
Optimally Solving Dec-POMDPs as Continuous-State MDPs

Jilles Steeve Dibangoye
Inria / Université de Lorraine

Nancy, France
jilles.dibangoye@inria.fr

Christopher Amato
CSAIL / MIT

Cambridge, MA, USA
camato@csail.mit.edu

Olivier Buffet and François Charpillet
Inria / Université de Lorraine

Nancy, France
{firstname.lastname}@inria.fr

Abstract
Optimally solving decentralized partially observ-
able Markov decision processes (Dec-POMDPs) is
a hard combinatorial problem. Current algorithms
search through the space of full histories for each
agent. Because of the doubly exponential growth
in the number of policies in this space as the plan-
ning horizon increases, these methods quickly be-
come intractable. However, in real world problems,
computing policies over the full history space is of-
ten unnecessary. True histories experienced by the
agents often lie near a structured, low-dimensional
manifold embedded into the history space. We
show that by transforming a Dec-POMDP into a
continuous-state MDP, we are able to find and ex-
ploit these low-dimensional representations. Us-
ing this novel transformation, we can then ap-
ply powerful techniques for solving POMDPs and
continuous-state MDPs. By combining a general
search algorithm and dimension reduction based on
feature selection, we introduce a novel approach to
optimally solve problems with significantly longer
planning horizons than previous methods.

1 Introduction
Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) have been studied as a general model
for decision making under uncertainty in cooperative mul-
tiagent systems [Bernstein et al., 2002; Szer et al., 2005;
Boularias and Chaib-draa, 2008; Amato et al., 2009; Bern-
stein et al., 2009; Aras and Dutech, 2010; Dibangoye et al.,
2011; Spaan et al., 2011; Oliehoek et al., 2013]. While a
number of algorithms have been developed, current optimal
algorithms cannot scale beyond small benchmark problems.
This is not unexpected given the worst-case NEXP complex-
ity [Bernstein et al., 2002], but many real-world problems
have structure that should allow greater scalability.

Current optimal algorithms for general Dec-POMDPs
search through the space of solutions (or policies) which map
histories of actions that have been taken and observations that
have been seen to actions [Hansen et al., 2004; Szer et al.,
2005; Boularias and Chaib-draa, 2008; Amato et al., 2009;
Spaan et al., 2011; Oliehoek et al., 2013]. These approaches

typically proceed by iteratively growing these policies from
either the first step (using heuristic search) [Szer et al., 2005;
Spaan et al., 2011; Oliehoek et al., 2013] or the last step
(using dynamic programming) [Hansen et al., 2004; Boular-
ias and Chaib-draa, 2008; Amato et al., 2009] until policies
for the full problem horizon are constructed. As the horizon
increases, the doubly exponential growth in the number of
possible policies causes solution methods to quickly become
intractable. Methods for increasing scalability by compress-
ing policies [Boularias and Chaib-draa, 2008] and histories
[Oliehoek et al., 2009] have begun to be explored, but scala-
bility remains limited for many problems.

In contrast, significant progress has been made in the size
of problems solved as fully and partially observable Markov
decision processes (MDPs and POMDPs). One reason for
progress in MDPs has been the use of approximate dynamic
programming and function approximation [Powell, 2007;
De Farias and Van Roy, 2003] to represent the state of the
system (and value function) more concisely. For POMDPs,
efficient algorithms have been developed by recasting prob-
lems as belief MDPs that utilize probability distributions over
states of the system, namely belief states [Smallwood and
Sondik, 1973]. This belief MDP is a continuous-state MDP
with a piecewise linear convex value function, allowing algo-
rithms for POMDPs to scale to large problems while some-
times retaining performance bounds [Shani et al., 2012].

To take advantage of the advances in solvers for POMDPs
and MDPs, we solve a Dec-POMDP by recasting it as a
continuous-state MDP. The state space consists of all reach-
able probability distributions over states of the system and
histories of the agents (which we term occupancy states) and
the action space consists of all decision rules mapping histo-
ries to actions. A primary result of this paper is a demonstra-
tion that the occupancy state is sufficient for optimal plan-
ning in Dec-POMDPs. Then, we show that the value func-
tion is a piecewise linear and convex function of occupancy
states. As a result, POMDP algorithms can for the first time
be applied directly to Dec-POMDPs. This is a significant the-
oretical advance for planning in Dec-POMDPs. However,
given that both occupancy states and decision rules are de-
fined over the full history space, scalability remains limited.
To increase scalability, we replace the full history space by a
low-dimensional feature set using a lossless dimension reduc-
tion technique. This reduction allows scalability in the hori-

zon that is significantly greater than previous state-of-the-art
optimal algorithms.

The remainder of this paper is organized as follows. We
first present the necessary background in Section 2. We then
discuss, in Section 3, the transformation of a Dec-POMDP
into a continuous-state MDP together with theoretical results.
Next, we introduce, in Section 4, our algorithm, feature-
based heuristic search value iteration (FB-HSVI), which en-
codes the occupancy state using a low-dimensional feature
space and can generate an optimal Dec-POMDP policy. We
conclude with experimental results on several benchmarks.

2 Background and related work

We first review relevant models and provide a short overview
of optimal Dec-POMDP algorithms.

2.1 MDPs, POMDPs and Dec-POMDPs

An MDP is a tuple (S,A,P ,R) where S is a set of states, A
is a set of actions, P a is a |S| × |S| stochastic matrix denot-
ing the probability of transiting from state s to state s′ using
action a,Ra is a |S| × 1 reward vector defining the reward of
executing action a in state s. In solving an MDP, the goal is
to produce a policy π (a mapping from states to actions) to be
executed at each time step t that maximizes some measure of
accumulated reward — here we focus on the expected total
reward over planning horizon T .

A POMDP is a tuple (S,A,Z,P ,O,R, b0) where
S,A,P ,R are the same as in an MDP, Z is a set of obser-
vations and set O consists of |S| × |S| observation matri-
ces Oaz , one for each observation z and action a. While
the agent is unable to observe the true state of the world,
it can nonetheless maintain a belief state bt[s] = P (st =
s | b0, a0, z1, · · · , at−1, zt). Belief b0 defines the initial be-
lief state. We shall refer to the past sequence of actions
and observations the agent experienced up to time step t as
θt = (a0, z1, · · · , at−1, zt), a t-length history. POMDPs can
be solved as MDPs with continuous states that are the belief
states in the POMDP. In this formulation a policy is a map-
ping from belief states to actions.

A Dec-POMDP is a tuple (S,⊗iAi,⊗iZi,P ,O,R, b0).
These quantities are the same as a POMDP, but now each
agent has its own action and observation sets. The transi-
tions, observations and rewards depend on the actions chosen
by all agents. Because each agent only has access to its own
local observations, the goal is to maximize a common value
function while executing policies that depend on solely each
agent’s own histories. Due to this decentralized nature of in-
formation, Dec-POMDPs cannot naı̈vely be transformed into
POMDPs (or MDPs). In fact, by casting the Dec-POMDP
model into a continuous MDP with a piecewise linear convex
value function, as we demonstrate in Section 3.2, we provide
the first evidence that POMDP methods also directly apply in
Dec-POMDPs. Because a central belief state cannot be calcu-
lated by the agents, previous work has typically represented a
T -step policy for each agent as a policy tree which maps each
history to an action. Details are discussed in Section 3.1.

2.2 Optimal solutions for Dec-POMDPs
One class of Dec-POMDP solution methods is based on dy-
namic programming [Howard, 1960]. Here, a set of T -step
policy trees, one for each agent, is generated from the bottom
up [Hansen et al., 2004]. On each step, all t-step policies are
generated that build off policies from step t + 1. Any pol-
icy that has lower value than some other policy for all states
and possible policies of the other agents is then pruned (with
linear programming). This generation and pruning continues
until the desired horizon is reached and trees with the high-
est value at the initial state are chosen. More efficient dy-
namic programming methods have been developed, reducing
the number trees generated [Amato et al., 2009] or compress-
ing policy representations [Boularias and Chaib-draa, 2008].

Trees can also be built from the top down using heuristic
search [Szer et al., 2005]. In this case, a search node is a
set of partial policies for the agents up to a given horizon, t.
These partial policies can be evaluated up to that horizon and
then a heuristic (such as the MDP or POMDP value) can be
added. The resulting heuristic values are over-estimates of the
true value, allowing an A*-style search through the space of
possible policies for the agents, expanding promising search
nodes to horizon t+ 1 from horizon t. A more general search
framework was also developed [Oliehoek et al., 2008]. Re-
cent work has included clustering probabilistically equivalent
histories [Oliehoek et al., 2009] and incrementally expanding
nodes in the search tree [Spaan et al., 2011], greatly improv-
ing scalability of the original algorithm.

While current methods attempt to limit the number of poli-
cies considered, they rely on explicit policy representations
that consider the full histories of each agent. Furthermore,
even though these algorithms use an offline centralized plan-
ning phase, they have not been able to identify a concise suf-
ficient statistic that allows for greater scalability.

3 Dec-POMDPs as continuous-state MDPs
We now discuss the transformation of a Dec-POMDP into a
continuous-state MDP, starting with the required definitions.
This approach utilizes the commonly used offline planning
phase to centralize the available information as a distribution
over the state and agent histories from the perspective of a
central planner. Note that the central planner does not ob-
serve the agent’s actions or observations during execution but
knows what policies they are executing. The actions can then
be selected in the form of decision rules which condition ac-
tions on specific histories seen by each agent.

3.1 Preliminary definitions
Let Θt

i and Θt be sets of agent i’s and joint histories at
time step t = 0, 1, · · · , T − 1, respectively. A local policy
for agent i is an ordered sequence of local decision rules,
πi ≡ π0

i π
1
i · · ·π

T−1
i . A local decision rule πti : Θt

i 7→ Ai
is a mapping from local histories θti ∈ Θt

i to local actions
πti(θ

t
i) ∈ Ai.

A separable policy π is a tuple of n local policies,
π ≡ (π1, π2, · · · , πn), one for each agent i = 1, 2, · · · , n.
We denote πi the local policy of agent i, and π−i ≡

(π1, · · · , πi−1, πi+1, · · · , πn) that of its teammates. A sep-
arable decision rule at time step t is a tuple of n local de-
cision rules at time step t, πt ≡ (πt1, π

t
2, · · · , πtn), one lo-

cal decision rule for each agent. One can consider a sepa-
rable policy as a sequence of separable decision rules, π ≡
(π0, π1, · · · , πT−1), one for each time step. We use notation
πt:l (where l ≥ t) to represent an ordered sequence of sepa-
rable decision rules (πt, · · · , πl), namely a (partial) policy.

The occupancy state of the process under the control of
separable policy π0:t−1 starting at initial probability distribu-
tion b0 is the probability distribution over states of the sys-
tem and joint histories, ηt = b0P π0:t−1

. Like πt:l, we shall
use notation ηt:l instead of (ηt, · · · ,ηl). Here, occupancy
state ηt is a (|S| × |Θt|)× 1 stochastic vector, and P πt:l is a
(|S| × |Θt|) × (|S| × |Θl+1|) stochastic matrix, where each
entry P πt:l [st, θt; sl+1, θl+1] is the conditional probability of
being in (sl+1, θl+1) if the initial state and history is (st, θt)
and agents follow separable policy πt:l. For the sake of sim-
plicity, we use notation P πt instead of P πt:t . Note that given
a policy and initial state distribution, the occupancy state can
be calculated from P andO in the Dec-POMDP.

3.2 Formulation and properties
The first property of the occupancy state is that it summa-
rizes all past information of the agents. The proof can be
derived by expanding out the occupancy state representation
ηt = b0P π0:t−1

. While we utilize action-observation histo-
ries, it can also be shown that occupancy states depending on
just observation histories and states are also sufficient when
using deterministic policies (which contain an optimal policy)
[Oliehoek, 2013].

Theorem 1. The future occupancy state depends only upon
the present occupancy state and separable decision rule:

ηt = b0
∏t−1
l=0 P

πl = ηt−1P πt−1
(1)

This theorem shows that occupancy states describe a
Markov decision process: the occupancy MDP model. Equa-
tion (1) defines the transition function of this model. Not
surprisingly, the occupancy MDP model is deterministic. A
complete representation of the occupancy MDP model is
obtained by also specifying the reward function over occu-
pancy states. We denote Rπt the reward vector associated
to separable decision rule πt, where entries are defined by:
∀st ∈ S, θt ∈ Θt, Rπt [st, θt] = Rπt(θt)[st]. That is, the re-
ward for choosing a decision rule at an occupancy state is de-
fined as the expected value of rewards over underlying states
and histories. We are now ready to formally define the oc-
cupancy MDP model that corresponds to the Dec-POMDP
model. If we let 4 be the occupancy state space, and A
be the separable decision rule space, then we define tuple
(4,A,P ,R, b0) to be the occupancy MDP model that cor-
responds to the Dec-POMDP model.

Solving the occupancy MDP determines policy π∗ that
maximizes the expected cumulative reward over horizon T :

π∗ = arg maxπ
∑T−1
t=0 (Rπt)>(b0P π0:t−1

)

Similar to the traditional MDP model, the t-th value func-
tion υt under the control of a policy is defined as follows:
∀t = 0, 1, · · · , T − 1, ∀ηt ∈ 4

υt(ηt) = maxπt∈A (Rπt)>ηt + υt+1(ηtP πt), (2)

where υT (·) = 0. The quantity at the right hand side of max
operator of Equation (2) is referred to as the Q-value func-
tion defined by: ∀ηt ∈ 4, and ∀πt ∈ A, Qυ

t+1

(ηt, πt) =

(Rπt)>ηt + υt+1(ηtP πt).
Notice Equation (2) is Bellman’s optimality equation for

the occupancy MDP model. This leads to the following result.
Corollary 1. Optimizing the occupancy MDP model is equiv-
alent to optimizing the Dec-POMDP.

This follows from expanding Equation (2) for each step of
the problem and noting that due to the deterministic update
of η, the resulting policy is a sequence of separable decision
rules that maximizes the expected value for the Dec-POMDP.

We can also show that the value function is a piecewise
linear and convex (PWLC) function of the occupancy states.
Theorem 2. The t-th value function υt : 4 7→ R solution of
the Equation (2) is a PWLC function of the occupancy states.

Similar to belief MDPs, the proof holds by induction given
that υT , Rπt and P πt are linear and all operators involved
in Equation (2) preserve the PWLC property. With Theorems
1 and 2 as a background, one can exploit advances in belief
MDPs to solve occupancy MDPs. However, given that both
occupancy states and decision rules are defined over the en-
tire history space, the ability to scale up remains limited. In
the remainder of this paper, we will use Dec-POMDPs and
occupancy MDPs interchangeably.

4 Optimally solving occupancy MDPs
In this section, we first present an outline of a novel algorithm
for solving Dec-POMDPs. We also propose a dimension re-
duction framework that replaces the high-dimensional history
space by a lower-dimensional feature set, with no risk of los-
ing: (PWLC) the PWLC property of the value function over
occupancy states in the lower-dimensional feature set; and
(LOSSLESS) the sufficiency of occupancy states in the lower-
dimensional feature set.

4.1 The FB-HSVI algorithm
Our algorithm, termed feature-based heuristic search value it-
eration (FB-HSVI), exploits the PWLC structure of the value
function within a general heuristic search algorithm. Many
algorithms for solving belief MDPs take advantage of the
PWLC property of the value function. One such heuristic
search algorithm that preserves the ability to theoretically
converge to an ε-optimal solution is heuristic search value
iteration (HSVI) [Smith and Simmons, 2004]. We extend
HSVI to solve the occupancy MDP, but other POMDP algo-
rithms would also be applicable.

HSVI proceeds by creating trajectories, based on upper and
lower bounds over the exact value function, denoted ῡ and υ,
respectively. Each such trajectory starts from the initial prob-
ability distribution b0. HSVI always executes the best action

Algorithm 1: The FB-HSVI algorithm
initialize υ, and ῡ and η0 = b0

while ῡ0(η0)− υ0(η0) > ε do
Explore(η0, ῡ, υ)

Explore(ηt, ῡ, υ)
if ῡt(ηt)− υt(ηt) > ε/T then

π̄t ← arg maxπt∈A Qῡ
t+1

(ηt, πt)

Update (ῡt,ηt, π̄t)

Explore(Compress(ηtP π̄t), ῡ, υ)
Update (υ,ηt, π̄t)

specified by the upper bound, and then selects the next be-
lief state that maximizes the gap between the bounds. When
the trajectory is finished the beliefs are backed up in reverse
order. HSVI uses the following ideas: value function guar-
antees: value function representations for the lower bound
υ and upper bound ῡ maintain valid bounds on the optimal
value function υ∗; point-based backups: value functions are
improved by using backup operations only over a subset of
the entire belief simplex; trajectory-based heuristic search:
the upper bound guides search through trajectories of beliefs,
focusing on regions where the bounds need improvement.

FB-HSVI, as described in Algorithm 1, uses the HSVI
algorithmic framework, inheriting the above characteristics.
FB-HSVI differs from HSVI in many aspects, including: (1)
efficient point-based backup: we use an efficient implemen-
tation of the backup that typically circumvents the systematic
enumeration of all separable decision rules [Dibangoye et al.,
2012; 2013]; (2) low-dimensional feature set representations:
we replace the high-dimensional history space by a lower di-
mensional feature set, allowing for compact representations
(represented with the Compress operation in the algorithm);
and (3) bound updates: we take advantage of the determin-
ism of occupancy MDPs to update forward the upper bound
and backward the lower bound. These ideas together allow
FB-HSVI to: (1) scale up to Dec-POMDP problems of un-
precedented horizon size; (2) allow value function general-
ization over unvisited occupancy states; and (3) speed up the
convergence to the optimal value function.

4.2 Lossless linear dimension reduction

In the following, we describe the dimension reduction frame-
work that permits compact representations. This consists of
defining metrics for considering histories to be equivalent.
Then, we build upon this framework to introduce a feature
selection algorithm that we use in practice. We introduce
finite-order feature selection (FOFS) that operates incremen-
tally during algorithm execution. That is, histories can be
generated for the next step using forward search (as in Algo-
rithm 1) with the current histories. The next-step histories can
then be compressed by the methods discussed below, provid-
ing a reduced set of histories to be utilized in the algorithm.
FOFS seeks to find representative sets of shorter horizon his-
tories to replace the possible histories at a given step without
any loss in solution quality.

Using feature mappings
The (local) feature associated with local history θi given oc-
cupancy state ηt, denoted φθi , is a function mapping all pairs
of states and histories of the other agents to reals, such that
∀s,∀θ−i : φθi [s, θ−i] = p(s, θ−i, θi|ηt). Each feature φθi
has a label associating it with a local history, `i or L(θi).
Furthermore, we denote C`i the cluster of local histories with
label `i. One way to make explicit the relationship between
features and occupancy states is to consider occupancy in ma-
trix form, where columns correspond to labels and rows are
states and histories of the other agents.

In selecting features, we combine two criteria. The first
criterion permits us to group together local histories that are
probabilistically equivalent and treat them as a single local
history. For agent i, we say that two local histories θi and θ′i
are probabilistically equivalent when φθi ∝ φθ′i . Intuitively,
it can be seen that probabilistically equivalent histories pro-
vide the same information about the environment (including
the other agents) from a single agent’s perspective. It has been
shown that it is lossless to condition action selection only
upon labelL(θi) instead of θi [Oliehoek et al., 2009]. This al-
lows a lossless compression of features with values generated
as follows: ∀s,∀θ−i : φ`i [s, L(θ−i)] =

∑
θi∈C`i

φθi [s, θ−i].
The second criterion enhances the generalization of the

value function over unvisited occupancy states while preserv-
ing important information. This approach can be thought of
as having a “sliding window” of history information. We can
consider labels `i to be any length local history in set Θi. To
reduce the space of labels, we define a finite-order label `i,k or
Lk(`i) to be label `i’s k rightmost (most recent) actions and
observations. In addition, we denote C`i,k the cluster of labels
with identical finite-order label Lk(`i). This allows a (pos-
sibly lossy) compression of features with values defined as
follows ∀s,∀`−i : φ`i,k [s, Lk(`−i)] =

∑
`i∈C`i,k

φ`i [s, `−i].
Obviously, there is always a parameter k from 0 to t − 1 so
that features φ`i,k are lossless (such as k = t − 1). Next, we
present an algorithm that finds such a parameter k.

Algorithmic details
To guarantee the dimension reduction preserves the PWLC
property, we consider linear dimension reductions [Boularias
and Chaib-draa, 2008]. More specifically, we use clustering
based on probabilistic equivalence and finite-order labels and
generate a linear dimension reduction accordingly.

In order to ensure the sufficiency of occupancy states, we
introduce the concept of Hajnal lossless compression. Infor-
mally, this property gives insight on how to select features
that preserve the ability to eventually find an optimal pol-
icy. In defining this property, we need to bound the regret of
searching for the optimal policy over the restricted space in-
stead of the original high-dimensional history space. The re-
gret depends on distance metrics that are used to measure the
closeness between exact and approximate occupancy states.

Define metrics d and D as follows: ∀ηtx,∀ηty ,
d(ηtx,η

t
y) =

∑
s∈S

∑
θ∈Θ

(
P (s, θ|ηtx)− P (s, θ|ηty)

)+
, where

(o)+ = o if o > 0 and zero otherwise, and
D(η0:T−1

x ,η0:T−1
y) =

∑T−1
t=0 d(ηtx,η

t
y). Metric d, known

as the Hajnal measure, has many applications in the theory of

ergodic chains [Paz, 1971]. Informally, d(ηtx,η
t
y) is the min-

imal quantity of probability that would have to be re-assigned
in order to transform exact occupancy state ηtx to occupancy
state ηty . Similarly, D(η0:T−1

x ,η0:T−1
y), referred to as the

variational Hajnal measure between sequences of occupancy
states, is the minimal cumulated quantity of probability by
which both sequences might differ.

The following theorem bounds the regret of searching for
the optimal policy over the restricted space instead of the
original high-dimensional history space. The proof is similar
to the performance guarantee of the policy search algorithm
(Theorem 1) [Bagnell et al., 2003].
Theorem 3. Let policies π and π̂ be the solution of the oc-
cupancy state MDP model when optimized on exact and ap-
proximate occupancy states, respectively. Then,

υπ̂(η0) ≥ υπ(η0)− T ·D(η0:T−1, η̂0:T−1)||r||,

where ||r|| = maxs,aR
a[s]−mins,aR

a[s].

Proof. If we let β = υπ(η0)− υπ̂(η0), then we have that:

β=
∑T−1
t=0 (Rπt)>ηt − υπ̂(η0)

=
∑T−1
t=0 [(Rπt)>ηt + υπ̂

t:T−1

(ηt)− υπ̂
t:T−1

(ηt)]− υπ̂(η0)

=
∑T−1
t=0 [(Rπt)>ηt + υπ̂

t+1:T−1

(ηtP πt)− υπ̂
t:T−1

(ηt)]

=
∑T−1
t=0 [υπ

t,π̂t+1:T−1

(ηt)− υπ̂
t:T−1

(ηt)]

Now, let βt = υπ
t,π̂t+1:T−1

(ηt)−υπ̂t:T−1

(ηt), and αt be the
hyperplane in value function υπ

t,π̂t+1:T−1

that is maximal at
ηt, and α̂t be the hyperplane in υπ̂

t:T−1

that is maximal at η̂t.
Thus, given that α̂t is maximal at η̂t, then we have that:

βt = (αt)> · ηt − (α̂t)> · ηt
= (αt)> · ηt − (α̂t)> · ηt + (αt)> · η̂t − (αt)> · η̂t
≤ (αt)> · ηt − (α̂t)> · ηt + (α̂t)> · η̂t − (αt)> · η̂t
= (αt − α̂t) · (ηt − η̂t) ≤ Td(ηt, η̂t)||r||

The first inequality holds since (α̂t)> ·η̂t ≥ (αt)> ·η̂t, where
η̂t and ηt need to be losslessly (de-)compressed to fit α̂t and
αt, respectively. The last inequality holds using the Hölder
inequality and Hajnal measure. By replacing βt in the last
expression of β and definition of D, the result holds.

The bound (Theorem 3) depends on how close, in the
Hajnal sense, exact and approximate occupancy states are.
When the linear dimension reduction is lossless, that is
D(η0:T−1, η̂0:T−1) = 0, the bound implies that there exists
a policy in the restricted space that achieves performance as
good as any policy in the high-dimensional history space.

It is easy to check whether or not a linear dimension re-
duction is Hajnal lossless. In fact, checking the property over
the entire sequence η0:T−1 of occupancies consists of check-
ing that d(ηt, η̂t) = 0 holds for any occupancy ηt in that
sequence. We call this a local Hajnal lossless compression.
We are now ready to introduce our feature selection algo-
rithm, namely the finite-order feature selection (FOFS), that
automatically selects informative features based on the Haj-
nal lossless compression.

FOFS first compresses occupancy states based on prob-
abilistic equivalence as in [Oliehoek et al., 2009]. Given

occupancy state ηt, for each agent i, we replace histories
with the associated labels, thereby replacing features φθi by
corresponding feature φ`i . Let η̃t be the occupancy state
with probabilistically equivalent histories removed. Clearly,
there is no risk of loosing either property (PWLC) or prop-
erty (LOSSLESS) by planning over η̃t instead of ηt since this
compression is lossless and linear. However, η̃t is still de-
fined over a high-dimensional label set. This significantly
limits the generalization of the value function over unvisited
occupancy states and highlights the necessity of a dimension
reduction transformation.

FOFS continues by compressing occupancy η̃t into η̂t us-
ing finite-order labels, starting with k = 0. This compres-
sion is linear so it preserves property (PWLC), but it can be
lossy. When local Hajnal lossless compression holds, that is
∀s,∀` : P (s, `|η̃t) − P (s, Lk(`)|η̂t) = 0, FOFS returns η̂t

with labels ` replaced with finite-order labels Lk(`). Other-
wise, it re-computes η̂t with increased length k = k+ 1. The
algorithm iterates until the local Hajnal lossless compression
holds. In the worst case, FOFS terminates with k = t − 1,
and returns a lossless representation η̂t of the original occu-
pancy state ηt. When k < t−1, occupancy state η̂t is defined
as a probability distribution over states and l-length histories
where l ≤ k < t−1, and thus the compression is a dimension
reduction.

In both cases, to compress an occupancy state for a given
criterion, FOFS proceeds by clustering histories (or labels) of
one agent at a time assuming the other agents’ labels are fixed
(as full extensions of previous step histories initially and then
as their compressed length). It repeats this procedure for each
agent alternatively until no more clustering can occur.

5 Experiments
We ran FB-HSVI on a Mac OSX machine with 2.4GHz Dual-
Core Intel and 2GB of available RAM. We solved the backup
using constraint optimization with the toulbar2 solver. We
initialized the upper bound as the value function of the under-
lying MDP; and the lower bound as the value function of the
blind policy. We evaluate three variants of FB-HSVI(ρ): the
first variant, FB-HSVI(0), is FB-HSVI without compression
or efficient backups; the second variant, FB-HSVI(1) utilizes
k = ∞ (full histories), but incorporates efficient point-based
backups; and FB-HSVI(2) uses both efficient backups and
histories compressed with FOFS.

We evaluated our algorithms on five benchmark problems
from the literature: multi-agent tiger; recycling-robot; grid-
small; cooperative box-pushing; and mars rovers. These
are the largest and most difficult benchmarks from the lit-
erature. For each benchmark, we compared our algorithms
with state-of-the-art exact solvers: GMAA*-ICE [Spaan et
al., 2011], IPG [Amato et al., 2009], MILP [Aras and Dutech,
2010], and LPC [Boularias and Chaib-draa, 2008]. IPG and
LPC perform dynamic programming, GMAA*-ICE performs
heuristic search and MILP is a mixed integer linear pro-
gramming method. Results for GMAA*-ICE (provided by
Matthijs Spaan), IPG, MILP and LPC were conducted on dif-
ferent machines. Because of this, the timing results are not
directly comparable to the other methods, but are likely to

The multi-agent tiger problem (|S| = 2, |Z| = 4, |A| = 9, K = 3)

T MILP LPC IPG ICE FB-HSVI(ρ) υε(η
0)

0 1 2

2 − 0.17 0.32 0.01 0.05 0.03 0.03 −4.00
3 4.9 1.79 55.4 0.01 2.17 0.06 0.40 5.2908
4 72 534 2286 108 9164 2.66 1.36 4.8027
5 347 22.2 9.65 7.0264
6 171.3 24.42 10.381
7 33.11 9.9935
8 41.21 12.217
9 58.51 15.572

10 65.57 15.184

The recycling-robot problem (|S| = 4, |Z| = 4, |A| = 9, K = 1)

2 − − 0.30 36 0.03 0.02 0.01 7.000
3 − − 1.07 36 0.05 0.47 0.10 10.660
4 − − 42.0 72 0.85 0.65 0.30 13.380
5 − − 1812 72 1.52 0.87 0.34 16.486

10 5.06 2.83 0.52 31.863
30 62.8 37.9 1.13 93.402
70 78.1 2.13 216.47
100 259 2.93 308.78

The grid-small problem (|S| = 16, |Z| = 4, |A| = 25, K = 4)

2 0.65 − 0.18 36 116.1 0.1 0.1 0.9100
3 1624 − 4.09 1512 3024 6.09 0.73 1.5504
4 − 77.4 242605 12.85 1.39 2.2415
5 148.2 2.40 2.9704
6 319.8 7.12 3.7171
7 645.1 58.25 4.4657
8 65.12 5.2319
9 71.38 5.9878

The cooperative box-pushing problem (|S| = 100, |Z| = 16, |A| = 25, K = 3)

2 − − 1.07 36 0.1 0.1 0.1 17.600
3 − − 6.43 540 2026 0.64 0.457 66.081
4 − − 1138 2596 3.16 0.622 98.593
5 16.72 5.854 107.72
6 274.6 70.67 120.67
7 462.4 74.40 156.42
8 751.5 95.38 191.22
9 105.7 208.19

10 168.5 220.45

The mars-rovers problem (|S| = 256, |Z| = 81, |A| = 36, K = 3)

2 − − 83 1.0 0.21 0.09 0.10 5.80
3 − − 389 1.0 2.84 0.21 0.23 9.38
4 103 104.2 1.73 0.47 10.18
5 6.38 0.82 13.26
6 8.16 3.97 18.62
7 11.13 5.81 20.90
8 35.49 22.8 22.47
9 57.47 26.5 24.31
10 316.2 62.7 26.31

Table 1: Experiments comparing the computation times (in
seconds) of all exact solvers. Time limit violations (1000s)
are indicated by “ ”, and “–” indicate unknown values.

only differ by a small constant factor.
The results can be seen in Table 1. For each algorithm

we reported the computation time, which includes the time
to compute heuristic values when appropriate since all algo-
rithms do not use the same heuristics. We also reported the ε-
optimal expected cumulative reward υε(η0) (where ε = 0.01)
at the initial occupancy state. Furthermore, we also reported
K the maximum parameter k found by FOFS for each bench-
mark (representing the maximum history length used). Ta-
ble 1 clearly shows that FB-HSVI(2) allows for significant
improvement over the state-of-the-art solvers: for all tested
benchmarks we provide results for longer horizons than have
been solved previously (the bold entries).

There are several reasons for FB-HSVI(2)’s performance:
first, we search in the space of policies mapping lower-
dimensional features to actions, whereas the other solvers
search in the space of policies mapping histories to actions;

we use a value function mapping occupancy states to reals al-
lowing it to generalize the value function over unvisited occu-
pancies whereas all other solvers use value functions mapping
partial policies to reals; finally, we replace the brute-force
backup by an efficient constraint optimization approach.

To better understand FB-HSVI, we compare three variants
ρ = 0, 1, 2 presented earlier. For ρ = 0, we quickly run out
of time since we explicitly enumerate all separable decision
rules. For ρ = 1, we scale up to larger horizons but conver-
gence slows down because the value function is defined over
the full history space. For ρ = 2, we enhance the generaliza-
tion of the value function over unvisited occupancy states by
means of finite-order labels. This circumvents unnecessary
backups and speeds up convergence.

6 Conclusion
This paper explores new theory and algorithms for solving
Dec-POMDPs. This theory builds upon a novel transforma-
tion of Dec-POMDPs to continuous-state and deterministic
MDPs, generalizing previous theory and algorithmic results.
In particular, we demonstrate two important results: (1) the
distribution over both the states and the histories, namely oc-
cupancy states, are sufficient for optimal planning in Dec-
POMDPs; (2) the value function is piecewise linear and con-
vex over the occupancy states. With this new formulation,
POMDP methods can, for the first time, be directly applied to
Dec-POMDPs. This permits us to no longer maintain an ex-
plicit policy representation and allows us to exploit structure
in the value function. We also describe a novel algorithm for
this representation, extending to large state and action spaces
by dimension reduction and constraint optimization. This al-
gorithm, termed feature-based heuristic search value iteration
or FB-HSVI, was shown to scale up to large planning hori-
zons, reducing the computation time by multiple orders of
magnitude over previous approaches.

In the future, we plan to explore applying this theory and
algorithm to subclasses of Dec-POMDPs and larger teams of
agents. For instance, we have already shown that occupancy
states over just states (and not agent histories) can be used in
transition and observation independent Dec-MDPs to greatly
increase scalability [Dibangoye et al., 2012; 2013]. We would
like to explore using occupancy states over observation his-
tories (rather than action-observation histories), which were
shown to be sufficient (along with action-observation his-
tories) simultaneous to this work [Oliehoek, 2013]. In ad-
dition, we think occupancy states together with graphical
models could help exploit the locality of interaction among
agents statically (as in ND-POMDPs [Nair et al., 2005;
Kumar and Zilberstein, 2009]) or dynamically (as in [Canu
and Mouaddib, 2011]). Furthermore, the scalability of FB-
HSVI is encouraging and we will pursue additional methods
to automatically compute compact representations.

7 Acknowledgements
We would like to thank Matthijs Spaan for providing results
for GMAA*-ICE as well as Frans Oliehoek and the reviewers
for their helpful comments. Research supported in part by
AFOSR MURI project #FA9550-09-1-0538.

References
[Amato et al., 2009] Christopher Amato, Jilles S. Diban-

goye, and Shlomo Zilberstein. Incremental policy genera-
tion for finite-horizon DEC-POMDPs. In ICAPS, 2009.

[Aras and Dutech, 2010] Raghav Aras and Alain Dutech. An
investigation into mathematical programming for finite
horizon decentralized POMDPs. JAIR, 37:329–396, 2010.

[Bagnell et al., 2003] J. Andrew Bagnell, Sham Kakade, An-
drew Ng, and Jeff Schneider. Policy search by dynamic
programming. In NIPS, volume 16, 2003.

[Bernstein et al., 2002] Daniel S. Bernstein, Robert Givan,
Neil Immerman, and Shlomo Zilberstein. The complex-
ity of decentralized control of Markov decision processes.
Mathematics of Operations Research, 27(4), 2002.

[Bernstein et al., 2009] Daniel S. Bernstein, Christopher
Amato, Eric A. Hansen, and Shlomo Zilberstein. Policy
iteration for decentralized control of Markov decision pro-
cesses. JAIR, 34:89–132, 2009.

[Boularias and Chaib-draa, 2008] Abdeslam Boularias and
Brahim Chaib-draa. Exact dynamic programming for de-
centralized POMDPs with lossless policy compression. In
ICAPS, pages 20–27, 2008.

[Canu and Mouaddib, 2011] Arnaud Canu and Abdel-Illah
Mouaddib. Collective decision under partial observabil-
ity - a dynamic local interaction model. In IJCCI (ECTA-
FCTA), pages 146–155, 2011.

[De Farias and Van Roy, 2003] D. P. De Farias and
B. Van Roy. The linear programming approach to
approximate dynamic programming. Operations Re-
search, 51(6):850–865, 2003.

[Dibangoye et al., 2011] Jilles S. Dibangoye, Abdel-Illah
Mouaddib, and Brahim Chaib-draa. Toward error-bounded
algorithms for infinite-horizon DEC-POMDPs. In AA-
MAS, pages 947–954, 2011.

[Dibangoye et al., 2012] Jilles S. Dibangoye, Christopher
Amato, and Arnaud Doniec. Scaling up decentralized
MDPs through heuristic search. In UAI, pages 217–226,
2012.

[Dibangoye et al., 2013] Jilles S. Dibangoye, Christopher
Amato, Arnaud Doniec, and François Charpillet. Produc-
ing efficient error-bounded solutions for transition inde-
pendent decentralized MDPs. In AAMAS, 2013.

[Hansen et al., 2004] Eric A. Hansen, Daniel S. Bernstein,
and Shlomo Zilberstein. Dynamic programming for par-
tially observable stochastic games. In AAAI, pages 709–
715, 2004.

[Howard, 1960] Ronald A. Howard. Dynamic Programming
and Markov Processes. The M.I.T. Press, 1960.

[Kumar and Zilberstein, 2009] Akshat Kumar and Shlomo
Zilberstein. Constraint-based dynamic programming for
decentralized POMDPs with structured interactions. In
AAMAS, pages 561–568, 2009.

[Nair et al., 2005] Ranjit Nair, Pradeep Varakantham, Milind
Tambe, and Makoto Yokoo. Networked distributed

POMDPs: A synthesis of distributed constraint optimiza-
tion and POMDPs. In AAAI, pages 133–139, 2005.

[Oliehoek et al., 2008] Frans A. Oliehoek, Matthijs T. J.
Spaan, and Nikos A. Vlassis. Optimal and approximate Q-
value functions for decentralized POMDPs. JAIR, 32:289–
353, 2008.

[Oliehoek et al., 2009] Frans A. Oliehoek, Shimon White-
son, and Matthijs T. J. Spaan. Lossless clustering of his-
tories in decentralized POMDPs. In AAMAS, pages 577–
584, 2009.

[Oliehoek et al., 2013] Frans A. Oliehoek, Matthijs T. J.
Spaan, Christopher Amato, and Shimon Whiteson. Incre-
mental clustering and expansion for faster optimal plan-
ning in Dec-POMDPs. JAIR, 46:449–509, 2013.

[Oliehoek, 2013] Frans A. Oliehoek. Sufficient plan-time
statistics for decentralized POMDPs. In IJCAI, 2013.

[Paz, 1971] Azaria Paz. Introduction to probabilistic au-
tomata (Computer science and applied mathematics).
Academic Press, Inc., Orlando, FL, USA, 1971.

[Powell, 2007] Warren B. Powell. Approximate Dynamic
Programming: Solving the Curses of Dimensionality
(Wiley Series in Probability and Statistics). Wiley-
Interscience, 2007.

[Shani et al., 2012] Guy Shani, Joelle Pineau, and Robert
Kaplow. A survey of point-based POMDP solvers. JAA-
MAS, pages 1–51, 2012.

[Smallwood and Sondik, 1973] R. D. Smallwood and E. J.
Sondik. The optimal control of partially observable
Markov decision processes over a finite horizon. Oper-
ations Research, 21(5):1071–1088, 1973.

[Smith and Simmons, 2004] Trey Smith and Reid Simmons.
Heuristic search value iteration for POMDPs. In UAI,
pages 520–527, 2004.

[Spaan et al., 2011] Matthijs T. J. Spaan, Frans A. Oliehoek,
and Christopher Amato. Scaling up optimal heuristic
search in Dec-POMDPs via incremental expansion. In IJ-
CAI, pages 2027–2032, 2011.

[Szer et al., 2005] Daniel Szer, Francois Charpillet, and
Shlomo Zilberstein. MAA*: A heuristic search algorithm
for solving decentralized POMDPs. In UAI, pages 568–
576, 2005.

