
Article

Policy search for multi-robot
coordination under uncertainty

The International Journal of
Robotics Research
2016, Vol. 35(14) 1760–1778
© The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364916679611
ijr.sagepub.com

Christopher Amato1, George Konidaris2, Ariel Anders3, Gabriel Cruz3,
Jonathan P How4 and Leslie P Kaelbling3

Abstract
We introduce a principled method for multi-robot coordination based on a general model (termed a MacDec-POMDP)
of multi-robot cooperative planning in the presence of stochasticity, uncertain sensing, and communication limitations. A
new MacDec-POMDP planning algorithm is presented that searches over policies represented as finite-state controllers,
rather than the previous policy tree representation. Finite-state controllers can be much more concise than trees, are much
easier to interpret, and can operate over an infinite horizon. The resulting policy search algorithm requires a substantially
simpler simulator that models only the outcomes of executing a given set of motor controllers, not the details of the exe-
cutions themselves and can solve significantly larger problems than existing MacDec-POMDP planners. We demonstrate
significant performance improvements over previous methods and show that our method can be used for actual multi-robot
systems through experiments on a cooperative multi-robot bartending domain.

Keywords
AI reasoning methods, autonomous agents, distributed robot systems

1. Introduction

In order to fulfill the potential of increasingly capable
and affordable robot hardware, effective methods for con-
trolling robot teams must be developed. Although many
algorithms have been proposed for multi-robot problems,
the vast majority are specialized methods engineered to
match specific team or problem characteristics. Progress
in more general settings requires the specification of a
model class that captures the core challenges of control-
ling multi-robot teams in a generic fashion. Such gen-
eral models—in particular, the Markov decision process
(Puterman, 1994) and partially observable Markov deci-
sion process (Cassandra et al., 1994)—have led to signif-
icant progress in single-robot settings through standardized
models that enable empirical comparisons between general
planners that optimize a common metric.

Decentralized partially observable Markov decision pro-
cesses (or Dec-POMDPs (Bernstein et al., 2002)) are the
natural extension of such frameworks to the multi-robot
case—modeling multi-agent coordination problems in the
presence of stochasticity, uncertain sensing and action, and
communication limitations. Unfortunately, Dec-POMDPs
are exactly solvable only for very small problems. The
search for tractable approximations led to the recent intro-
duction of the MacDec-POMDP model (Amato et al.,
2014). MacDec-POMDPs include temporally extended

macro-actions that naturally model robot motor controllers
that may require multiple time-steps to execute (e.g. navi-
gating to a waypoint, lifting an object, or waiting for another
robot) as opposed to low-level control inputs that must
each last a fixed time interval. Planning then takes place
at the level of selecting controllers to execute, rather than
sequencing low-level motions, and MacDec-POMDP solu-
tion methods can scale up to reasonably realistic problems;
for example, solving a multi-robot warehousing problem
orders of magnitude larger than those solvable by previous
methods (Amato et al., 2015). General-purpose planners
based on MacDec-POMDPs have the potential to replace
the abundance of ad-hoc multi-robot algorithms for specific
task scenarios with a single precise and generic formu-
lation of cooperative multi-robot problems that is power-
ful enough to include (and naturally combine) all existing
cooperative scenarios.

1College of Computer and Information Science, Northeastern University,
Boston
2Computer Science Department, Brown University, Providence
3CSAIL, MIT, Cambridge, USA
4LIDS, MIT, Cambridge, USA

Corresponding author:
Christopher Amato, 360 Huntington Ave, College of Computer and Infor-
mation Science, Northeastern University, Boston, MA 02115.
Email: camato@ccs.neu.edu

http://sagepub.co.uk/journalsPermissions.nav
http://DOI: 10.1177/0278364916679611
http://ijr.sagepub.com

Amato et al. 1761

Fig. 1. The bartender and waiters domain which will be used in
the experiments: Two TurtleBots and one PR2 must coordinate to
deliver drinks as quickly as possible.

Unfortunately, existing MacDec-POMDP planners have
two critical flaws. First, even though using macro-actions
drastically increases the size of problems that can be solved,
planning time still scales poorly with the horizon (i.e. plan
length). Second, current methods assume that the under-
lying (primitive) problem is discrete, and that a com-
plete low-level model of that problem is available. These
difficulties significantly limit the applicability of existing
MacDec-POMDP planners to robotics applications.

This paper introduces an extended model and a
new MacDec-POMDP planning algorithm, which we
call MacDec-POMDP heuristic search (MDHS). MDHS
searches over policies represented as finite-state controllers,
rather than the currently used policy trees. Finite-state con-
trollers are often much more concise than trees, are eas-
ier to interpret, and can operate for an infinite horizon.
Our model and MDHS only require a description of the
problem at the macro-action level—at the level of model-
ing the outcome of executing given motor controllers, not
the details of execution itself—substantially reducing the
knowledge required for planning, and therefore the mod-
eling effort required to apply the method to real-world
robotics problems. We show that MDHS can solve sig-
nificantly larger problems than existing MacDec-POMDP
planners (and by extension, all existing Dec-POMDP plan-
ners), and demonstrate its application to a cooperative
multi-robot bartending task, showing that MDHS can auto-
matically optimize solutions to multi-robot problems from
a high-level specification.

2. Motivating problem

As a motivating experimental domain we consider a hetero-
geneous multi-robot problem, shown in Figure 1. The robot
team consists of a PR2 bartender and two TurtleBot wait-
ers. There are is a bar area and three rooms in which people
can order drinks from the waiters. Our goal is to bring
drinks to the rooms with orders as efficiently as possible;
since the robots cannot take orders until they visit a room,
they must coordinate to service all three rooms quickly.

We impose communication limitations so the robots cannot
communicate unless they are in close range. As a result, the
robots must make decisions based on their own sensor and
communication information, reasoning about the status and
behavior of the other robots. This is a challenging task with
stochasticity in ordering, navigation, picking, and placing
objects as well as partial observability in the orders and the
location and status of the other robots.

We model this domain as a MacDec-POMDP and
introduce a planning algorithm capable of automati-
cally generating controllers for the robots (in the form
of finite-state machines) that collectively maximize team
utility. This problem involves aspects of communica-
tion, task allocation, and cooperative navigation—tasks
for which specialized algorithms exists—but modeling it
as a MacDec-POMDP allows us to automatically gener-
ate controllers that express and combine aspects of these
behaviors—without specifying them in advance—while
trading off their costs in a principled way.

3. Background

We first discuss Dec-POMDPs and then we present previous
work on using macro-actions in Dec-POMDPs.

3.1. Dec-POMDPs

Our aim is to control a group of robots interacting with
an environment in order to cooperatively solve a problem.
At each time step t, each robot i must select an action to
execute from its own set of (possibly real-valued and mul-
tivariate) available actions Ai, after which the robots col-
lectively obtain a single reward, rt. For example, consider a
team consisting of a number of quadrotors and a number of
ground robots, attempting to search an area for a particular
object. At each time step, each robot must choose what to
do (for the quadrotors: fly in a particular direction, at a par-
ticular height, and perhaps shine a spotlight; for the ground
robots: drive in a particular direction with a specific camera
angle) so as to most efficiently locate the object. The actions
available to the robots may differ (because they are differ-
ent robots, or because their immediate environment affords
different actions), but they share a collective single reward
(equivalently, cost or utility) function that expresses their
joint goal and makes the problem cooperative.

We write the robot’s collective action space as A = A1 ×
A2×· · ·×A|I| and we can construct a state space S such that
the whole problem obeys the Markov property: it has a tran-
sition function T(st+1|st, at) expressing the environmental
dynamics and a reward function R(st, at), and both depend
only the state at times t and the collective action at ∈ A.
Because we will assume that transition and reward func-
tions are stationary with respect to time, we will often drop
the time step superscript. Given such a problem, the goal
of planning is to find a policy π mapping states to collec-
tive actions, so as to maximize the sum of rewards obtained

1762 The International Journal of Robotics Research 35(14)

Fig. 2. Depiction of an n-agent Dec-POMDP with actions and
observations for each agent, but a single joint reward.

over time. This formalization is known as a multiagent
Markov decision process or MMDP (Boutilier, 1999), and it
is intended to model multi-robot systems where actions are
selected by a single centralized decision-maker, and where
access to the Markov state space S is available (i.e. fully
observable).

However, these two assumptions are often unrealistic in
real multi-robot problems—the almost instantaneous com-
munication required for centralized control and global state
estimation is frequently impractical or impossible. In such
cases, rather than constructing a single global state and
making a single collective action-selection decision, we
must instead find a decentralized solution, where each robot
must act based on its own (often quite limited) history of
observations about the world. To formalize each robot’s lim-
ited view of the world we must have a model of how each
robot’s sensors react to possible states of the problem. We
model this using an observation function, O, which maps
the global state s to a distribution over each agent i’s sen-
sor space, Zi. The goal of planning is now to find a policy
for each robot—based only on its past observations—such
that the resulting joint policy maximizes the expected sum
of rewards.

This model is known as a Decentralized Partially
Observable Markov Decision Processes (Dec-POMDP,
depicted in Figure 2) and can be formally described by a
tuple 〈I , S, {Ai}, T , R, {Zi}, O, h〉, where:

• I is a finite set of agents;
• S is a finite set of states with designated initial state

distribution b0;
• Ai is a finite set of actions for each agent i with A =

A1 × A2 × · · · × A|I| the set of joint actions;
• T is a state transition probability function, T : S × A×

S → [0, 1], that specifies the probability of transition-
ing from state s ∈ S to next state s′ ∈ S when the actions
a ∈ A are taken by the agents (i.e. T(s, a, s′)=
Pr(s′|a, s));

• R is a reward function: R : S × A→ R, the immediate
reward for being in state s ∈ S and taking the actions
a ∈ A;

• Zi is a finite set of observations for each agent, i, with
Z = Z1 × Z2 × · · · × Z|I| the set of joint observations;

• O is an observation probability function: O : Z × A ×
S→ [0, 1], the probability of seeing observations o ∈ Z

Fig. 3. Depiction of a single agent’s policy tree with discrete
observations listed as oi and actions listed as ai.

given actions a ∈ A were taken which results in state
s′ ∈ S (i.e. O(o, a, s′)= Pr(o|s′, a));

• h is the number of (possibly infinite) steps until termi-
nation, called the horizon.

The model described above is very general. For
example, it can describe multi-robot scenarios involving
communication—the act of emitting a particular signal is
modeled as an action, the presence of that signal in the envi-
ronment is modeled as hidden state, and the receipt of that
signal (perhaps with some delay, sensor noise, or limited
range) is modeled using each agent’s observation function.
However, the model description itself does not tell each
robot what a signal means, or how to react to any particu-
lar signal—or indeed an observation of any type—it might
receive. This must be encoded in each robot’s individual
control policy, and it is the role of the planner to construct
such a policy for each agent.

Formally, therefore, a solution to a Dec-POMDP is a joint
policy—a set of policies, one for each agent. Because the
full state is not directly observed, it is often beneficial for
each agent to remember a history of its observations. A
local policy for agent i is a mapping from local observa-
tion histories to actions, HO

i → Ai. Because the system
state depends on the behavior of all agents, it is typically not
possible to estimate the system state (i.e. calculate a belief
state) from the history of a single agent, as is often done in
POMDPs.

Since a policy is a function of history, rather than of a
directly observed state (or a calculated belief state), it is
typically represented explicitly. The most common repre-
sentation is a policy tree (as seen in Figure 3), where the
vertices indicate actions to execute and the edges indicate
transitions conditioned on an observation (with the history
represented as the current path in the tree).

The value of a joint policy, π , from state s is

Vπ (s)= E

[
h−1∑
t=0

γ tR(at, st) |s, π

]

which is the expected sum of rewards for the agents given
the action prescribed by the policy at each step until the
horizon is reached. In the finite-horizon case, the discount
factor, γ , is typically 1. In the infinite-horizon case, the
discount factor γ ∈ [0, 1) is included to maintain a finite
sum and h = ∞. An optimal policy beginning at state s is
π∗(s)= argmaxπ Vπ (s).

Amato et al. 1763

When modeling multi-robot scenarios, it is often reason-
able to separate planning and execution: execution must be
decentralized, but we can often perform centralized plan-
ning prior to releasing the robot team into the environment.
Dec-POMDP solution methods therefore typically assume
that the set of policies is generated in a centralized man-
ner, but executed in a decentralized manner based on each
agent’s histories.

Although Dec-POMDPs have been widely studied, opti-
mal (and boundedly optimal) methods do not scale to
large problems, while approximate methods do not scale
or perform poorly as problem size (including horizon)
grows. Subclasses of the full Dec-POMDP model have
been explored, but they make strong assumptions about
the domain (e.g. assuming a large amount of indepen-
dence between agents). For additional details on these meth-
ods, we refer the reader to relevant surveys (Oliehoek and
Amato, 2016; Amato et al., 2013; Oliehoek, 2012).

3.2. Macro-actions for Dec-POMDPs

As described above, Dec-POMDPs typically require syn-
chronous decision-making: every agent chooses an action
to execute, and then executes it in a single time step.
When each agent is a robot, this restriction is problem-
atic for two reasons. First, the actions available in many
robot systems are controllers (e.g. for waypoint naviga-
tion, grasping an object, waiting for a signal), and planning
consists of sequencing the execution of those controllers.
Each controller will require different amounts of time to
execute, so synchronous decision-making requires waiting
until all robots have completed their controller execution
(and achieved common knowledge of this fact). This is inef-
ficient and may not even be possible in some cases (e.g.
when controlling airplanes or underwater vehicles that can-
not stay in place). Second, the planning complexity of a
Dec-POMDP is doubly exponential in the horizon. A plan-
ner that reasons about all robots’ possible policies at every
time step will only ever be able to make very short plans.

The Dec-POMDP model was therefore recently extended
to plan using temporally extended actions, or macro-actions
(Amato et al., 2014) (hence the MacDec-POMDP model).
The macro-actions are intended to model higher-level robot
controllers that execute by choosing low-level actions (like
actuating motors) and take several time steps to execute.
The resulting formulation uses higher-level planning to
compute near-optimal solutions for problems with signifi-
cantly longer horizons by extending the MDP-based options
framework (Sutton et al., 1999) to Dec-POMDPs by using
macro-actions, mi, that execute a policy in a low-level Dec-
POMDP from states that satisfy its initial conditions, until
a terminal condition is met.

Note that this extension is not straightforward in the
multi-agent case due to the resulting asynchronous nature
of decision-making. While decision-making in the single-
agent case can take place when the agent terminates a

macro-action, in the multi-agent case, decision-making
needs to take place only for agents that terminate. Further-
more, we must keep track of the progress of all agents in
executing their macro-actions to properly evaluate solutions
and allow other agents to continue their macro-actions even
if some agents terminate theirs.

To simplify evaluation and reasoning about completion
times, previous work assumes policies over macro-actions
can be executed in a lower-level Dec-POMDP. That is,
a Dec-POMDP with macro-actions is defined as a Dec-
POMDP where we also assume Mi represents a finite set
of macro-actions for each robot, i, with M = M1 × M2 ×
· · ·×M|I| the set of joint macro-actions (Amato et al., 2014).
Macro-actions are valid in a particular initiation set (I),
which may depend on the underlying state of the system or
some high-level observations, and continue until some ter-
minal conditions (β) are met, which again may depend on
the underlying system state or high-level observations. This
models a robot controller that can only be executed under
some conditions, but once executed continues to run until it
has reached some goal (or decides that it has failed).

Policies for each robot, μi, can be defined for choos-
ing macro-actions instead of primitive actions. For exam-
ple, policy trees can defined with nodes now representing
macro-actions and edges representing terminal conditions
or high-level observations (labeled with β in Figure 4).
If macro-action policies are built from primitive actions,
we can evaluate the high-level policies in a way that is
similar to other Dec-POMDP-based approaches. That is,
because we assume the macro-actions and the lower-level
Dec-POMDP are known, we can “unroll” the policies over
macro-actions into policies over primitive actions. There-
fore, macro-actions can be chosen asynchronously, but
because robots are assumed to have synchronized clocks,
the underlying primitive actions are executed in a syn-
chronous manner. Specifically, given a joint policy, the
primitive action at each step is determined by the (high-
level) policy, which chooses the macro-action, and the
macro-action policy, which chooses the (primitive) action.
The joint policy and macro-action policies can then be
evaluated as

Vμ(s)= E

[
h−1∑
t=0

γ tR(at, st) |s, π , μ

]
(1)

The goal is to obtain a hierarchically optimal pol-
icy: μ∗(s)= argmaxμVμ(s), which produces the highest
expected value that can be obtained by sequencing the
robots’ given macro-actions.

Two Dec-POMDP algorithms have been extended to
the MacDec-POMDP case (Amato et al., 2014), but other
extensions are possible. These algorithms use dynamic pro-
gramming to construct one policy tree for each robot start-
ing from the leaves and moving up to the root node (with
nodes as macro-actions and edges as terminal conditions or
high-level observations). Because many of the synchronous

1764 The International Journal of Robotics Research 35(14)

Fig. 4. Depiction of a robot’s policy using macro-actions (m) and
branching on terminal conditions (β).

decision-making assumptions are broken in the macro-
action case, many aspects of the Dec-POMDP algorithms
do not directly transfer. Nevertheless, the inspiration from
these algorithms can be used to search through the space
of possible tree-based policies with evaluation from equa-
tion (1). We use a different approach that does not rely on
these previous Dec-POMDP or MacDec-POMDP methods
and discuss the relevant details below.

4. Finite-state controllers for
MacDec-POMDPs

A tree-based representation of a policy causes each robot to
remember its entire history to determine its next action. In
finite-horizon problems, the memory requirement is expo-
nential in the horizon and for infinite-horizon problems a
robot would need infinite memory. Clearly, this is not feasi-
ble. As an alternative, we introduce a finite-state controller
representation that retains only finite memory and provide
algorithms for generating these controllers.

Finite-state controllers (FSCs) can be used to represent
policies in an elegant way since a robot can be conceptu-
alized as a device that receives observations and produces
actions. As shown in Figure 5, FSCs operate in a manner
similar to policy trees. There is a designated initial node and
after action selection at a node, the controller transitions to
the next node depending on the resulting observation. This
continues for an arbitrary number of steps in the problem.
Nodes in a robot’s controller represent internal states, which
prescribe actions based on that robot’s finite memory.

A set of controllers, one per robot, provides the joint
policy of the robots. Finite-state controllers explicitly rep-
resent infinite-horizon policies, but can also be used (as
a possibly more concise representation) for finite-horizon
policies. FSCs are a widely used as solution representations
for POMDPs and Dec-POMDPs (Amato et al., 2010; Bai
et al., 2013; Bernstein et al., 2009; Kaelbling et al., 1998;
Poupart and Boutilier, 2003; Szer and Charpillet, 2005; Wu
et al., 2010a).

4.1. Mealy controllers

Two main types of controllers, Moore and Mealy, have
been used for POMDP and Dec-POMDP solutions (both of
which are shown in Figure 5). Moore controllers associate
actions with nodes and Mealy controllers associate actions

Fig. 5. A robot’s (a) Moore and (b) Mealy finite-state controller
with initial nodes designated with an arrow.

with controller transitions (i.e. nodes and observations). We
use the Mealy representation.

A Mealy controller for robot i is a tuple ci =
〈Qi, Ai, Zi, δi, λi, q0

i 〉:
• Qi is the set of nodes;
• Ai and Zi are the output and input alphabets (i.e. the

action chosen and the observation seen);
• δi : Qi × Zi → Qi is the node transition function;
• λi : Qi × Zi → Ai is the output function for nodes 	= q0

i
that associates output symbols with transitions;

• λ0
i : Qi → Ai is the output function for node q0

i ;
• q0

i ∈ Qi is the initial node.

Because action selection depends on the observation as well
as the current node, for the first node (where no observa-
tions have yet been seen), the action only depends on the
node. For all other nodes, the action output depends on the
node and observation with λi(qi, oi).

Mealy controllers are a natural policy representation
for MacDec-POMDPs because the initial conditions of
macro-actions can be easily verified. That is, since the
macro-action is chosen after an observation is seen,
MacDec-POMDPs in which initial conditions depend solely
on robot’s local observations can be verified directly.
As such, algorithms that use Mealy controllers can
ensure that valid macro-action policies are generated for
each robot.

For a set of Mealy controllers, c, when the initial state is
s, the joint observation is o and the current nodes of c are q,
the value is denoted Vc(q, o, s) and satisfies

Vc(q, o, s)= R(s, λ(q, o))+
γ

∑
s′,o′

Pr(s′|s, λ(q, o)) Pr(o′|s′, λ(q, o)) Vm(δ(q, o) , o′, s′)

where λ(q, o)= {λ1(q1, o1) , . . . , λn(qn, on) } are the
actions selected by each robot given the current node of
its controller and the observation seen while δ(q, o)=
{δ1(q1, o1) , . . . , δn(qn, on) } are the next nodes for each
robot given that robot’s current node and observation.
Because the first nodes do not depend on observations, the
value of the controllers c at b is Vc(b)=∑

s b(s) Vc(q0, s),

Amato et al. 1765

where q0 is the set of initial nodes for all robots and b(s)
represents the probability of being in state s. (The value can
also be represented as Vc(b)=∑

s b(s) Vc(q0, o∗, s), where
o∗ are dummy observations that are only received on the
first step.)

4.2. Macro-action controllers

Representing policies in MacDec-POMDPs with the finite-
state controllers discussed above is trivial since we can
replace the primitive actions with macro-actions. The out-
put function becomes λi : Qi × Zi → Mi where Zi are
now the observations resulting from macro-actions and Mi

are the macro-actions for robot i. Unfortunately, evalua-
tion of these macro-action controllers is complicated by the
fact that macro-actions may require different amounts of
time. We could use the approach described above (in Sec-
tion 3.2) to represent the policy over macro-action in terms
of primitive actions, but this requires a full model of the
underlying Dec-POMDP and the primitive-action represen-
tation of each macro-action. Because such information may
be difficult or impossible to obtain (such as when macro-
actions contain continuous actions and observations), we
instead explicitly consider time until macro-action comple-
tion when performing evaluation.

To perform this evaluation, we can build on recent
work for modeling decentralized partially observable semi-
Markov decision processes (Dec-POSMDPs) (Omidshafiei
et al., 2015). The Dec-POSMDP model explicitly consid-
ers actions with different durations, using a reward model
that accumulates value until any robot terminates a (macro-
) action and a transition model that considers how many
time steps take place until termination. These lengths of
time may be different based on the various and probabilistic
termination times for different macro-actions from differ-
ent initial conditions. The previous Dec-POSMDP model
was defined for a specific class of problem where robots
are mostly independent except for their effect on joint
environmental states.1

We propose a more general Dec-POSMDP model,
〈I , S, {Ai}, T , R, {Zi}, O, h〉, as follows:

• I is a finite set of robots;
• S = SDec × Sm

1 × Sm
2 × · · · × Sm

|I|, which includes the
world state (i.e. underlying Dec-POMDP state) and a
state for each of the macro-actions that are currently
being executed for each robot;

• Ai = Mi, where the actions are the macro-actions;
• T , the probability of transitioning to next state s′ now

also includes the number of discrete time steps until
completion of any robot’s macro-action as Pr(s′, k|s, m),
where k is this number of steps and m is the joint set of
macro-actions being executed;

• R(s, m), the reward function is the value until any robot
terminates, E{rt+. . .+γ k−1rt+k|s, m, t}, starting at time
t, which is defined more formally below;

• Zi is now a finite set of high-level observations that
are only observed after a robot’s macro-action has been
completed;

• O, the observation probability function, generates an
observation for each robot based on the resulting state,
s′, and the macro-action that was executed, Pr(o|s′, m);

• h, the horizon is the number of (low-level, not macro-
action) steps until termination.

For concreteness, we discuss the case when an underlying
Dec-POMDP is known and discrete time steps are used, but
these assumptions are not required (as we discuss briefly
below).

We formally define the reward model as

R(s, m)= E

[
tmin∑
t=0

γ tR(at
Dec, st

Dec) |s, πm

]
(2)

where πm is the joint macro-action policy (i.e. the policy
of the macro-actions currently operating in the underlying
Dec-POMDP) and tmin is the smallest number of time steps
until any robot terminates (mini mint{sDec ∈ βmi} starting
at Dec-POMDP state sDec and macro-action states sm

i and
taking actions in the underlying Dec-POMDP aDec. Here,
we use βmi to represent the termination set of macro-action
mi which we assume depends on states sDec (but it could also
depend on observation histories, as discussed above). Note
that macro-actions will often be partially completed, so sm

i
is needed to correctly calculate the remaining time steps.

If we have a model of the underlying Dec-POMDP, (rep-
resented as RDec and PDec for the underlying reward, transi-
tion and observation models with joint actions a and joint
observations o), we can evaluate the macro-actions until at
least one of them stops as

R(s, m)=R(sDec, sm, m)=
RDec(sDec, πm(sm))+
γ

∑
s′,oDec

PDec(s′Dec|sDec, πm(sm)) ·

PDec(oDec|s′Dec, πm(sm)) ·∏
i

[
(1− Iβmi

(s′Dec)) P(s′mi
|smi , oDeci)

]
·

R(s′Dec, s′m, m)

(3)

where Iβmi
is an indicator variable that is 1 when s′Dec is a

terminal condition of mi (or when a terminal condition has
already been met for robot i) and P(s′mi

|smi , oi) represents
the transition in the macro-action state of robot i based on
the observation seen.

Similarly, we can calculate the transition probabilities
Pr(s′, k|s, m) that the macro-actions will execute until any
other configuration is reached for a given amount of time k

1766 The International Journal of Robotics Research 35(14)

if we have the underlying Dec-POMDP model as

P(s′, k|s, m)=P(s′Dec, s′m, k|sDec, sm, m)=∑
sk−1
m ,sk−1

Dec

PDec(s′Dec|sk−1
Dec , πm(sk−1

m)) ·

∑
oDec

PDec(oDec|s′Dec, πm(sk−1
m)) ·

∏
i

[P(sk−1
mi
|smi , oDeci)]·

P(sk−1
Dec , sk−1

m , k − 1|sDec, sm, m)

(4)

where sk−1
Dec and sk−1

m are states in the underlying Dec-
POMDP and macro-actions (with sk−1 the combined state)
after k − 1 steps. That is, we can calculate the transition
probability recursively based on the probabilities of the
possible states after k − 1 discrete time steps.

The observation function can be defined based on the
macro-action that was taken and the resulting state s′.
Because the resulting state includes the underlying Dec-
POMDP state, these observations can depend on the other
robots and other parts of the environment.

Using this model—in the case when the reward, transition
and observation models are calculated as described above
or assumed to be known—we can evaluate a joint policy of
macro-actions, μ, using the following Bellman equation

Vμ(s)= R(s, m)+
∞∑
k

γ k
∑

s′
Pr(s′, k|s, m) ·

∑
o′

Pr(o′|s′, m) Vμ(s′) (5)

When the joint policy, μ, is represented as a set of Mealy
controllers, the Bellman equation becomes

Vμ(q, o, s)=

R(s, λ(q, o))+
∞∑
k

γ k
∑

s′
Pr(s′, k|s, λ(q, o)) ·

∑
o′

Pr(o′|s′, λ(q, o)) Vμ(δ(q, o′) , o′, s′) (6)

Note that, in the Dec-POSMDP, observations are only gen-
erated for robots that complete their macro-actions. As
such, the observation, oi, and the current controller node,
qi, do not update until robot i terminates its macro-action
execution. These equations can be evaluated by solving
the corresponding set of equations or approximated using
Monte Carlo methods (as described below).

When the underlying Dec-POMDP model is not known,
the reward, transition and observation models can be
defined explicitly in terms of the macro-actions. We assume
the state-space of an underlying Dec-POMDP is known, but
the full model (i.e. the reward, transition and observation
functions) and the policies of the macro-actions do not need

to be known. For instance, in our experiments, we determine
the reward model by defining it over the states and macro-
actions (e.g. positive reward for beer being delivered) and
determine the transition and observation models by repeat-
edly executing macro-actions in the domain to determine
their terminal states, times for completion and possible sen-
sor and communication information.2 In general, if the low-
level Dec-POMDP model and macro-action policies are not
known, the Dec-POSMDP model can be calculated directly
(by using a simulator or the domain to estimate the high-
level rewards, transitions and observations) or through other
models of the dynamics. Also, note that while the model
still includes the states of the Dec-POMDP, it does not
include the Dec-POMDP actions and observations. As a
result, these low-level quantities can be continuous and the
low-level transition dynamics and observation model may
be very complicated, but we need only consider the effects
of the macro-actions in terms of the high-level transitions,
observations and rewards.

In our experimental domain, Sm
i will be the amount of

time that robot’s macro-action has been executing (since
this is sufficient information to determine how much more
time will be required in that problem). More generally, Sm

i
could correspond to a node in a lower-level finite-state con-
troller or other relevant information for updating the states
of the macro-actions.

4.3. Exploiting domain structure

The Bellman equation provides a formal framework for
evaluating policies in MacDec-POMDPs directly if we have
a model of the system. When a full model is not available, a
simulator can also be used to perform Monte Carlo evalua-
tion of a solution. This can be done by generating a number
of trajectories that each produce a single return for a sam-
pled sequence of states, observations and rewards over the
number of steps in the problem.

Specifically, using the time steps from the underlying
Dec-POMDP, the value of the kth trajectory that starts at
state s0 and uses policy μ is given by Vμ,k(s0)= rDec0

k +
. . . + γ T rDecT

k , where rDect
k is the reward from the under-

lying Dec-POMDP given on the tth step. The value after

K trajectories is then averaged as: V̂μ(s0)= ∑K
k=1

Vμ,k (s0)
K .

The simulator can often operate using the time steps from
the underlying Dec-POMDP as the states may need to
be updated at this frequency and the termination of each
macro-action can be checked at this time. Nevertheless, we
can also compute the value based on the time steps and
rewards at the macro-action level with

Vμ,k(s0)= r0
k + · · · + γ T−tτ rτ

k (7)

where rt
k is now the reward in the Dec-POSMDP at the tth

(of τ) macro-action step and tτ is the number of (primitive)
time steps taken by the last macro-action(s).3 As the number
of samples increases, the estimate of the policy’s value will

Amato et al. 1767

Algorithm 1 Sample-based evaluation.
1: function SAMPLEEVAL(μ,s0,numSims,maxTime)
2: totalReturn← 0
3: for sim 0 to numSims do
4: s← s0, q← q0, o← o∗
5: t← 0, tAg ← �0, minTime← 0
6: minRobots← null
7: termConds← null
8: while t < maxTime do
9: minTime←∞

10: for all robots i ∈ I do
11: for all βi of λi(qi, oi) do
12: t←SampleFromDist(s, λi(qi, oi) , βi)
13: if t − tAg

i = minTime then
14: minRobots← minRobots ∪ i
15: termConds←termConds ∪ β

16: else if t − tAg
i < minTime then

17: minRobots← {i}
18: termConds← {β}
19: minTime← t − tAg

i

20: t+ =minTime
21: s′ ← sampledState(s, λ(q, o),termConds)
22: r← R(s′)
23: for all robots i ∈minRobots do
24: oi ← sampleObs(s′,termConds)
25: qi ← δ(qi, oi)
26: tAg

i = 0

27: for all robots i /∈minRobots do
28: tAg

i + =minTime

29: totalReturn + = r
30: return totalReturn/numSims

approach the true value (as shown for the POMDP (Thrun,
1999) and Dec-POMDP (Wu et al., 2010b) case).

Generating a full model or simulator in complex domains
remains difficult, but many domains possess structure that
allows efficient evaluation. For example, in the bartender
domain, we perform a sample-based evaluation of policies
using a high-level simulator. As mentioned above, this sim-
ulator uses state information for the macro-actions that con-
sists of distributions for the completion time at each termi-
nal condition given each possible initial condition. Having
this timing information is a much less restrictive assump-
tion than knowing the full policy of each macro-action.
We also assume that the reward only depends on the state,
and that observations only depend on the state and terminal
condition of the macro-action. This simulator allows us to
evaluate policies while keeping track of the relevant state
information and execution of macro-actions. While, these
assumptions allow for more efficient evaluation, our heuris-
tic search algorithm does not require these assumptions and
is general enough to solve any Dec-POSMDP in which we
can generate candidate controllers and evaluate them.

Algorithm 2 MacDec-POMDP heuristic search (MDHS).
1: function HEURSEARCH(s0,n)
2: V ← V init
3: polSet← ∅
4: repeat
5: θ ←selectBest(polSet)
6: 	′ ←expandNextStep(θ)
7: for θ ′ ∈ 	′ do
8: if isFulPol(θ ’,n) then
9: v← valueOf(θ ’,s0)

10: if v > V then
11: μ∗ ← θ

12: V ← v
13: prune(polSet,V)

14: else
15: v̄← valueUpperOf(θ ’,s0)
16: if v̄ > V then
17: polSet← polSet ∪ θ ′

18: polSet← polSet \ θ

19: until polSet is empty
20: return μ∗

Pseudocode for sample-based evaluation is given in
Algorithm 1. The sum of the returns as well as the state,
the current node and last observation of each robot, the cur-
rent time in the system and the amount of time each robot
has been executing its macro-action are initialized in lines 2,
4 and 5. The minimum time interval before termination of
the next macro-action as well as the corresponding robots
and terminal conditions are initialized on line 6. At each
iteration, the simulator determines the set of robots which
terminate their macro-actions in the least amount of time
(in lines 8–18). The completion time of each robot’s macro-
action is sampled in SampleFromDist, and then adjusted
based on the amount of time the macro-action has already
been running tAg

i . The system time and state updates based
on the termination of these completed macro-actions (in
lines 19 and 20), the reward is added to the return in line
21 and the corresponding robots receive new observations
and transition in their controllers (in lines 22–25). Robots
that have not finished their macro-actions have their timers
updated (in lines 26–27). The iterations continue until the
system time reaches a limit (maxTime). This sample-based
evaluation can calculate the value of policies in problems
with very large (and continuous) state spaces using a small
number of simulations.

5. Policy search

Policy evaluation is an important step, but we must also
determine what policies each robot will use in the domain.
Specifically, we propose to generate finite-state controllers
using a heuristic search method that searches over the action
selection and node transition parameters for each agent.
The result is an optimized set of controllers, one for each

1768 The International Journal of Robotics Research 35(14)

agent. Controller optimization methods have been able to
generate high-quality controllers in the (primitive-action)
Dec-POMDP case (Amato and Zilberstein, 2009; Szer and
Charpillet, 2005), but such methods have yet to be devel-
oped for the macro-action case. Our new method, termed
MacDec-POMDP heuristic search (or MDHS), integrates
our sample-based evaluation and searches for a policy that
is optimal with respect to a given controller size. MDHS
constructs a search tree of possible controllers for each
robot (i.e. possible action selection and node transition
parameters at each node), and searches through this space
of policies by fixing the parameters (of all robots) for one
node at a time, using heuristic upper bound values to direct
the search.

Pseudocode of MDHS is in Algorithm 2. A lower bound
value, V is initialized with the value of the best known
joint policy (e.g. a random or hand-coded policy) in line
2. An open list, polSet, which represents the set of partial
policies that are available to be expanded is initialized to
be the empty set in line 3. At each step, the partial joint
policy (node in the search tree) with the highest estimated
value is selected (using selectBest in line 5). This partial
policy is then expanded in line 6, generating policies with
the action selection and node transition parameters for an
additional node specified (all children in the search tree).
This set is called 	′. As stated above, expanding a search
node consists of adding new search nodes for each pos-
sible combination of action selection and node transition
parameters for each agent for one more node in the con-
troller (e.g. if the current search node has fixed parameters
for one of the ten nodes in each agent’s controller, the chil-
dren will now fix the parameters for two of the ten nodes).
Each policy in 	′ is examined in the loop beginning at line
7. If an expanded policy is fully specified (i.e. all controller
nodes have action selection and node transition parameters
specified), its value is compared with the value of the best
known policy (V), which is updated accordingly (allowing
for pruning of policies with value less than the new V).
This procedure is shown in lines 8-13. If a policy is not
fully specified, its upper bound is calculated and it is added
to the candidate set for expansion as long as that bound is
greater than the value of the current best policy (in lines
15–17). The partial policy that was expanded is removed
from the candidate set (the open list) in line 18 and this
process continues until the optimal policy (of size n) is
found.

While this approach will generate a set of optimal con-
trollers of a fixed size when it completes, it can also be
stopped at any time to return the best solution found so far.
In our simple implementation, we set the initial lower bound
to be the value of a random policy and the upper bound as
the highest-valued single trajectory (i.e. simulation in Algo-
rithm 1) which uses random actions for controller nodes that
have not been specified (rather than the expected value).
These are relatively loose values, but performed well in our
experiments. To more quickly generate candidate solutions

before the search terminates, we also initiated the search
with a set of random (rather than blank) controllers which
had action selection and node transition parameters updated
during the search.

5.1. Improving the heuristic search algorithm

A naive implementation of Algorithm 2 will not be very
efficient. In particular, ‘expandNextStep(θ)’ on line 6 will
create all possible children (i.e. search nodes) for each robot
that define the different action selection and node transition
parameters to one more node in the controller. That is, if
all n robots have |Mi| macro-actions, |Zi| observations and
|Qi| nodes in the controller, (|Mi||Zi|)n (|Qi||Zi|)n new search
nodes get generated. The upper bound for each of these
children must be calculated and those that have a higher
value than the current best policy are added to the open list.
This upper bound calculation is time consuming and a large
number of search nodes will be added to the open list before
a better solution can be found. Only certain macro-action
actions are valid for the given initial conditions and only
some observations are possible after taking a macro-action,
so all the children do not need to be considered, but the
number remains high.

As an alternative, we also consider an incremental ver-
sion of MDHS. In the incremental version, ‘expandNext
Step(θ)’ is broken up into ‘expand NextStepAction(i, θ)’
and ‘expandNextStepTrans(i, θ)’ for each robot i. That is,
instead of adding parameters for action selection and node
transitions for all robots, expansion is done for one robot at
a time and separately for action selection and node transi-
tions. Specifically, we loop through the robots to generate
action selection parameters for each robot’s next controller
node and then loop through the robots again to generate
transition parameters for those nodes. After each robot’s
expansion, many fewer search nodes are added to the open
list when compared with the naive implementation (|Mi||Zi|

for the action case and |Qi||Zi| for the transition case). As a
result, we may generate candidate solutions more quickly.
As we generate these candidate solutions, the lower bound
can be updated and we may never generate all the chil-
dren that are considered in the naive implementation. Over-
all, this incremental algorithm can be expected to produce
higher-quality solutions in a given amount of time and
speed up convergence to an optimal solution.

In order to take full advantage of this incremental expan-
sion, we need a heuristic that is able to consider the par-
tially defined controller nodes that are generated. The upper
bound heuristic listed above is very loose and will not
change significantly when transitions are defined (due to
the fact that transitions are often to controller nodes that
have not yet been defined). Instead, we use an upper bound
heuristic based on the cross-product MDP (Meuleau et al.,
1999; Szer and Charpillet, 2005), which considers a cen-
tralized, fully observable solution for nodes that have not

Amato et al. 1769

been defined, but otherwise uses the actions and transitions
defined by the controller at the given search node. Because
a full (primitive) model is needed to generate the cross-
product MDP, we use a centralized hand-coded mapping
that assumes the states are fully observable (e.g. in the bar-
tender domain the orders are observable by all robots with-
out traveling to the respective rooms) for controller nodes
that have not yet been defined. Specifically, in the bartender
and waiter problem, the resulting upper bound policy has
each waiter waiting in the kitchen until the bartender is
ready, then getting a drink from the bartender, delivering the
drink to the room with the oldest order and then returning to
the kitchen to continue this cycle. Evaluation of this heuris-
tic is done online as controller parameters are defined and
the upper bound converges to the true value of the controller
when all action selection and node transitions are specified.

6. Experiments

We perform comparisons with previous work on existing
benchmark domains and demonstrate the effectiveness of
our MDHS policy search in the bartender scenario. We
compare only with MacDec-POMDP methods since our
previous work showed that primitive-action Dec-POMDP
methods cannot scale to problems of the size considered in
this paper (due to the resulting increase in the action and
observation space as well as the problem horizon) (Amato
et al., 2014). In the first two problems, the simple version of
our approach from Algorithm 2 is used and controller sizes
are fixed to be 5 nodes. As an alternative, controller sizes
could be generated from trajectories in the simulator (sim-
ilar to previous methods (Amato and Zilberstein, 2009)) or
learned (Liu et al., 2015). Experiments were run on a sin-
gle core of a 2.2 GHz Intel i7 with a maximum of 8 GB of
memory. The simulation experiments provide a quantitative
analysis of the efficacy of the MacDec-POMDP planner,
while the real world experiments show that our method can
be used for actual multi-robot systems.

6.1. A benchmark problem

For comparison with previous methods, we consider robots
navigating among movable obstacles (NAMO) (Stilman and
Kuffner, 2005). In this problem, two robots must navigate
to a goal location, but the paths to that location are blocked
by some number of obstacles that require either a single or
multiple robots to move. Therefore, the robots must reason
about navigation and coordination choices in order to most
efficiently move to the goal. This domain was designed as
a finite-horizon problem (Amato et al., 2014) so we add a
discount factor (of 0.9) for the infinite-horizon case.

Our previous tree-based MacDec-POMDP methods were
designed for finite-horizon problems (Amato et al., 2014),
but they can produce policies that have a high value in

Table 1. Values, times (in s) and policy sizes on NAMO
benchmarks of size 5× 5 and 25× 25.

MDHS controller Tree

5× 5 25× 25 5× 5 25× 25

Value −5.33 −9.91 −5.30 −9.87
Time 180 180 388 4959
Size 5 5 10049 10044

infinite-horizon problems by using a large planning hori-
zon. In fact by using a horizon of 50, the optimal tree-
based methods can produce a solution within 0.046 of the
optimal (infinite-horizon) value in both instances of the
problem we consider (due to discounting making additional
value beyond horizon 50 below that number). As mentioned
above, in these comparisons, we used our simple MDHS
method with a random lower bound and the best single
trajectory that was sampled as an upper bound. No other
parameters are needed except for the desired controller size
for each robot (which balances time and computational
complexity).

As seen in Table 1, MDHS (“MDHS Controller”), pro-
duces solutions that are near optimal (as given by the
finite-horizon “Tree” method) in much less time and with a
much more concise representation. The previous tree-based
dynamic programming method can produce a (near) opti-
mal solution, but requires a representation exponential in
the problem horizon and must search through many more
possible policies before generating a solution. It is impor-
tant to note that while these domains have a large number
of states (5000 in the 5 × 5 case and 3.125 × 106 in the
25 × 25 case), the number of macro-actions and observa-
tions is small (4 and 12 respectively). Furthermore, macro-
actions are not possible for some situations (e.g. robots will
not try to move an obstacle until they observe that they are
next to one). As a result, the tree-based method is still able
to solve this problem, but will not scale to larger action and
observation spaces.

6.2. A small warehousing problem

A small warehousing problem has also been modeled and
solved as a MacDec-POMDP (Amato et al., 2015). In this
problem, a team of robots must find packages that may be in
various depots and return them to a shipping location. Some
packages must be pushed by multiple robots and some can
be retrieved by a single robot. Furthermore, various com-
munication assumptions were used such as no communica-
tion, limited communication (within a specified radius) and
signaling through the use of a light. Previous solution meth-
ods (which are based on the policy tree methods (Amato
et al., 2014)) were able to automatically generate a set of
policies for a team of iRobot Creates, but were unable to
exceed a problem horizon of 9. This lack of scalability of
the tree-based methods is due to the larger problem size

1770 The International Journal of Robotics Research 35(14)

Table 2. Values, times (in s) and policy sizes on three ware-
housing problems (with no and limited communication as well
as signaling). The tree-based method is unable to solve these
problems.

MDHS controller Tree
No Com No Com
Com Limit Signal Com Limit Signal

Value 11.38 12.41 14.89 – – –
Time 180 180 180 – – –
Size 5 5 5 – – –

(approximately 1.26 × 109 states, 6-11 macro-action and
36 observations).

As seen in Table 2, MDHS can produce concise solutions
very quickly on these problems. Because of the limited hori-
zon that can be achieved by the tree-based methods, it is not
possible to generate a useful bound on the optimal solution
for this problem. Nevertheless, our method is able to solve
warehousing problems for any arbitrary horizon, while the
tree-based methods could not.

As an additional comparison, we also evaluate the con-
trollers generated by our MDHS algorithm for the same
number of steps as the previous algorithm (9) without a dis-
count factor. In this case, the previous tree-based method
produced solutions with values of 1.16, 1.60, and 1.68 while
our method produces solutions with values 1.12, 1.14 and
1.61 for the no communication, limited communication and
signaling cases, respectively. Note that our solution was not
optimized for this particular horizon, but it shows that both
methods have similar solution quality when executed for
only 9 steps.

6.3. Bartender and waiters problem

The bartender and waiters problem is a multi-robot prob-
lem modeled after waiters gathering drinks and delivering
them to different rooms. The waiters can go to different
rooms to find out about and deliver drink orders. The wait-
ers can go to the bar to obtain drinks from the bartender.
The bartender can serve at most one waiter at a time and
the rooms can have at most one order at a time. Because
there is only one type of beverage in our problem, the policy
of the bartender is simply to always pick a beverage when
it does not have one and serve the first waiter to request
it. Any waiter can fulfill an order (even if that waiter does
not have previous knowledge about the order). Drink orders
are created stochastically: a new order will arise in a room
with 1% probability at each (low-level) time step when one
does not currently exist. The reward for delivering a drink is
100−(tnow − torder) /10, where tnow is the current time step
and torder is the time step at which the order was created.

The domain consists of three types of macro-actions for
the waiters, as shown in Table 3. These macro-actions con-
sist of navigation decisions such as traveling to each of the

Table 3. Macro-actions for the waiters.

ROOM_N Go to room n, observe orders and deliver drinks.
BAR Go to the bar and observe current status of the

bartender.
GET_DRINK Obtain a drink from the bartender.

Table 4. Observations for the waiters.

Variable Values Description

loc {room_n, bar} waiter’s location

orders {True, False} drink order for current room

holding {True, False} waiter holding drink status

not_serving not serving and not ready to serve
ready_to_serve not serving and is ready to serve

bartender serving_waiter serving a drink
no_obs cannot observe bartender

different rooms or to the bar area as well as the ability to
request a drink from the bartender.

The state variables each waiter can observe are shown
in Table 4. These observations involve seeing a high-level
indication of the location, whether there is an order (when
a waiter is in a room), whether the waiter is holding a drink
and some status information about the bartender (when the
waiter is in the bar area). The details of how we imple-
mented this domain on real robots are included in the next
subsection.

To develop a simulator that is similar to the robot imple-
mentation, we estimated the macro-action times by mea-
suring them in the actual domain over a number of trials
(starting the macro-actions at possible initial conditions
and executing until each possible terminal condition, gen-
erating probability distributions for the terminal conditions
and times). The rewards and observations were defined as
above (using partial, but not noisy observations). Additional
details are also provided in the next subsection. There is
a large amount of uncertainty in the problem in terms of
the time required to complete a macro-action and outcomes
such as receiving orders. We did not explicitly model fail-
ures in the navigation or PR2 picking/placing or noise in the
observation model, but these could be easily modeled.

Our instance of the bartender and waiters problem con-
sisted of one bartender and two waiters. The domain had
four rooms: the bar and rooms 1–3. As mentioned above,
rooms 1–3 could order at most one drink at a time and
only one drink type was used. We had a total of 5 macro-
actions since there is a macro-action for each room as well
as one for requesting a drink. There were also 64 observa-
tions (from Table 4) and the underlying state space consists
of the continuous locations of the TurtleBots, the status of
the PR2 and discrete variables for orders in each room and

Amato et al. 1771

Fig. 6. Navigation map generated by the TurtleBots.

whether each TurtleBot is holding a beverage. No commu-
nication was used except between the bartender and waiters
in the bar area.

Robot implementation

As shown in Figure 1, we used two TurtleBots (we call the
blue one Leonardo and the red one Raphael) as waiters and
the PR2 as a bartender. The TurtleBots had two types of
macro-actions: navigation and obtaining a drink from the
bartender.

The navigation actions were created using a map, shown
in Figure 6, with the ROS TurtleBot_navigation package
(Foote, 2015) and adding simple collision avoidance. For
picking and placing drinks, we combined several ROS con-
trollers for grasping and manipulation. The GET_DRINK
macro-action implemented a queueing system to serve mul-
tiple TurtleBots in the order they arrived. Specifically, The
PR2 always picks up a drink and waits for a TurtleBot to
arrive to ask for it. To make sure multiple TurtleBots did not
attempt to get a beverage at the same time we implemented
a simple queue where TurtleBots would send a message to
the PR2 to enter the queue. Then, the PR2 would send a
message to the first TurtleBot in the queue when it was
ready to place a drink. Once the TurtleBot left the PR2,
the PR2 would pick up another drink and wait for the next
TurtleBot. Each TurtleBot had a cooler for the PR2 to place
drinks into. The cooler was identified with an AR tag in
order to locate the TurteBot and place the drink.

For the observations, we used state action deduction
and communication. That is, the GET_DRINK action was
assumed to always succeed (but may require different
amounts of time); the TurtleBot asserted it was holding a
drink after this action. When the TurtleBot entered a room
it would prompt the user to take the drink it was holding or
to place an order. The user could give a boolean response
by toggling a red button on top of the TurtleBot. After a
user picked up the drink, the waiter observed not_holding

until it completed the next GET_DRINK action. The loca-
tion observations were set with the localization functional-
ity of the TurtleBot_navigation stack. To obtain information
about the bartender, the PR2 would broadcast its current
state (serving, not_serving, or ready_to_serve). The Turtle-
Bots were only able to listen to the message in the bar
location.

Bartender and waiter problem results

Our MDHS planner automatically generated the bartender
and waiter solution based on the macro-action definitions
and our high-level problem description (discussed above).
That is, because the simulator was created based on the
domain, solutions could be generated using the simulator
and executed in the actual domain. The solution is a set
of Mealy controllers (one for each robot) that maps nodes
(which can represent different histories) and observations to
actions.

First, to easily examine the results, we generated policies
with 1 and 2 nodes. Figures 7 and 10 show the Mealy con-
trollers for the 1-node and 2-node case, respectively. Nodes
are labeled with ellipses, observations as rectangles, and
actions as diamonds. Given a node and observation, the
Mealy controller shows the next node (using a solid line)
and corresponding action (with a dashed line). For clarity,
only transitions to different nodes are labeled in our dia-
grams. In the one node case, there are no transitions to
new nodes; hence, the controllers are a reactive memoryless
policy based on current observation.

To more clearly show the 1-node results, Figures 8(a)
to 8(c) display parts of the generated policies. Analysis of
the solution is naturally segmented into three phases: bar,
delivery, and ordering, which correspond to (1) the waiter
being located in the bar, (2) holding a drink, and (3) not
holding a drink. As can be seen in Figures 7 and 8, the
solution spread out the serving and delivery behaviors of
the TurtleBots between the three rooms: Leonardo only vis-
ited rooms 1 and 3, whereas Raphael focused on rooms
2 and 1. Additionally, the TurtleBots’ controllers selected
the BAR macro-action even when drinks were not ordered.
This allowed the TurtleBots to have drinks that were ready
to deliver, even if they did not previously know about
an order.

Figure 8(a) shows the macro-actions for each TurtleBot
when it is located in the bar (after the TurtleBot executes
the BAR macro-action that takes navigates it to the bar from
any location or in the initial problem configuration). Once
in the bar, the TurtleBot can observe the bartender’s status.
If the bartender is ready_to_serve, either agent will exe-
cute the GET_DRINK action. Following the GET_DRINK
action, Raphael and Leonardo will execute ROOM_2 and
ROOM_3 macro-actions, respectively. If the bartender is
not ready_to_serve the waiter will execute ROOM_1 or
ROOM_2 macro-actions, depending on the observation.
The distance is farthest to ROOM_3 so it requires less

1772 The International Journal of Robotics Research 35(14)

Fig. 7. 1-node controllers for the TurtleBots in the bartender and waiters problem with nodes as ellipses, observations as rectangles,
and actions as diamonds: (a) Leonardo’s 1-node controller; (b) Raphael’s 1-node controller.

Fig. 8. Controller phases for each waiter: (a) Bar phase while located in the bar; (b) Delivery phase while holding a drink; (c) Ordering
phase while not holding a drink.

time to visit the other rooms when the bartender is not
ready_to_serve.

Once a TurtleBot is holding a drink, it is in the deliv-
ery phase. Figure 8(b) shows the sequence of macro-actions
executed in this case. Raphael receives a drink from the
bartender and tries to complete deliveries in the following
order: ROOM_2, ROOM_1, ROOM_3. That is, it continues
looping through all rooms while holding a drink. Leonardo
executes the ROOM_3 macro-action after receiving a drink
from the bartender. If the drink is not delivered then it
chooses the ROOM_1 macro-action. It continues looping
between ROOM_1 and ROOM_3 actions until a delivery is
made.

After a TurtleBot has delivered a drink, it enters
the ordering phase. Figure 8(c) shows the macro-action
sequence for the case when the waiters are not holding any
drinks. The dashed and dotted lines show the two cases
when the waiters do not go to the bar. This happens when
there is no order placed in rooms 2 and 3; the waiters go
to the bar for all other observations. This behavior balances

off having a drink ready for unknown orders and the time
used to visit other rooms.

An example execution of our generated controllers (for
the 1-node case) is shown in Figure 9. Initially, the Turtle-
Bots start in the bar next to the PR2. The PR2 immedi-
ately starts picking up a drink (Figure 9(a)) and the two
TurtleBots navigate to different rooms (Figure 9(b)). Then
Leonardo returns to the kitchen and successfully receives a
drink from the PR2 (Figure 9(c)). While holding the drink,
Leonardo tries to make a delivery by going to room 2 (Fig-
ure 9(e)). There is no drink order in room 2, so Leonardo
continues to room 1 and successfully delivers the drink to
a thirsty graduate student (Figure 9(f)). While Leonardo is
served by the PR2, Raphael goes to the bar and observes
the PR2 is busy (Figure 9(d)). After observing the PR2 is
serving, Raphael navigates to room 1 to collect drink orders
(Figure 9(e)).

It is important to note that the 1-node controllers cannot
contain a more complex solution that allows each waiter
to choose what room to go to after receiving a drink from

Amato et al. 1773

the bartender depending on previous actions or observations
(since no memory is used). This controller is an elegant
solution given the constraint: Raphael serves room 2 then
room 1, whereas Leonardo room serves room 3 followed by
room 1. This resultant behavior shows cooperation between
the two robots to efficiently cover the rooms.

As seen Figure 10, adding another node allows for more
elegant and intricate solutions since the 2-node controller
can keep track of more information. Because there are only
two nodes and the solution is optimized to improve perfor-
mance, not clarity, it is somewhat difficult to interpret the
meaning of the different nodes. Nevertheless, the multiple
nodes are used to remember actions taken and observations
seen. To simplify the analysis, we can look at three different
scenarios. Scenario 1 is receiving a drink from the bar and
trying to deliver it when no orders are received. Scenario 2
is going to the bar when the bartender is always not ready.
Scenario 3 is going to the bar when the bartender is always
serving another agent.

The first case is the behavior after receiving a drink from
the bar. We would expect both agents to cycle through all
of the rooms to deliver a drink, with room 3 being the least
frequently visited since it is far away. In the one node case,
Leonardo goes through all rooms in the sequence: room 2,
room 1, room 3 and Raphael visits room 3, then room 1. The
2-node case focuses more on the first two rooms for a higher
expected return. Leonardo goes through room 3, room 2,
room 1 and back to room 3, while Raphael visits room 1
then room 2 or room 2 then room 1 depending on which
node it is currently in. By delivering to the first two rooms
more frequently the agents are exploiting the fact that these
rooms are closer and the multiple nodes allows this pattern
to be more efficient (with a choice of room 1 or room 2).

The second case, is what happens when the TurtleBots go
to the bar and the bartender is not ready. We would expect
the TurtleBots to try to visit the bar again or go to a nearby
room to check if the bar is ready as quickly as possible. In
the one node case Leonardo visits room 2 and Raphael visits
room 1. In the 2-node case, Leonardo always waiting in the
bar until the bartender is ready. Raphael will either wait for
the bartender until it is ready or go between room 1 and the
bar depending on which node it is in. This waiting behav-
ior seeks to get drinks as quickly as possible, while gaining
order information only when deemed beneficial. Again, we
see the 2-node solution is able to use memory to improve
the solution.

The third case shows a clear difference between the one
node and two node solutions. The TurtleBots have very dif-
ferent behavior for what to do after visiting the bar when
the bartender is serving the other TurtleBot. Because the
time needed for the bartender to complete serving is large,
we see the TurtleBots visit further rooms to collect orders.
This is in contrast to the 1-node case where the behavior is
limited to visiting rooms 1 or 2.

We also examine the values of the 1-node, 2-node and
larger 5-node controllers in the simulator. These values

were computed by executing the controllers generated by
MDHS in the simulator for 1000 (primitive) time-steps
using 10,000 Monte Carlo simulations. The solution value
was 1254 (an average of 13.95 drinks delivered) for the
1-node controllers, 1289 for the 2-node controllers (14.31
drinks delivered) and 1302 (14.64 drinks delivered) for
the 5-node controller.4 For comparison, a hand-coded con-
troller that assigns one robot (Leonardo) to room 3 (since
it is farthest from the kitchen) and one robot (Raphael)
to rooms 1 and 2, produces a solution with value 851
(10.40 drinks delivered). More sophisticated hand-coded
controllers are possible, but, in general, it is very diffi-
cult for a human to determine a good solution in complex
problems such as this one.

Additional results comparing the simple and incremen-
tal versions of MDHS for the 1-node and 5-node case are
seen in Figure 11. In the 1-node case (Figure 11(a)), both
the simple and incremental versions produced high-quality
solutions quickly, but the incremental version required
much less time to produce and converge to the optimized
solution. Results for the 5-node case (Figure 11(b)) are sim-
ilar, but more time is required to search through parameters
for the larger controller. Note that in the 5-node case, the
graph is trimmed and does not show convergence to the final
value of 1302. Here, the incremental version of MDHS is
always able to produce a higher-valued policy with a given
amount of time.

These results demonstrate that the MDHS planner is
able to effectively generate a solution to a cooperative
multi-robot problem, given a declarative MacDec-POMDP
planner. Note that the same planner solved all these experi-
mental problems based on a high-level domain description.

7. Related work

Other frameworks exist for multi-robot decision mak-
ing. For instance, behavioral methods have been studied
for performing task allocation over time with loosely-
coupled (Parker, 1998) or tightly-coupled (Stroupe et al.,
2004) tasks. These are heuristic in nature and make strong
assumptions about the type of tasks that will be com-
pleted. Market-based approaches use traded value to estab-
lish an optimization framework for task allocation (Dias and
Stentz, 2003; Gerkey and Matarić, 2004). These approaches
have been used to solve real multi-robot problems (Capitán
et al., 2013; Kalra et al., 2005), but are largely aimed at
tasks where the robots can communicate through a bidding
mechanism.

One important related class of methods is based on linear
temporal logic (LTL) (Belta et al., 2007; Loizou and Kyri-
akopoulos, 2004) to specify behavior for a robot; reactive
controllers that are guaranteed to satisfy the resulting spec-
ification are then derived. These methods are appropriate
when the world dynamics can be effectively described non-
probabilistically and when there is a useful characterization

1774 The International Journal of Robotics Research 35(14)

Fig. 9. Images from the bartender and waiter experiments: (a) PR2 picking up a drink; (b) TurtleBots go to first rooms; (c) Leonardo
sees the PR2 ready and gets a drink; (d) Raphael sees the PR2 serving Leonardo; (e) TurtleBots go to rooms 1 and 2; (f) Leonardo
delivers to room 1.

of the robot’s desired behavior in terms of a set of discrete
constraints. When applied to multiple robots, it is necessary
to give each robot its own behavior specification. By con-
trast, our approach (probabilistically) models the domain
and allows the planner to automatically optimize the robots’
behavior.

There has been less work on scaling Dec-POMDPs to
real robotics scenarios, Emery–Montemerlo et al. (2005)
introduced a (cooperative) game-theoretic formalization
of multi-robot systems which resulted in solving a Dec-
POMDP. An approximate forward search algorithm was
used to generate solutions, but because a (relatively) low-
level Dec-POMDP was used, scalability was limited, and

their system required synchronized execution by the robots.
The introduction of MacDec-POMDP methods has largely
eliminated these two concerns.

While several hierarchical approaches have been devel-
oped for multi-agent systems (Horling and Lesser, 2004),
very few are applicable to multi-agent models based on
MDPs and POMDPs. Ghavamzadeh et al. (2006) developed
a multi-agent reinforcement learning approach with a given
task hierarchy, but this work is limited to a multi-agent
(fully-observable) SMDP model with communication, mak-
ing it a subclass of a MacDec-POMDP. Other researchers
have developed models similar to MacDec-POMDPs in the
centralized multi-robot setting (Messias et al., 2013a,b).

Amato et al. 1775

Fig. 10. 2-node controllers for the TurtleBots in the bartender and waiters problem with nodes as ellipses, observations as rectangles,
actions as diamonds and node transitions with solid lines (lack of a line represents transition back to the same node): (a) Leonardo’s
2-node controller; (b) Raphael’s 2-node controller.

8. Discussion

In this paper, we consider the case where macro-actions are
given. This will often be the case in multi-robot domains
as controllers typically exist for common tasks such as nav-
igation, grasping and manipulation. Even if the individual
performance of each controller is poor, by planning at the
macro-action level, they may be able to be sequenced in
way that effectively solves the problem. Nevertheless, con-
trollers can also be generated from a high-level description.
For example, related work has shown how a motion planner
can be used to generate controllers along with distributions
for completion times and terminal conditions given initial
conditions (Omidshafiei et al., 2015). As a result, the prob-
abilities for our model in equation (5) could be generated
and a reward function can be defined (e.g. Omidshafiei et al.
(2015) used a simple additive reward structure with indi-
vidual rewards from the motion planner). The cited work
requires a model of the low-level dynamics, but it can be
continuous and complex. The high-level problem descrip-
tion consists of defining regions of interest that the motion

planner will use as initial conditions and target as terminal
conditions (i.e. regions of belief space that the robots should
navigate to). Omidshafiei et al. (2015) assume the regions
are given and each controller (i.e. motion plan) is indepen-
dent, but alleviating these limitations is an area of future
work.

Sometimes, it may not be possible to generate even a
high-level model or simulator for a problem of interest. In
these cases, the method in this paper cannot be used. One
alternative is learning a solution (i.e. finite-state controllers
for the robots) directly from data. Such a learning method
has been explored where the data is given as a set of trajec-
tories (in the form of macro-actions taken and observations
seen over time for each agent as well as rewards received
for the team) (Liu et al., 2016). Experiments show that con-
trollers can be learned that outperform ‘expert’ controllers
from a relatively small amount of data. The amount of data
is insufficient to learn a model, but allows high-performing
solutions to be learned. In this paper, we learn the timing
distributions and terminal conditions for each macro-action

1776 The International Journal of Robotics Research 35(14)

Fig. 11. Comparison of the simple and incremental versions of MDHS showing the value produced over time (in seconds). Note the
5-node controller graphs are cropped and do not show the final value of 1302: (a) one node; (b) five nodes.

separately (by executing them in the domain from various
initial conditions), but the domain (or a sufficiently accu-
rate simulator) may not be available and many macro-action
executions may be necessary. Future work could examine
issues such as how much data is needed to learn an accu-
rate model and how robust the methods in this paper are to
model errors.

9. Summary and conclusion

We have introduced an extended MacDec-POMDP model
for representing cooperative multi-robot systems under
uncertainty using a high-level problem description, and
developed MDHS, a new MacDec-POMDP planning algo-
rithm that searches over policies represented as finite-state
controllers. While our previous work introduced macro-
actions to Dec-POMDPs and showed that multi-robot prob-
lems could be represented and solved using them, the new
model and planner are applicable to a much wider range of
multi-robot problems, for two reasons.

First, we now require a much simpler simulator for the
planning phase—one that models only the outcomes of
motor controller execution, rather than the execution itself.
Such a simulator is substantially easier to build for real
robot problems. Second, MDHS can solve significantly
larger problems than previous planners. For the bartenders
and waiters problem, an accurate low-level simulator would
have been hard to build; even if it had been built, generat-
ing a solution for the resulting problem would have been
beyond the reach of existing planners. MDHS was able
to automatically generate controllers for a heterogeneous
robot team that collectively maximized team utility, using
only a high-level model of the task. It is therefore a signif-
icant step forward in the development of general-purpose
planners for cooperative multi-robot systems.

Acknowledgements

The research was completed while Chris Amato was in the Depart-
ment of Computer Science at the University of New Hampshire

and George Konidaris was in the Departments of Computer Sci-
ence & Electrical and Computer Engineering at Duke University.
We would also like to thank Wheeler Ruml for helpful discussions
about heuristic search and Sammie Katt for assisting with finding
errors in the paper.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by US Office of Naval Research under MURI
program award #N000141110688, NSF award #1463945 and the
ASD R&E under Air Force Contract #FA8721-05-C-0002. Opin-
ions, interpretations, conclusions and recommendations are those
of the author and are not necessarily endorsed by the United States
Government.

Notes

1. Specifically, the previous Dec-POSMDP model considers a
factored state which consists of the locations of each robot and
an environment state. The transitions for the locations each
robot are assumed to be independent of the other robots (i.e.
no collisions) and the environmental state is assumed to be
fully observable in particular locations. Therefore, the model
used in this paper is the generalization of the previous one,
allowing the algorithms in this paper to be applied in both
cases (and the algorithms for the more specific Dec-POSMDP
can be extended to this model).

2. Currently, human input is used to choose the macro-actions
and abstract to sensor and communication information into
discrete high-level observations, but removing this input is an
area of future work.

3. For cases where the last macro-action does not terminate at
exactly time step T , a partial reward may be generated by the
simulator from the underlying Dec-POMDP or other reward
model.

4. There is a standard error of approximately 1.3 in these calcu-
lations.

Amato et al. 1777

References

Amato C, Bernstein DS and Zilberstein S (2010) Optimizing
fixed-size stochastic controllers for POMDPs and decentral-
ized POMDPs. Journal of Autonomous Agents and Multi-Agent
Systems 21(3): 293–320.

Amato C, Chowdhary G, Geramifard A, et al. (2013) Decentral-
ized control of partially observable Markov decision processes.
In: Proceedings of the fifty-second IEEE conference on decision
and control, pp. 2398–2405.

Amato C, Konidaris GD, Cruz G, et al. (2015) Planning for
decentralized control of multiple robots under uncertainty. In:
Proceedings of the international conference on robotics and
automation, pp. 1241–1248.

Amato C, Konidaris GD and Kaelbling LP (2014) Planning
with macro-actions in decentralized POMDPs. In: Proceed-
ings of the international conference on autonomous agents and
multiagent systems, pp. 1273–1280.

Amato C and Zilberstein S (2009) Achieving goals in decentral-
ized POMDPs. In: Proceedings of the international conference
on autonomous agents and multiagent systems, pp. 593–600.

Bai H, Hsu D and Lee WS (2013) Integrated perception and plan-
ning in the continuous space: A POMDP approach. Interna-
tional Journal of Robotics Research 33: 1288–1302.

Belta C, Bicchi A, Egerstedt M, et al. (2007) Symbolic planning
and control of robot motion. Robotics & Automation Magazine,
IEEE 14(1): 61–70.

Bernstein DS, Amato C, Hansen EA, et al. (2009) Policy itera-
tion for decentralized control of Markov decision processes.
Journal of Artificial Intelligence Research 34: 89–132.

Bernstein DS, Givan R, Immerman N, et al. (2002) The com-
plexity of decentralized control of Markov decision processes.
Mathematics of Operations Research 27(4): 819–840.

Boutilier C (1999) Sequential optimality and coordination in
multiagent systems. In: Proceedings of the international joint
conference on artificial intelligence, pp. 478–485.

Capitán J, Spaan MTJ, Merino L, et al. (2013) Decentralized
multi-robot cooperation with auctioned POMDPs. Interna-
tional Journal of Robotics Research 32(6): 650–671.

Cassandra AR, Kaelbling LP and Littman ML (1994) Acting opti-
mally in partially observable stochastic domains. In: Proceed-
ings of the national conference on artificial intelligence, pp.
1023–1028.

Dias MB and Stentz A (2003) A comparative study between
centralized, market-based, and behavioral multirobot coordina-
tion approaches. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems, volume 3, pp.
2279–2284.

Emery–Montemerlo R, Gordon G, Schneider J, et al. (2005)
Game theoretic control for robot teams. In: Proceedings
of the international conference on robotics and automation, pp.
1163–1169.

Foote T (2015) turtlebot_navigation - ros wiki. Available at:
http://wiki.ros.org/turtlebot_navigation (accessed May 2015).

Gerkey BP and Matarić MJ (2004) A formal analysis and tax-
onomy of task allocation in multi-robot systems. International
Journal of Robotics Research 23(9): 939–954.

Ghavamzadeh M, Mahadevan S and Makar R (2006) Hierarchi-
cal multi-agent reinforcement learning. Journal of Autonomous
Agents and Multi-Agent Systems 13(2): 197–229.

Horling B and Lesser V (2004) A survey of multi-agent organiza-
tional paradigms. The Knowledge Engineering Review 19(4):
281–316.

Kaelbling LP, Littman ML and Cassandra AR (1998) Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101: 1–45.

Kalra N, Ferguson D and Stentz A (2005) Hoplites: A market-
based framework for planned tight coordination in multirobot
teams. In: Proceedings of the international conference on
robotics and automation, pp. 1170–1177.

Liu M, Amato C, Anesta E, et al. (2016) Learning for decentral-
ized control of multiagent systems in large partially observ-
able stochastic environments. In: Proceedings of the national
conference on artificial intelligence, pp. 2523–2529.

Liu M, Amato C, Liao X, et al. (2015) Stick-breaking policy learn-
ing in Dec-POMDPs. In: Proceedings of the international joint
conference on artificial intelligence, pp. 2011–2017.

Loizou SG and Kyriakopoulos KJ (2004) Automatic synthesis of
multi-agent motion tasks based on LTL specifications. In: Pro-
ceedings of the forty-third IEEE conference on decision and
control, volume 1, pp.153–158. IEEE.

Messias JV, Spaan MTJ and Lima PU (2013a) GSMDPs for
multi-robot sequential decision-making. In: Proceedings of the
twenty-seventh AAAI conference on artificial intelligence, pp.
1408–1414.

Messias JV, Spaan MTJ and Lima PU (2013b) Multiagent
POMDPs with asynchronous execution. In: Proceedings of
the international conference on autonomous agents and multi
agent systems, pp. 1273–1274.

Meuleau N, Kim KE, Kaelbling LP, et al. (1999) Solving
POMDPs by searching the space of finite policies. In: Proceed-
ings of the conference on uncertainty in artificial intelligence,
pp. 417–426.

Oliehoek FA (2012) Decentralized POMDPs. In: Wiering M and
van Otterlo M (eds) Reinforcement Learning: State of the Art
(Adaptation, Learning, and Optimization, vol. 12). Heidelberg:
Springer Berlin, pp. 471–503.

Oliehoek FA and Amato C (2016) A Concise Introduction to
Decentralized POMDPs. Springer.

Omidshafiei S, Agha–mohammadi A, Amato C, et al. (2015)
Decentralized control of partially observable Markov decision
processes using belief space macro-actions. In: Proceedings of
the international conference on robotics and automation, pp.
5962–5969.

Parker LE (1998) ALLIANCE: An architecture for fault toler-
ant multirobot cooperation. IEEE Transactions on Robotics and
Automation 14(2): 220–240.

Poupart P and Boutilier C (2003) Bounded finite state controllers.
Advances in Neural Information Processing Systems 16:
823–830.

Puterman ML (1994) Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley–Interscience.

Stilman M and Kuffner J (2005) Navigation among movable
obstacles: Real-time reasoning in complex environments. Inter-
national Journal on Humanoid Robotics 2(4): 479–504.

Stroupe AW, Ravichandran R and Balch T (2004) Value-based
action selection for exploration and dynamic target observation
with robot teams. In: Proceedings of the international confer-
ence on robotics and automation, volume 4, pp.4190–4197.
IEEE.

1778 The International Journal of Robotics Research 35(14)

Sutton RS, Precup D and Singh S (1999) Between MDPs and
semi-MDPs: A framework for temporal abstraction in rein-
forcement learning. Artificial Intelligence 112(1): 181–211.

Szer D and Charpillet F (2005) An optimal best-first search
algorithm for solving infinite horizon DEC-POMDPs. In: Pro-
ceedings of the European conference on machine learning,
pp.389–399.

Thrun S (1999) Monte carlo POMDPs. Advances in Neural
Information Processing Systems 12: 1064–1070.

Wu F, Zilberstein S and Chen X (2010a) Point-based policy
generation for decentralized POMDPs. In: Proceedings of the
international conference on autonomous agents and multiagent
systems, pp.1307–1314.

Wu F, Zilberstein S and Chen X (2010b) Rollout sampling pol-
icy iteration for decentralized POMDPs. In: Proceedings of
the conference on uncertainty in artificial intelligence, pp.
666–673.

