
Theorem we know:

∃rBolzano(x) s.t. Φx(rBolzano(x)) = Φx(p ∈ shell)

After this, as shown in figure 12, we apply that quantiles are
1-Lipschitz and since the maximum distance in that interval

is (
√
d− 1 + c) − (

√
d− 1 − c) = 2c we know that for all

points in the shell their theoretical quantiles l and 1− l must
be inside [L− 2c, U + 2c]. �

Note that we now have bounds on theoretical quantiles;
empirical quantiles (those that we get when the data comes
through) will be noisier for finite data and thus quantiles are
a bit more spread; as illustrated in figure 9. This difference
can be bounded with Chernoff bounds. In particular let us
compare the probability that the empirical 2l and (1 − 2l)
quantiles are more extreme than the theoretical l and (1 − l)
quantiles.

Lemma A.10. Let us have p fixed s.t. |p| ∈ [
√
d− 1 −

c,
√
d− 1 + c] and take m samples q1:m ∼ N(0, 1). Then

with probability higher than 1−2e−lm/3 the empirical quan-
tile 2l of [dist(p, q1), dist(p, q2), . . . , dist(p, qm)] is bigger
than L− 2c and the empirical quantile 1− 2l is smaller than
U + 2c.

Proof Since we now have fixed p, we will drop it to sim-
plify the notation.

From lemma A.9 we know Φl ≥ L− 2c, Φ1−l ≤ U + 2c.
We want to prove φ2l ≥ Φl ≥ L − 2c and φ1−2l ≤ Φ1−l ≤
U + 2c with probability bigger than 1− 2elm/3.

We can bound the difference between empirical and the-
oretical quantiles of the same distribution using Chernoff
bounds. The bounds on the high and low quantiles are proven
in the exact same way. Let us prove it only for the lower one.

Let Xi = [[dist(p ∈ shell, qi) ≤ φl]] where [[]] is the
Iverson notation; being 1 if the statement inside is true and 0
if false. Chernoff tells us that if we have independent random
variables taking values in {0, 1} (as in our case) Then:

P
(∑

Xi ≥ (1 + ω)µ
)
≤ e−ω

2µ/3, µ = E
[∑

Xi

]
Applying it to our case:

µ = E
[∑

Xi

]
= E

[∑
qi

[[dist(p ∈ shell, qi) ≤ φl]]

]
= l·m

P
(∑

[[dist(p ∈ shell, q) ≥ (1 + ω)µ
)
≤ e−ω

2µ/3

Using E
[∑

q[[dist(p ∈ shell, q) ≤ φl]]
]

= lm and setting
ω = 1 we get:

P

(∑
q

[[dist(p ∈ shell, q) ≤ φl]] ≥ 2lm

)
≤ e−lm/3

By definition of empirical quantile φ2l and theoretical
quantile Φl, φ2l ≤ Φl ⇐⇒

∑
q[[dist(p ∈ shell, q) ≤

φl]] ≥ 2lm, which is the event whose probability we just
bound. Therefore, we proved that the probability of being
smaller than φl is bounded by e−lm/3. Since φl ≥ L − 2c
we know that the probability of the quantile being lower than
L− 2c is even smaller than e−lm/3.

The exact same reasoning proves that
P (Φ1−2l ≥ U + 2c) ≤ e−lm/3. By union bound we
know the probability of Φ2l ≥ L − 2c and Φ1−2l ≤ U + 2c
happening at the same time is at least 1− 2e−lm/3. �



We are now ready to attack the main theorem. We will
model the data coming from a set of Gaussians with centers
infinitely far away and empirical frequencies fi. Note that
this model can model pure noise, by having many Gaussians
with only 1 element sampled from them.

Theorem A.11. Let κ = 4
c2 e
−c2/4, l = e−β/(1 − κ), f̂ =

f/(1 − 2κ), ∆1 = c
√

2
d + O(d−1), ∆2 = 2c

√
2
d +

O(d−1). Let m d-dimensional samples come from Gaussians
Z1, . . . , Zk with means infinitely far apart, unit variance and
empirical frequencies f1, . . . , fk. If we run HAC with radius
r = U + 2c =

√
2
√
d+ 2

√
dβ + 2β + 2c and frequency f ,

any point p with rf̂ (p) ≤ r will have an output o within (1 +

∆1)rf (p) with associated radius (r) at most (1 + ∆2)rf (p)

with probability at least
(
1− κ− δf − e−fn/3

(
eκ + el

))
.

Moreover, the probability that a point p has
r(1−ε)(1−2l)f (p) > r yet has an output nearby is at
most

(
κ+ e−fn/3

)
Proof
First part: rf̂ (p) ≤ r

We will make a set of probabilitstic assertions and we will
finally bound the total probability using the union bound.

First assertion: point p belongs to the shell of its Gaussian,
which we donte Zk.

In a lemma A.8 we defined κ as an upperbound on the prob-
ability of a point being inside the shell of a Gaussian. How-
ever our point p is not just a random point since we know its
radius is bounded by U + 2c. We have to bound the poste-
rior probability given that information. In the worst case, all
points outside the shell do satisfy rf̂ (p) ≤ U + 2c. In lemma
A.10 we lowerbounded the probability of a point inside the
shell to satisfy rf̂ (p) ≤ U + 2c by 1 − e−lmk/3 where mk

is the number of elements in the Gaussian Zk, in this case
mk = fkn. Thus the posterior probability is:

(1− e−lfkn/3)(1− κ)

(1− e−lfkn/3)(1− κ) + κ
≥ (1− e−lfkn/3)(1− κ)

1 · (1− κ) + κ

=
(

1− e−lfkn/3
)

(1− κ)

Second assertion: the shell of Zk constains at least fn
points.

We know rf̂ (p) ≤ r. Since Gaussians are infinitely far
away, all points near p must come from Zk. This implies:

fk ≥ f̂ = f/(1− 2κ)

By definition of κ we know that the probability of a sam-
ple from a Gaussian being outside its shell is κ. Applying
Chernoff bounds on the amount of points outside the shell we
get:

P

(
#points outside shell

n · fk
> 2κ

)
≤e−1

2µ/3 = e−κfk

≤ e−κfn/(3(1−2κ)) ≤e−κfn/3

Since we expect a fraction at most κ that means that the
amount of points inside the shell is at least (1 − 2κ)fk ≥
(1 − 2κ)f̂ = (1 − 2κ) f

1−2κ = f with probability at least
(1− e−κfn/3).

Third assertion: given the second assertion, a point o in the
Gaussian will be an output.

We know we have at least a fraction f of the total dataset
in the shell of Zk. From lemma A.10, we also know that each
point q in the Gaussian has a chance at least 1− e−eβlf̂n/3 of
having rf (q) ≤ U + 2c. Note that this guarantee was for a
Gaussian from which we knew nothing. However, we know
that a point already satisfies this condition; which makes it
even more likely; which allows us to still use this bound.

We know the probability of each point having a small
rf (q). However, we don’t know how q satisfying rf (q) ≤ r
affects q′ satisfying rf (q′) ≤ r.

We compute the worst case for HAC to get a lowerbound
on the probability of success. In particular note that we will
have a distribution over 2|elts in the shell| states, with the i-th bit
in each state corresponding to whether the i-th element in the
shell had a small radius. Note that this distribution is condi-
tioned to satisfy that the probability of the i-th bit to be true
has to be at least 1−e−eβ f̂n/(3(1−κ)). Moreover we know that
the probability of HAC failing (not picking any good element)
is: (

1− |elements q in the shell s.t. rf (q) ≤ r|
n

)m
where m is the memory size.

It is easy to see that the best way to maximize this quantity
under constraints is to only have the most extreme cases: ei-
ther all q don’t satisfy this property or all do. This is because
as more points q satisfy the property the algorithm chances of
success increase with diminishing returns.

Knowing the worst case, we can now get a lowerbound:
with probability e−lf̂n/3 no q is good and HAC’s chances of
success are 0. With probability 1 − e−lf̂n/3 we are in the
usual case of a fraction f of the dataset and HAC’s chances of
success are lowerbounded by:

1− (1− f)
m ≥ δf

where δ is the delta coming from HAC’s guarantees. There-
fore the lowerbound for HAC’s success is:(

1− e−lf̂n/3
)

(1− δf) =
(

1− e−e
β f̂n/(3(1−κ))

)
(1− δf)

≥1− e−e
β f̂n/(3(1−κ)) − δf

Bounding the total probability
The probability of failure of the first assertion is bounded

by:

1−
(

1− e−lfkn/3
)

(1− κ) = κ+ e−lfkn/3 − e−lfkn/3κ

≥ κ+ e−lfkn/3

The probability of failure of the second assertion is bounded
by e−κfn/3. The probability of failure of the third assertion
is bounded by e−lf̂n/3 + δf .



Using union bound the total probability of success is at
least:

1− κ− δf − e−κfn/3 − e−lfkn/3 − e−lf̂n/3

Using fk, f̂ ≥ f and factorizing:

1− κ− δf − e−fn/3
(
eκ + 2el

)
If we want to use the original parameters c and β:

1−
(

4e−(c
2/4)/c2

)
− δf

−e−fn/3
(
e4e
−(c2/4)/c2 + 2ee

−β/(1−4e−(c2/4)/c2)
)

We will later use values of c = 3, β = 4, which would give
probability bounds of:

1− 0.0468− δf − 3.09e−fn/3

Notice how using reasonable values f = 0.01, n = 2000, δ =
0.1 we get a bound of probability 94.8%.

Bounding the distance We know both p and o belong to
the shell. Moreover both have lowerbounds on their density;
which can only lower their distance to each other (and to the
center of the Gaussian). Their distance is thus upperbounded
by our result in lemma A.8 changing the denominator from
(1 − κ) to (1 − κ)2 because now both p and o are restricted
to be in the shell:

P (dist(p, o) ≥ U) ≤ e−β

(1− κ)2

Adding this to the total bound we get that with probability at
least 1 − κ − δf − e−β

(1−κ)2 − e
−fn/3 (eκ + el

)
the distance

from p to the closest output divided by rf (p) is:

dist(p, o)

rf (p)
≤ U

L− 2c
≤
√

2
√
d+ 2

√
dβ + 2β

√
2
√
d− 2

√
dβ − 2c

Note that the series expansion as d→∞ converges to 1:

dist(p, o)

rf (p)
≤ 1 + c

√
2

d
+O(d−1)

Bounding the radius of the output We know that rf (p) ≥
L− 2c and rf (o) ≤ U + 2c. Therefore:

rf (o)

rf (p)
≤ U + 2c

L− 2c
≤
√

2
√
d+ 2

√
dβ + 2β + 2c

√
2
√
d− 2

√
dβ − 2c

Note that the series expansion as d→∞ converges to 1:

rf (o)

rf (p)
≤ 1 + 2c

√
2

d
+O(d−1)

Second case: the probability of a point p s.t.
r(1−ε)(1−2l)f (p) > r but p has an output nearby is at most
κ+ e−fn/3

Let us upperbound the proability of HAC giving an output
in a Gaussian of fk ≥ (1− ε)f simply by 1. With probability
(1 − κ) point p is in the shell of Zk and with probability at

least 1− e−fn/3 the empirical quantile 1− 2l of dist(p, q) is
at most r.

Joining both probabilities by union bound we get that the
probability of a point p satisfying both p ∈ shell and quantile
φ1−2l ≤ r is at least

(
1− κ− e−fn/3

)
.

If the point is in the shell and its empirical quantile 1 − 2l
is less than r but r(1−ε)(1−2l)f (p) > r, that means:

(1− ε)(1− 2l)f > (1− 2l)fk ⇒ fk < (1− ε)f
This implies that p is in a Gaussian with mass less than f and
therefore no output o will be nearby. �

Conjecture A.12. We conjecture that Φx(r ∈ shell) ≈
Φx(
√
d− 1 + (2x − 1)c). This allows us to improve the

guarantees of theorem A.11 by lowering ∆1 from
√
2
√
d+2
√
dβ+2β

√
2
√
d−2
√
dβ−2c

− 1 = c
√

2
d + O(d−1) to

√
2
√
d+2
√
dβ+2β

√
2
√
d−2
√
dβ−2lc

− 1 = lc
√

2
d +O(d−1) and ∆2 from

√
2
√
d+2
√
dβ+2β+2c

√
2
√
d−2
√
dβ−2c

− 1 = 2c
√

2
d + O(d−1) to

√
2
√
d+2
√
dβ+2β+2lc

√
2
√
d−2
√
dβ−2lc

− 1 = 2lc
√

2
d +O(d−1).

Increasing r shifts the whole distribution, increasing all
quantiles. This implies that lower r will have more impact on
lower quantiles and bigger r will have more impact on bigger
quantiles. In particular we can make the extreme approxima-
tion of Φx(r) being a delta function with all its mass at one
point, independendent of q. This would make all its quantiles
equal and also Φx(r ∈ shell) = Φx(

√
d− 1 + (2x − 1)c).

Although this extreme approximation is unlikely to be true, it
may give a better estimate than not knowing where the inter-
section is at all.

Now the small quantile l is close to
√
d− 1− c, in partic-

ular at
√
d− 1 − c + 2lc and the bigger quantile is close to√

d− 1 + c, at
√
d− 1 + c− 2lc. This allows us to substitute

the factors 2c by 2lc since now the 1-Lipschitz cone starts
within 2lc of the edge of the shell. Thus:

∆1 =

√
2
√
d+ 2

√
dβ + 2β

√
2
√
d− 2

√
dβ − 2lc

− 1 = lc

√
2

d
+O(d−1)

∆2 =

√
2
√
d+ 2

√
dβ + 2β + 2lc

√
2
√
d− 2

√
dβ − 2lc

− 1 = 2lc

√
2

d
+O(d−1)

Conjecture A.13. Theorem A.11 still holds if Gaussian
means are at distance at least Ω(d1/4) instead of infinitely
far away.

As derived in the same online draft2 of [Blum et al., 2016]
as lemma A.8, two Gaussians of variance 1 can be sepa-
rated if they are at least d1/4 apart because most pairs of
points in the same Gaussian are at distance

√
2d + O(1) and

most pairs of points in different Gaussians are at distance√
|µ1 − µ2|2 + 2d + O(1). For the lowerbound on inter-

Gaussian distance to be bigger than the upperbound on intra-
Gaussian distance we need:

2https://www.cs.cmu.edu/˜venkatg/teaching/
CStheory-infoage/chap1-high-dim-space.pdf

https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/chap1-high-dim-space.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/chap1-high-dim-space.pdf


Figure 13: Ratio between distances of different clusters and same
clusters. These distances can be quite similar in high dimensions
(only 30% bigger) for our guarantees to still be valid. In partic-
ular note that in our experiments in section 3 the distance ratio is
0.65/0.5 = 1.3.

√
2d+O(1) ≤

√
|µ1 − µ2|2 + 2d+O(1)

⇒ 2d+O(d1/2) ≤ 2d+ |µ1 − µ2|2

⇒ |µ1 − µ2| ∈ Ω(d1/4)is enough

If that is the case the typical intra-Gaussian distance is
√

2d

and the typical inter-Gaussian distance is
√

2d+ Ω(
√
d).

We modify their calculations a bit to get concrete numbers.
In particular we approximate |O(1)| ≈ 3

√
2 since we used

c = 3 in our realistic bounds (see A.1). This gives us:
√

2d+ 3
√

2 ≤
√
|µ1 − µ2|2 + 2d− 3

√
2

|µ1 − µ2| ≥ 2
√

6

√√
d+ 3

Now, again the typical intra-Gaussian distance is
√

2d

and the typical inter-Gaussian distance is
√

2d+ 24
√
d+ 3.

Their ratio can be seen in figure 13.
We conjecture that if we can separate two clusters the

amount of points of other clusters within distance rf (p) will
be exponentially small and thus, in essence, is as if they were
infinitely far away; which would make our original theorem
A.11 applicable.

Inserting realistic numbers in our bounds First, we note
an optimization to guarantees that we didn’t include in the
theorem since it didn’t have an impact on asymptotic guaran-
tees. In theorem A.11 we set L =

√
2
√
d− 4

√
d− 2c which

we proved using 1-Lipschitzness; however, we can also ar-
gue that Φx(r) is monotonically increasing and therefore L
should be lowerbounded by Φx(0) =

√
d− 4

√
d which is

easy to compute since it depends on the central chi distribu-
tion. Therefore, in practice, the denominators in the guaran-
tees are:

max

(√
2

√
d− 4

√
d− 6,

√
d− 4

√
d

)

(a) dist(p, o)/rf (p) guarantees

(b) rf (o)/rf (p) guarantees

Figure 14: Guarantees for high dimensions with realistic parameters.

This max produces the kinks in the blue lines in figure 14.

In the same setting as before, let c = 3, β = 4, δ =
0.1, n = 2000, f = 0.01; which are typical values we could
use in experiments. We have κ = 4/c2e−c

2/4 < 0.047, L =
√

2

√
d− 4

√
d,U =

√
2
√
d+ 4

√
d+ 8, l = e−β/(1− κ) <

0.0193. Plug in values in the bounds on the theorem above
we get:

Any point p with r1.05f (p) ≤ r will have an output

within distance
√
2
√
d+4
√
d+8

max
(√

2
√
d−4
√
d−6,
√
d−4
√
d
)rf (p) and ra-

dius at most
√
2
√
d+4
√
d+8+6

max
(√

2
√
d−4
√
d−6,
√
d−4
√
d
)rf (p) with proba-

bility at least 94.6%. Using conjecture A.12 we predict an

output within distance
√
2
√
d+4
√
d+8

√
2
√
d−4
√
d−0.12

rf (p) and radius at

most
√
2
√
d+4
√
d+8+0.12

√
2
√
d−4
√
d−0.12

rf (p). These guarantees are plotted

as a function of d in figure 14.

The probability of a point p satisfying both r0.96(1−ε)f > r

and having an output within distance r is at most: e−4/(1 −
0.047) + e−20/3 < 0.021.



A.2 Time scaling
We have described a time-independent version of the algo-
rithm, where all points regardless of when they came, have
equal weight. However, it is easy to extend this algorithm
to make point i have weight proportional to e−

t−ti
κ for any

timescale τ , where t is the current time t and ti is the time
when point i was inserted. We will see our algorithm requires
ti ≥ ti−1, inputs coming in non-decreasing times, a very nat-
ural constraint.

By construction, the last point inserted will still have
weight 1. Now, let t′ be the time of the last inserted point.
We can update all the weights of the already received points
multiplying by e−

t−t′
τ . Therefore all weights can be updated

by the same multiplication. Since everyone is multiplied by
the same number, sums of weights can also be updated by
multiplying by e−

t−t′
τ .

We now only need to worry about jumps. We can keep a
counter for the total amount of weight of points for the points
received until now. Let us callwpj ,tk to the weight of point pj
at the time point k arrives. Since we want to have a uniform
distribution over those weights, when the i-th point arrives we
simply assign the probability of jumping to 1∑

j≤i wpj,ti
. Note

that for the previous case of all weights 1 (which is also the
case of τ =∞) this reduces to the base case of probability 1

i .
We have checked the last point has the correct probabil-

ity, what about all the others? Let us pick point j < i, its
probability is:

1∑
k≤j wpk,tj

·

(
1− 1∑

k≤j+1 wpk,tj

)
· · ·

(
1− 1∑

k≤i wpk,ti

)

=
1∑

k≤j wpk,tj
·

( ∑
k≤j wpk,tj+1∑
k≤j+1 wpk,tj+1

)
· · ·

(∑
k≤i−1 wpk,ti∑
k≤i wpk,ti

)

=
1∑

k≤j wpk,tj
·

e− tj+1−tj
τ

∑
k≤j wpk,tj∑

k≤j+1 wpk,tj

 · · ·
· · ·

e− ti−ti−1
τ

∑
k≤i−1 wpk,ti−1∑

k≤i wpk,ti


This is a telescoping series which becomes:

1 · e−
tj+1−tj

τ · e−
tj+2−tj+1

τ · · · e−
ti−ti−1

τ · 1∑
k≤i wpk,ti

=
e−
∑i
k=j+1

tk−tk−1
τ∑

k≤i wpk,ti
=

e−
ti−tj
τ∑

k≤i wpk,ti

Note that the numerator is the exact weight point pj should
have at time ti and thus all points have their probabilities of
being an output point proportional to their weights. More-
over, note that each multiplying factor, which is the probabil-
ity of not hopping at every added point, must be between 0
and 1. This forces the condition tj+1 ≥ tj∀j; in other words,
we must feed the observations in non-decreasing order, a very
natural condition.

Finally, all our proofs use general assertions about weights
and probabilities, without assuming those came from discrete
elements. Thus, we can use fraction of weights instead of
fraction of points in all the proofs and they will all still hold.

A.3 Fixing the number of outputs
We currently have two ways of querying the system: 1) Fix a
single distance r and a frequency threshold f , and get back all
regions that are (r, f)-dense; 2) Fix a frequency f , and return
a set of points {pi}, each with a different radius {ri} s.t. a
point p near output point pi is guaranteed to have rf (p) ≈ ri.

It is sometimes more convenient to directly fix the number
of outputs instead. With HAC we go one step further and re-
turn a list of outputs sorted according to density (so, if you
want o outputs, you pick the first o elements from the output
list). Here are two ways of doing this: 1) Fix radius r. Find
a set of outputs pi each (r, fi)-dense. Sort {pi} by decreas-
ing fi, thus returning the densest regions first. For example,
in our people-finding experiment (section 3) we know two
points likely correspond to the same person if their distance
is below 0.5. We thus set r = 0.5 and sort the output points by
their frequencies using that radius, thus getting a list of char-
acters from most to least popular. 2) Fix frequency f , sort the
list of regions from smallest to biggest r. Note, however, that
the algorithm is given a fixed memory size which governs the
size of the possible outputs and the frequency guarantees.

In general, it is useful and easy to remove duplicates with
this framework. Moreover, we can do so keeping our guaran-
tees with minimal changes.

Theorem A.14. We can apply a post-processing algorithm
that takes parameter γ in time Θ

(
log(fδ)
εf2

)
to reduce the num-

ber of output points to (1 + 2ε)/f while guaranteeing that
for any point p there is an output within (4γ + 3)rf (p). For
γ = 1.25 this guarantees within 8rf (p). The same algorithm
guarantees that for any (rmax, f)-dense point there will be
an output within 7rmax.

Let us sort the set of outputs O in any order. Then, for any
output o ∈ O we add it to the filtered list of outputs O∗ if and
only if its B(o, 2r) ∩ B(o∗, 2r) = ∅∀o∗ ∈ O∗. By construc-
tion, we have a list of balls that do not intersect and each has
at least (1− ε)f fraction of points. The fraction contained in
the union of those balls is at most 1 and they do not intersect,
thus the number of balls is at most 1

(1−ε)f ≤
1+2ε
f . From here

we can see that iterating for every output and comparing it to
any point in the list is Θ

(
log(fδ)
εf

)
Θ
(

1+2ε
f

)
= Θ

(
log(fδ)
εf2

)
.

Now, for any dense point p, we know:

• ∃p∗ ∈ D∗ s.t. d(p, p∗) ≤ 2r

• ∃o ∈ O s.t. d(p∗, o) ≤ r
• ∃o∗ ∈ O∗ s.t. d(o, o∗) ≤ 4r

Adding all those distances and applying triangular inequality
we know that for any dense point p ∃o s.t. d(p, o∗) ≤ 7r. �

Theorem A.15. We can reduce the number of output points
to 1+2ε

f such that any point has an output within (4γ + 3)rf
For γ = 1.25 this guarantees within 8rf (p).



We will follow an argument similar to theorem A.14; how-
ever it will be slightly trickier because we have multiple radii.

Again, we know that with probability at least 1 − δ any
point p has an output within distance 3rf (p) of radius at most
2γrf (p). Let us assume we’re in this situation and show how
we can apply a postprocessing to filter the points. We denote
the output radius of an output o by rad(o)

We sort all outputs by their output radius in increasing or-
der and breaking ties arbitrarily. We iterate through this or-
dered set of outputsO. For any output o we add it to a filtered
output O∗ if and only if B(o, rad(o)) ∩ B(o∗, rad(o∗)) =
∅∀o∗ ∈ O. By definition the balls of points in O∗ do not in-
tersect and each contains at least (1 − ε)f fraction of points.
Therefore the fraction of points contained in the union is the
sum of the fractions and this fraction must be at most 1.
Therefore there are at most 1

(1−ε)f ≤
1+2ε
f filtered outputs.

Now, for any point p, we know ∃o ∈ O s.t. d(p, o) ≤
3rf (p) and rad(o) ≤ 2γrf (p). Then, If o ∈ O∗ then we
have shown ∃o∗ ∈ O∗ s.t. d(p, o) ≤ 3rf (p) ≤ (4γ+ 3)rf (p)
and with radius at most 2γrf (p).

Otherwise, o 6∈ O∗. Then, by construction, its ball inter-
sects with some o∗ ∈ O∗ with rad(o∗) ≤ rad(o). Therefore:

∃o∗ ∈ O∗ s.t. rad(o∗) ≤ rad(o) ≤ 2γrf (p)

and
d(o, o∗) ≤ 2 · 2γrf (p)⇒

d(p, o∗) ≤ d(p, o) + d(o, o∗) ≤ (4γ + 3)rf (p)

�
Notice that the number of outputs is arbitrarily close to the

optimal 1
f .
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