## Neural Relational Inference with Fast Modular Meta-learning

Improvements to modular techniques for modeling interacting systems with little data

Ferran Alet, Erica Weng, Tomas Lozano-Perez, Leslie Pack Kaelbling

## **Modeling Interacting Systems**





## **Background: Modular Meta-learning**

learns characteristics shared by similar tasks



#### learns characteristics shared by similar tasks



#### learns characteristics shared by similar tasks



#### learns characteristics shared by similar tasks













### 1. How to learn good modules?

Source images: Josh Tenenbaum



15

### BounceGrad

# Best structure for each dataset

 $\begin{array}{l} \textbf{procedure } \mathsf{BOUNCE}(S_1, \ldots, S_m, D_1^{train}, \ldots, D_m^{train}, T, \mathcal{S}, \Theta) \\ \textbf{for } j = 1 \ldots m \ \textbf{do} \\ S'_j = Propose_{\mathcal{S}}(S_j, \Theta) \\ \textbf{if } Accept(e(D_j^{train}, S'_j, \Theta), e(D_j^{train}, S_j, \Theta), T) \ \textbf{then } S_j = S'_j \end{array}$ 

#### Simulated Annealing

Good module weights for all datasets



#### Modular meta-learning



### 2a. How to compose them together? BounceGrad



#### **2b. How to compose them together?**

Given modules f(x), g(x), h(x) there are many ways to compose them

- Sum: f(x) + g(x)
- Composition f(g(h(x)))
- Concatenation [f(x), g(x), h(x)]
- Nodes and edges in a Graph Neural Network

## **Background: Graph Neural Networks**

## **Graph Neural Networks**



- node and edge modules reused across the graph
- 2. similar inductive bias to CNNs

## **Modeling Interacting Systems**



## **Modeling Physical Systems**

$$x_{1}(t = 0), x_{1}(t = 1), \dots, x_{1}(t = T)$$

$$x_{1}(t = T + 1), x_{1}(t = T + 2), \dots, x_{1}(t = T + k)$$

$$x_{2}(t = 0), x_{2}(t = 1), \dots, x_{2}(t = T)$$

$$x_{2}(t = T + 1), x_{2}(t = T + 2), \dots, x_{2}(t = T + k)$$

$$\dots$$

$$x_{n}(t = 0), x_{n}(t = 1), \dots, x_{n}(t = T)$$

$$x_{n}(t = T + 1), x_{n}(t = T + 2), \dots, x_{n}(t = T + k)$$

# **Modeling Physical Systems with Graphs**



# **Modeling Physical Systems with Graphs**

multiple interaction types



## **Neural Relational Inference (Kipf et al.)**



Fully connected GNN with 1 edge type

#### GNN where each directed edge is one of k types

## Neural Relational Inference as Modular Meta-learning



## **Original modular meta-learning is very slow**

- Simulated Annealing makes bad proposals most of the time
- 200 datasets (CoRL 2018)  $\rightarrow$  50,000 datasets (NeurIPS 2019)
- Makes modular meta-learning a feasible approach for real applications (e.g. cars)

### **Batching multiple datasets**





## **Batching multiple datasets**

This is particularly simple for Graph Neural Networks





## **Batching multiple datasets**

This cannot be done in non-modular meta-learning algorithms





## Learning the proposal function

Create a dataset from meta-training information



We're simultaneously learning to learn and learning to optimize

## Learning the proposal function

#### Slow

Simulated annealing with learned proposal function



#### Fast

Proposal function imitates simulated annealing



### Self-learning modular meta-learning

- Random proposal function: slow for 2^20 search space
- Bottom up proposal: trajectories  $\rightarrow$  structure
  - doesn't require good current structures
  - still uniform prior over structures
- Top-down proposal: structure  $\rightarrow$  structure
  - requires good structures to work
  - can form complex prior over structures

## **Improved Results**

|                     | Springs  |         | Charged |         |
|---------------------|----------|---------|---------|---------|
| Prediction steps    | 1        | 10      | 1       | 10      |
| Static              | 7.93e-5  | 7.59e-3 | 5.09e-3 | 2.26e-2 |
| LSTM(single)        | 2.27e-6  | 4.69e-4 | 2.71e-3 | 7.05e-3 |
| LSTM(joint)         | 4.13e-8  | 2.19e-5 | 1.68e-3 | 6.45e-3 |
| NRI (full graph)    | 1.66e-5  | 1.64e-3 | 1.09e-3 | 3.78e-3 |
| (Kipf et al., 2018) | 3.12e-8  | 3.29e-6 | 1.05e-3 | 3.21e-3 |
| Modular meta-l.     | 3.13e-8  | 3.25e-6 | 1.03e-3 | 3.11e-3 |
| NRI (true graph)    | 1.69e-11 | 1.32e-9 | 1.04e-3 | 3.03e-3 |

| Model               | Springs | Charged |  |
|---------------------|---------|---------|--|
| Correlation(data)   | 52.4    | 55.8    |  |
| Correlation(LSTM)   | 52.7    | 54.2    |  |
| (Kipf et al., 2018) | 99.9    | 82.1    |  |
| Modular meta-l.     | 99.9    | 88.4    |  |
| Supervised          | 99.9    | 95.0    |  |

## Model-based approach leads to data efficiency



### Reasoning about our own knowledge



#### Neptune affecting Uranus orbit

## Reasoning about our own knowledge



Found missing node with precision comparable to some baselines which had the state of the particle up to 10 steps before

## **Real life application: self-driving cars**

Understanding the intentions of other drivers is one of the major roadblocks (pun intended) for training self-driving cars



t = 0

t = 3.2 s

## **Real life application: self-driving cars**

Understanding the intentions of other drivers is one of the major roadblocks (pun intended) for training self-driving cars

Interaction dataset



## Summary

- Model-based approach to NRI is much more data efficient
- and can tackle problems for which it was not trained
- We can use information collected during meta-training to learn to optimize the structure search (i.e. what was accepted, what was rejected during simulated annealing)
- Modular meta-learning can scale to much larger meta-datasets