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Improvements to modular techniques for modeling interacting
systems with little data
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Modeling Interacting Systems




Background: Modular Meta-learning
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Modular meta-learning
learns a modular decomposition of characteristics shared by similar tasks
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Modular meta-learning
learns a modular decomposition of characteristics shared by similar tasks
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1. How to learn good modules?

Modular meta-learning
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Modular meta-learning
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2a. How to compose them together?
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Modular meta-learning
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2b. How to compose them together?

Given modules f(x), g(x), h(x) there are many ways to compose them
- Sum: f(x) + g(x)
- Composition f(g(h(x)))
- Concatenation [f(x), g(x), h(x)]

- Nodes and edges in a Graph Neural Network



Background: Graph Neural Networks



Graph Neural Networks

node and edge
modules reused
across the graph
similar inductive
bias to CNNs



Modeling Interacting Systems
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Modeling Physical Systems
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Modeling Physical Systems with Graphs
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Modeling Physical Systems with Graphs

multiple interaction types
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Neural Relational Inference (Kipf et al.)
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Neural Relational Inference as Modular
Meta-learning
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Original modular meta-learning is very slow

e Simulated Annealing makes bad proposals most of the time
e 200 datasets (CoRL 2018) — 50,000 datasets (NeurlPS 2019)
e Makes modular meta-learning a feasible approach for real

applications (e.g. cars)



Batching multiple datasets
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Batching multiple datasets
This is particularly simple for Graph Neural Networks
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Batching multiple datasets
This cannot be done in non-modular meta-learning algorithms
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Learning the proposal function
Create a dataset from meta- training information
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We’'re simultaneously learning to learn and learning to optimize



Learning the proposal function

Slow Fast
Simulated annealing Proposal function imitates
with learned proposal simulated annealing
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Self-learning modular meta-learning

- Random proposal function: slow for 2720 search space
- Bottom up proposal: trajectories — structure

- doesn’t require good current structures

- still uniform prior over structures
- Top-down proposal: structure— structure

- requires good structures to work

- can form complex prior over structures



Improved Results

Model Springs  Charged
Correlation(data) 52.4 55.8
Correlation(LSTM) . 54.2
(Kipf et al., 2018) 99.9 82.1
Modular meta-l. 99.9 88.4
Supervised 99.9 95.0

Springs Charged

Prediction steps | 1 10 1 10
Static 7.93e-5 7.59e-3 | 5.09e-3 2.26e-2
LSTM(single) 2.27e-6  4.69e-4 | 2.71e-3  7.05e-3
LSTM(joint) 4.13e-8  2.19e-5 | 1.68e-3  6.45¢e-3
NRI (full graph) 1.66e-5  1.64e-3 | 1.09e-3 3.78e-3
(Kipfetal.,, 2018) | 3.12e-8  3.29¢-6 | 1.05e-3 3.2le-3
Modular meta-l. | 3.13e-8  3.25¢-6 | 1.03e-3 3.11e-3
NRI (true graph) 1.69e-11  1.32e-9 | 1.04e-3 3.03e-3




Model-based approach leads to data efficiency
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Reasoning about our own knowledge

Neptune affecting Uranus orbit



Reasoning about our own knowledge
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Found missing node with precision comparable to some baselines which
had the state of the particle up to 10 steps before



Real life application: self-driving cars

Understanding the intentions of other drivers
is one of the major roadblocks (pun intended) for training
self-driving cars
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Summary

e Model-based approach to NRI is much more data efficient

e and can tackle problems for which it was not trained

e We can use information collected during meta-training to
learn to optimize the structure search (i.e. what was accepted,
what was rejected during simulated annealing)

e Modular meta-learning can scale to much larger

meta-datasets



