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Abstract

Traditionally, robot grasping has been approached in two separate phases: first, find-
ing contact positions that yield optimal grasps and, then, moving the robot hand to
these positions. This approach works well when the object’s location is known exactly
and the robot’s control is perfect. However, in the presence of uncertainty, this ap-
proach often leads to failure, usually because the robot’s gripper contacts the object
and causes the object to move away from the grasp. To obtain reliable grasping in
the presence of uncertainty, the robot needs to anticipate the possible motions of the
object during grasping. Our approach is to compute a policy that specifies the robot’s
motions over a range of joint states of the object and gripper, taking into account
the expected motion of the object when pushed by the gripper. We use methods
from continuous-state reinforcement-learning to solve for these policies. We test our
approach on the problem of whole-arm grasping for a PR2, where one or both arms,
as well as the torso can all serve to create contacts.
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Chapter 1

Introduction

1.1 Problem Motivation

This thesis presents a reinforcement learning approach to whole-arm robotic grasping.

The motivation for the project is two-fold. First, we want to view grasping as a process

where the movement of the object is exploited, rather than avoided. Second, we want

to explore grasping large objects using the arms and torso of the robot.

Traditionally, robot grasping has been approached in two separate phases: first,

finding contact positions that yield optimal grasps and, then, moving the robot hand

to these positions. This approach works well when the object’s location is known

exactly and the robot’s control is perfect.

However, this approach often fails in the presence of uncertainty, usually because

the robot’s gripper contacts the object in an incorrect position, which causes the ob-

ject to move away from the grasp.This thesis investigates an approach that considers

the process of bringing the object into a grasp and not just moving to the ideal final

contacts.

Second, we want to develop an algorithm for planning grasps on large objects with-

out special features like handles; these grasps should exploit unconventional contact

points along the robot’s arm and torso. Although there has been extensive research on

grasping with hands, research on single and dual whole-arm grasping is quite limited.

11



1.2 Contributions

We present a framework to model the interactions between the robot and the object

to be grasped. This is used to plan robust grasping procedures that incorporate

the object dynamics in the grasp process. Our approach departs from conventional

grasping procedures by treating the problem of finding contact locations and the grasp

approach as a completely integrated process.

This was done by modeling the grasping problem as a Markov decision process

and extending existing metrics on a final grasp, such as force closure, to reward

functions that provide an objective for a whole policy. We generated policies using

reinforcement learning. These policies exploit object dynamics; for example, the robot

successfully grasps objects by pushing them into its torso to create contacts for a stable

grasp. We developed policies that work for single and dual whole-arm manipulation

and tested these policies in simulation and on a real robot. In developing these

policies, we investigated different representations for the state space and performed

empirical comparisons to show their relative advantages and disadvantages.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2 we introduce back-

ground material on grasping, Markov decision processes, and reinforcement learning

and then we discuss related work. In chapter 3 we describe the detailed problem for-

mulation and define the system design in simulation and on a real robot. In Chapter

4 we explain our experimental design and present our results. Finally, we conclude

with an outline of future work in Chapter 5.
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Chapter 2

Background

In this chapter we review a small amount of the most relevant background material

in grasping, Markov decision processes, and reinforcement learning. In Section 2.1.1

we define the metrics for analyzing a grasp and in Section 2.1.2 we discuss traditional

robotic grasping methods for synthesizing and executing grasps. Then, in Section 2.2

we introduce Markov decision processes and traditional methods for solving them.

In Section 2.3 we introduce reinforcement learning and explain how it can be used

to solve Markov decision processes. Finally, we discuss previous work that is most

closely related to ours in Section 2.4

2.1 Grasping

In this section, we will discuss robotic grasping. We will discuss how to analyze a grasp

in Subsection 2.1.1. This will give an overview of existing metrics for determining

the quality of a grasp and how to compute these metrics. Then, in Subsection 2.1.2

we will discuss how these quality metrics are used to implement grasps using a real

robot.
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Figure 2-1: Frictional Point Contact [15]

2.1.1 Force and Form Closure

There has been a great deal of research on robotic grasping. In particular, geometric

approaches have been developed to analyze the properties of a grasp. In this section

we will outline two grasp properties, however, we recommend the survey by Bicchi

and Kumar [4] for a thorough introduction to grasping.

Informally, a grasp has the force closure property if it can counteract any possible

applied external force. A grasp has the form closure property if it is capable of

preventing any motion of the grasped object. The analysis to determine whether a

grasp has the force or form closure property only considers point contacts. A contact

exerts a force f and torque τ on an object. These can be combined into a wrench:

w = [f , τ ]T ∈ Rk, (2.1)

where k = 3 for planar systems and k = 6 for 3-dimensional systems.

Point contacts are modeled by either a frictionless point contact, frictional point

contact, or soft contact. In this thesis, we modeled our contacts as frictional point

contacts. Due to Coulomb friction, the force applied by the frictional point contact

forms a friction cone about the inward pointing normal n. All forces exerted by the

point contact are within an angle α of the normal, where α = tan−1(µ) and µ is

the friction coefficient. An example of a frictional point contact is shown in Figure 2-1.

14



It is only necessary to compute the wrenches for the outermost forces of the friction

cone, fl, fr, for determining if a grasp has the force closure property. This is because

the interior forces of the friction cone are included in the positive linear span of fl, fr.

Thus the wrenches from the point contacts are wl = [fl, τl]
T and wr = [fr, τr]

T .

A set of wrenches, W, is said to achieve force closure when the positive linear

span of W is equal to Rk, where the positive linear span is computed as:

positive linear span(W) =

{
n∑
i=1

αwi : α ≥ 0

}
. (2.2)

We can compute whether a grasp has the force closure property from the following

theorem.

Theorem 1. A set of vectors wi positively spans the entire space Rk if and only if

the origin is in the interior of the convex hull of the set of vectors wi [14] .

The second grasp quality metric we review is form closure. A grasp with the

form closure property has the capability to prevent any motion of the grasped object.

Ferrari and Canny showed that a frictionless force closure grasp is also a form closure

grasp [9]. Thus, a simple way to compute if a grasp achieves the form closure metric

is to execute the force closure test with the friction coefficient α = 0.

2.1.2 Synthesizing and Executing Grasps

Given a criterion, such as force or form closure, the traditional strategy is to search

for a set of finger placements on the object that satisfies the criterion, and then to

move the robot to those placements. Grasp synthesis is the task of finding grasping

configurations for the robot and a target object; this has been studied extensively and

a variety of methods have been developed from off-line computation with grasping

databases to on-line planning with sampling-based approaches. Given a grasping

configuration, a motion planner is then used to find a path to move the robot to

those contact positions. This, in and of itself, is a hard problem because it is necessary

to a path that is feasible in the sense that there is a reachable collision-free inverse-
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kinematic solution to move the robot to the grasping pose. A survey of grasp synthesis

techniques and algorithms is given by Shimoga [19].

2.2 Markov Decision Processes

In order to plan to take advantage of the dynamics of grasping, we need to model the

interaction between the robot and the object. However, we cannot perfectly model

the dynamics because we do not know the exact properties of the world, such as the

center of mass of the object, coefficient of friction of the object and robot, and many

other unknown variables. Instead, we only have estimates of the state properties,

such as the location of the robot and object. To account for our inaccurate estimate

of the world state and imperfect model of the dynamics, we treat the results of the

robot’s actions as being stochastic. A Markov decision process is a formal model of

this type of process.

An MDP is a framework for modeling decision making in situations where out-

comes are stochastic and partly under control of an agent [23]. An MDP is constructed

by describing the states, actions, transitions and reward functions of a dynamic sys-

tem. The solution to an MDP is a policy that determines the action the agent should

take for every state of the world.

More formally, an MDP is a 4-tuple 〈S,A, T,R〉, where:

• S is a finite set of states of the world.

• A is a finite set of actions.

• T is the state-transition function: T (s, a, s′) describes the probability of ending

in state s′, given the agent starts in state s and takes action a.

• R is the reward function: R(s, a) gives the observed reward for taking action a

in state s.

The solution to an MDP is a policy π : S → A, which is a mapping that specifies

for each state the action to be taken. An agent following the policy from an initial

16



start state will observe a sequence of rewards (r1, r2, r3, ...). Rather than evaluating

the policy on its sum of observed rewards, it’s typical to use the sum of discounted

rewards, which means rewards in the future are less important than rewards received

immediately. The sum of its discounted, called the return, is computed as:

R = r1 + γr2 + γ2r3 + γ3r4 + . . . , (2.3)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate.

The goal is to find a policy that maximizes the expected discounted sum of rewards

over some horizon of interest. In our case, we focus on an infinite horizon with

discounted rewards. For each policy, π, we can define a value function, Vπ(s), which

is the expected discounted sum of the rewards earned by following policy π from

state s. Similarly, we can define a Q-value function, Qπ(s, a), which is the expected

discounted sum of rewards for starting in s, taking action a, and then continuing to

act using policy π.

A policy is optimal for state s if its value at that state is greater than or equal

to the value for any other policy at that state. For an MDP, it has been shown that

there exists at least one policy that is optimal for all states. Optimal policies, π∗,

and corresponding value functions, V ∗, can be computed using dynamic programming

techniques called value iteration and policy iteration.

Value Iteration

Value iteration is a method to solve for an optimal policy, π∗, and corresponding

value function, V ∗. Given an arbitrary initial value function V0, we can compute a

sequence of value functions Vi by using the following update:

Vi+1(s) = maxa

{
R(s, a) + γ

∑
s′

T (s, a, s′)Vi(s
′)

}
. (2.4)
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Vi converges to the optimal value function V ∗. Then, the optimal policy π∗ can be

derived by V ∗ :

π∗(s) = argmaxa V
∗(s′|s, a). (2.5)

In order to achieve the optimal value function V ∗, there needs to be an infinite

number of iterations; however, in practice, value iteration is set to terminate when

the value function changes by only a small amount. It also usually happens that

policy π derived from Vi is optimal long before Vi is close to V ∗ [3].

Each iteration of value iteration can be performed in O(|A||S|2) steps [6]. Because

of this, value iteration can quickly become intractable with large state and action

spaces.

2.3 Model-Free Reinforcement Learning

Reinforcement learning is an area of machine learning in which the goal is to learn

a policy to maximize a numerical reward signal [3]. The learner is not given explicit

actions to take, but must discover them on its own. One characteristic of many

reinforcement learning problems is that actions may not yield immediate reward, but

may still be important for a delayed reward. Furthermore, in reinforcement learning,

the learner must balance between taking exploration actions to explore the space and

exploitation actions to accumulate reward from actions it has already found to be

effective.

Reinforcement learning can be used to find a solution of an MDP and other dy-

namic systems where the transition and reward functions are not explicitly given

ahead of time. In our case, we are interested in reinforcement learning because we

are using a continuous space MDP and cannot use traditional methods for solving

MDPs.

Model-free reinforcement learning has been applied in robotics for solving contin-

uous MDPs in which the goal is to learn an approximate value or Q-value function.

This differs from model-based reinforcement learning, which attempts to learn tran-

sition and reward models and then use value iteration on those models to determine
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a policy. The work in this thesis is model-free and uses a simulator to describe

the transition function. The following sections briefly describe the algorithms used in

this thesis. Barto and Sutton give a thorough analysis of these reinforcement learning

algorithms [3].

2.3.1 SARSA

SARSA (State-Action-Reward-State-Action) is a reinforcement learning algorithm

used for learning the Q-value function of an MDP. SARSA is particularly appropriate

when combined with function approximation (which we will discuss later) and/or

when the domain is not strictly Markov. SARSA is an ‘on-policy’ learning algorithm:

an agent will interact with the environment and update its Q-value function based

on the actions it takes and the reward it receives.

Discrete one-step SARSA Algorithm

Initialize Q(s, a) arbitrarily

Repeat for each episode:

Initialize s

a = π(s), where π is derived from Q

Repeat for each step of episode:

Take action a, observe r, s′

a′ = π(s′)

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] // update rule

s← s′; a← a′

Until s is terminal

Figure 2-2: Pseudocode for Discrete SARSA [3]

Figure 2-2 shows the the algorithm for a simple discrete one-step SARSA. First,

the Q-value function is initialized arbitrarily. Then, a number of learning episodes

are run. During each learning episode, the agent starts from an initial start state
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and then takes an action based on the policy derived from the Q-value function. It

observes a reward and then updates the Q-value function by an amount adjusted by

the learning rate α. The update rule is shown in Figure 2-2.

In this subsection, we will discuss the learning rate parameter α and how the

policy is derived from the Q-value function for the SARSA algorithm. Next, we will

describe how to extend the discrete one-step SARSA to include eligibility traces to

update more states in the update rule. Finally, we will explain how SARSA can be

used with continuous spaces using function approximation.

Adaptive Step Size

The step size parameter, α, for the gradient descent update can directly effect the

performance of SARSA. If α is too large, the policy may never converge on an effective

policy; alternatively, if α is too small, the the algorithm converges too slowly. To

counteract these effects, we applied an adaptive step size technique developed by

Dabney and Barto [7].

Exploration versus Exploitation in SARSA

The policy derived from the learned Q-value function is deterministic, in which for

every state there is only one action returned from π(s). This is found by using a

greedy policy:

π(s) = argmaxa Q(s, a) (2.6)

During the on-line learning process, the policy derived from the Q-value func-

tion is not deterministic. In SARSA, there is a trade-off between exploration and

exploitation. When selecting the next action, should the agent take actions that

provided good rewards in the past or should it take random actions that could even-

tually return even better reward? Our implementation takes both exploration and
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exploitation actions by using an ε-greedy policy:

π(s) =

 random action with probability ε

argmaxa Q(s, a) with probability 1− ε
(2.7)

We use a converging ε-greedy policy by setting ε = 1
t
. By using a converging ε-greedy

policy, the agent starts exploring the space by taking random actions and eventually

takes more exploitation actions as p(1− 1
t
)→ 0.

Convergence Properties

SARSA converges to the optimal Q-value function with probability 1 under the fol-

lowing assumptions: all the state-action pairs are visited an infinite number of times

and the policy converges in the limit to the greedy policy (this can be done by using

the converging ε-greedy policy described above) [3].

Discrete SARSA(λ)

Discrete one-step SARSA credits only the last action in a sequence of actions that

lead to a terminating state; however, it can be modified to credit many actions of the

sequence with the use of eligibility traces. By using eligibility traces we can greatly

improve the efficiency of learning a Q-value function.

An eligibility trace records the previous state and action pairs visited in a sequence

of actions. The update step of the discrete-SARSA algorithm is modified to give some

of the eligible state-action pairs credit or blame for the error. The degree previous

state-action pairs are updated is associated with a parameter λ ∈ [0, 1]. If λ = 1,

then the credit given falls off by γ per step; conversely, if λ = 0 then SARSA(λ) is

equivalent to one-step SARSA. Figure 2-3 shows the algorithm for SARSA(λ), the

modified version of discrete one-step SARSA that uses eligibility traces.
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Discrete-SARSA(λ)

Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a

Repeat for each episode:

Initialize s

a = π(s), where π is derived from Q

Repeat for each step of episode:

Take action a, observe r, s′

a′ = π(s′)

δ ← r + γQ(s′, a′)−Q(s, a)

e(s, a)← e(s, a) + 1

for all s, a:

Q(s, a)← Q(s, a) + αδe(s, a)

e(s, a)← γλe(s, a)

s← s′; a← a′

Until s is terminal

Figure 2-3: Pseudocode for Discrete SARSA(λ) [3]

2.3.2 Linear Gradient-Descent SARSA

Although SARSA can be used in a discrete state space (where the Q-value function is

represented with a table), an adaption called Linear Gradient SARSA allows it to work

for continuous spaces using features of the state space and function approximation.

Function approximation is a technique to represent a function when it is computa-

tionally intractable to represent exactly (e.g.: in tabular form) [13]. We’re interested

in parametric function approximation methods which use a finite set of arguments.

In our case, the finite set of arguments are features of the state space, which are

functions φi(s) that compute some useful property of a state. Then, we can represent
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the value of a state as a linear combination of the features:

Q(s, a) = θTφs =
n∑
i=1

θ(i)φs(i), (2.8)

where φs is a column vector containing the features of a state s and θ is a column

vector of the same length.

θ contains the weights that are adjusted while implementing Linear Gradient-

Descent SARSA to make Q(s, a) as close to Qπ(s, a). Figure 2-4 shows the pseudocode

for Linear Gradient-Descent SARSA.

Linear Gradient-Descent SARSA(λ)

Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a

Repeat for each episode:

Initialize s

a = π(s), where π is derived from Q

Repeat for each step of episode:

Take action a, observe r, s′

a′ = π(s′)

δ = r + γQ(s′, a′)−Q(s, a)

et = γλet + φsQ(s, a)

θ ← θ + αδtet

s← s′; a← a′

Until s is terminal

Figure 2-4: Pseudocode for Linear Gradient SARSA [3]

State-Space Features

In order to use the Gradient-Descent SARSA the features of the state space must be

represented in a single column vector φs, which is shorthand notation for the following
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column vector:

φs = φ(s) = [φ1(s), φ2(s), φ3(s) . . . φn(s)]T . (2.9)

The features are functions that compute some useful property of a state. Typically,

features are computed by applying basis functions on some numerical properties of a

state. In this research, we investigated two types of basis functions: tile coding, and

radial basis functions.

Tile coding exhaustively partitions the input. We used a grid-based tiling in

which the input space was partitioned into uniform tiles. Every state will lie in one

particular tile and each tile corresponds to one element of the feature vector φs; hence,

tile coding is binary (0-1) valued. Sutton and Barto do a more thorough analysis of

tile codings in [3].

Radial Basis Functions generalize tile coding into continuous-valued features. We

can center an RBF feature i at some state ci of the state space. Then, for any

particular state we can compute the value for that feature:

φs(i) = exp

(
−||s− ci||

2

2σ2
i

)
. (2.10)

Now, each feature outputs a value in the interval [0,1].

There are trade-offs between using tile codings versus radial basis functions. The

value for each tile coding feature can be computed in constant time and only requires

one bit of memory because it is binary valued. However, tile codings may require a

larger number of features to appropriately approximate the state space. Additionally,

since tile coding features are binary, they can form discontinuous, non-differentiable

function approximations.

Alternatively, using RBF features to approximate the value function can produce

a smooth and differentiable function approximation. Since RBF features have more

descriptive power, there might not need to be as many features as in tile coding.

However, computing the value for each feature requires evaluating an exponential

function and requires more memory to store.
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2.4 Related Work

There is a lot of literature in grasping using a small number of point contacts

(typically fingers of a robot hand) some of which we talked about in Section 2.1.1.

In this section, we will focus on literature more relevant to whole-arm grasping and

enveloping grasps. An enveloping grasp is formed by wrapping the fingers[arms] and

the palm[torso] around an object, this is in contrast to a pinching grasp, where the

object is restrained by the fingertips at certain contact points [12].

First, we discuss an approach for planar enveloping grasps. Then, we investigate

more recent literature in whole-arm grasping. And finally, we discuss an approach for

grasping that uses reinforcement learning.

Enveloping Grasps

In 1988, Trinkle et al. [22] developed a planner and simulator for two-dimensional

frictionless, enveloping grasps. In this case, the robot hand was composed of a palm

and two hinged fingers and the object was a rigid body convex polygon.

Grasping was divided into three phases: pre-liftoff, lifting, and grasp-adjustment. In

the pre-lift off phase the hand is moved directly over the object such that the center of

the gripper is in line with the center of the object. During the lifting stage, the hand

deliberately moves the object to direct it towards the palm. Once a force-closure grasp

is achieved the grasp-adjustment phase begins. This simulates different movements

of the fingers to find position increment/decrement actions that will lead to a form

closure grasp. This work is related to our approach because the planner intentionally

pushes the object into a grasp.

Whole-Arm Grasping Approaches

Hsaio and Lozano-Pérez [11] developed a system for enveloping whole-arm grasps

and tested it in simulation. Their approach used a human to demonstrate grasping

by using a teleoperated simulated robot. The demonstrations were completed on a
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set of template grasps with objects modeled by three primitives: boxes, cylinders,

and spheres. To grasp a new target object, the system selected the template grasp

of a template object that was most similar to the target object. They applied a

transformation to map the contact points from the template object to the target

object. A collision-free trajectory was found with the mapped contacts to create a

grasp trajectory. The grasp trajectories were then executed in simulation.

There has been some previous work that, like ours, focusses on whole-arm grasps.

Seo et al. [18] developed an approach for planar whole-arm grasping. This work used

the traditional grasping approach of separating the problem into separate phases:

first, finding contact positions that yield optimal grasps, and, then, moving the robot

to these positions. The algorithm developed by Seo et al. could handle complex

non-convex shapes.

reinforcement learning and Grasping

Stulp et al. [21] demonstrated a model-free reinforcement learning approach to grasp-

ing under uncertainty and verified it in simulation. This approach uses a popular pol-

icy search algorithm called Policy Improvement with Path Integrals (PI2). PI2 takes

an initial policy encoded as a Dynamic Motion Primitive (DMP) and optimizes it us-

ing reinforcement learning. The initial policies were generated using the open-source

planner GraspIt!.

GraspIt! generates a pre-shape pose and grasp pose from an initial robot config-

uration and object. Then, a minimum-jerk trajectory is formed that moves the end

effector from the initial pose to the pre-shape pose and then to the final grasp pose.

This trajectory is encoded as a DMP and optimized using PI2 with the constraint

that the final grasp pose is kept constant. In this method, the robot learned to push

the object forward during the pre-shape pose before moving to the grasp pose. This

made farther objects easier to grasp and pushed closer objects into the hand. They

also achieved positive results when introducing noise into the simulator. This result

is similar to ours in which the robot learns to exploit object dynamics to achieve a
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better a grasp. Although both approaches use reinforcement learning, they are not

interchangeable. Their approach still treats the grasping problem in two separate

phases: finding optimal grasp contacts and then moving the robot to the optimal

contacts. Alternatively, our approach never specifies the contact configurations, only

the criteria for an end grasp configuration.
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Chapter 3

Approach

In this chapter, we discuss our approach for whole-arm robotic grasping using rein-

forcement learning. In Section 3.1 we discuss the grasping problem formulation and

in Section 3.2 we formalize the grasping problem using an MDP. Then, in section 3.3

we discuss how we use reinforcement learning for whole-arm grasping in simulation.

Finally, in Section 3.4 we discuss the execution of whole-arm grasping on a real robot.

The robot used in our experiments is the PR2 Robot developed by Willow Garage

[10].

Figure 3-1: Grasping Problem Formulation
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3.1 Grasping Problem Formulation

Our problem domain consists of a PR2, which has two arms, and a target object to

be grasped. The PR2 has the target object in front of it and can sense its location.

The objective is to grasp the object stably enough to lift it off the table by lifting the

torso. Possible failure modes are knocking the object out of reach or not grasping

stably so the object slips out when the torso lifts. Figure 3-1 illustrates our problem

setting.

For simplicity, we are modeling the problem as planar, however, this framework

could be extended for three dimensions. We approximate the problem using a cross-

section through the arms of the robot and allow the PR2 to only move its arms in the

plane. There are single and dual-arm versions of the problem; in the dual-arm case,

to reduce dimensionality of the problem for now, we assume the arm movements are

“mirrored”.

The object to be grasped is assumed to rest stably on a table in front on the

robot and to have a constant cross-section at the height of the arms. The object has

(x, y, θ) degrees of freedom on the surface and has varying starting locations. The

object is a simple circle or convex polygon object defined by its edges relative to its

origin; however this can be modified to include more complex objects.

3.2 Grasping Process as an MDP

The overall approach begins with modeling this problem as a continuous state MDP.

The state space is that of the object position and arm configuration and the actions

are incremental motions of the arm. The transition function is implemented using a

simulator or a real robot and the reward function is based on the force closure analysis

of a grasp.

The following defines the 4-tuple 〈S,A, T,R〉 for our MDP model:

States S
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• The underlying state space is described by six joint angles: θarm,i, three for

each arm and the location of the object (xo, yo, θo), where θo is the rotation

of the object about the z-axis.

The state space is represented using tile coding or RBF functions as de-

scribed in Section 2.3

• A state is a final state, s ∈ Sf , if it is a goal state or a failure state. A

goal state is a state such that the contacts by the links and torso on the

object create a force-closure grasp. A failure state occurs if the distance of

the object relative to the origin is greater than the sum of the link lengths

of one of the robot’s arms. A failure state can also occur if the opposing

arms of the robot contact each other; this is to ensure the robot does not

unnecessarily collide into itself and cause any damage.

Actions A

At every time step, each link can increase or decrease its joint angle by a discrete

value ∆θ or do nothing.

Transitions T

The transition function is handled by the simulator or robot. Given an action

a from the set of actions A, the simulator or robot will execute the action and

return the resultant state.

Reward Function R

Final states can receive two types of rewards: goal states receive a reward of 1.0

and failure states receive a reward of -100.0. Non-terminating states receive a

score of -0.5 for one contact and -0.25 for two or more contacts. All other non-

terminating states receive a reward of -1.0. Note that only final states receive
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a reward greater than 0.0 or less than -1.0.

Rf (s) =



10.0 force closure

−0.25 two or more contacts

−0.50 one contact

−1 nonterminating with no contacts

−100 failure state

(3.1)

Modifying the reward function can greatly affect the performance of the learned

policy. We went through different iterations of reward functions and found this

reward function to be the most successful. First, the failure states have a

particularly large negative punishment. This motivates the learned policy to

avoid failure states. Second, each non-terminating state has negative reward.

This encourages the solved policy to converge quickly. Lastly, we have reward

shaping in terms of contacts: non-terminating states with contact locations have

less penalty than that of non-terminating states without contacts.

The solution to an MDP is a policy π that maps states to actions. To find a solution

for our MDP we use reinforcement learning to find a Q-Value function as described

in Section 2.3.

3.3 Reinforcement Learning in Simulation

We implemented the reinforcement learning algorithm, Linear Gradient SARSA, in

simulation because it requires a high number of training examples. Because of this,

it is unrealistic to execute the learning on a real robot. Thus, we used Box2D to

simulate our domain.

3.3.1 Physics Simulator

Box2D [5] is an open source 2D Physics Engine for simulation of the motion of rigid

bodies. Some of its features include collision detection, top-down friction, and revolute
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joints with joint limits, motors, and friction. We are using the pybox2D software

which is a python wrapper for Box2D [2].

Each link of the robot is described by a set of convex polygons. These convex polygons

were created with the open source software Physics Body Editor [17]. Figure 3-2 shows

the convex polygons that make up the first link of the robot’s right arm. The objects

used in our software consist of simple convex polygons or circle objects described by

their edges and vertices or radii, respectively. However; the method for importing the

robot could be used for importing more interesting objects for grasping.

Figure 3-2: Convex Polygon Construction of the Robot’s Shoulder-flex Link

The Box2D simulator allows the input of custom coefficients of friction. The

friction coefficient between the table and object was 0.5 and the friction coefficient

between the object and the robot was 0.3.

Figure 3-3: Simulated Robot with a Small Object
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The following defines the 4-tuple 〈S,A, T,R〉 implemented by the Box2D simulator

for the MDP:

States S

The state space is described by the joint angles and the location of the object

(xo, yo, θo). Each of these can be retrieved using the native API functions for

Box2D.

Actions A

At every time step, each link can increase or decrease its joint angle by a discrete

value of 0.1 radians or do nothing.

Transitions T

The transition function is handled by commanding an action to the simulator.

The simulator adds the discrete action offset to the current joint angles to obtain

the desired joint angles. The simulated robot moves to the desired joint angles

by using a custom PD controller we built for the simulated robot. Once each

joint of the robot is within ± 0.033 radians of the desired joint angles the action

terminates; naturally, this leads to some stochastic behavior.

Reward Function R

Goal state We can retrieve the object contact information using the native

API functions for Box2D. These contacts include contact force and position

information, which is used to compute the frictional point contact wrenches

discussed in Section 2.1.1. Then, we can use ConvexHull, a method from

SciPy [8] to compute the convex hull of our contact position wrenches. The

simulator computes a force closure test by determining if the origin is in

the interior of the convex hull. If the object is in force closure, then the

simulator returns a reward of 0.

Failure state If the location of the object is further away than length of the

robot’s arm, then the grasp is deemed a failure and the simulator returns
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a reward of -100. Additionally, we can retrieve contact information of the

robot links to determine if there is a self collision between both arms; if

this is the case then the simulator returns a reward of -100 as well.

Nonterminating state with object contacts If the object is not in force

closure, but has two or more contact locations or one contact location,

then the simulator returns a reward of -0.25 or -0.5, respectively.

Nonterminating state Lastly, if there are no contacts and the object is not

too far away then the simulator returns the typical non-terminating state

reward state of -1.

Figure 3-3 is a picture of the simulated robot with a small box as the target object.

The robot is currently in the initial start state configuration in which the joint angles

are all zero. The object is a large box placed at (0,0.4) where the coordinate frame

is oriented between the two arms.

3.3.2 Learning Algorithms

We used Linear Gradient-Descent SARSA to learn a Q-Value function for our MDP.

We tested our implementation with the state space represented with tile coding and

radial basis functions, where the state values were the joint angles (3 or 6 values) and

object location (3 values). In the single-arm manipulation trials we only modeled

active arm’s joint angles leading to a total of six state parameters; however, in the

dual-arm case we had nine.

The learning algorithm is executed using a set of initial starting positions for the

object location. In our experiments we tested using a single initial position versus

using multiple locations. Additionally, we tested the performance of the learning

algorithm using testing locations that differed from the initial starting positions.

There are two main parameters in learning: grid discretization size and number of

learning episodes. In our experiments, we tested using different grid discretization

amounts and number of episodes. We tested with the number of episodes ranging

from one to ten. For the dual-arm case, the number of tiles ranged from 500 to
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1953125; and for the single-arm case the number of tiles ranged from 64 to 531441.

The results from these experiments can be found in Chapter 4.

3.4 Execution on Real Robot

First, we will give an overview on how to execute whole-arm grasping using a robot.

Then, we provide particular details on how we implemented the actions on the PR2.

3.4.1 Execution on Real Robot Overview

To run this approach on a real robot, the implementation uses both the simulator

and the actual robot. Figure 3-4 shows an overview of the start state for dual-arm

grasping of a large box. Figure 3-4a shows an image of the actual problem setup with

the PR2 robot and a grasping object. Prior to execution, the object is measured and

imported into the Box2D simulator. Then, the robot obtains the object’s location

using AR tags. Figure 3-4b shows the position of the object visualized in RVIZ, a

robot visualization tool available from the Robot Operating System (ROS) [1]. The

location is then imported into the simulator, which is shown by Figure 3-4c.

The reinforcement learning algorithm is executed using the simulator with the

imported object location. Once a policy has been found, the execution is completed

on the robot. First, the robot finds the object location using the AR Tags. The

object location and the robot’s current joint states are imported into the simulator.

The simulator is used to compute the features of the state and determine the next

action from the Q-value function as described in Section 2.3. The robot executes

this action and repeats this process until the simulator detects a terminating state

(failure or goal state). Figure 3-5 shows the final goal state of a dual-arm grasping

procedure.
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(a) Actual Start State

(b) RVIZ Representation

(c) 2D Simulator Representation

Figure 3-4: Start State for Dual-Arm Grasping with a Large Box

(a) Actual Grasp State

(b) RVIZ Representation

(c) 2D Sim. Representation

Figure 3-5: Final Grasp State for Dual-Arm Grasping with a Large Box

3.4.2 Execution on Real Robot Implementation Details

The PR2 has two arms, each with seven degrees of freedom. In our experiments, we

fix four of the arm joints, leaving three revolute joints per arm: shoulder pan, elbow

flex, and wrist flex. Additionally, we move the torso height so that the arms are

placed approximately at the middle height of the objects used in our experiments.
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Figure 3-6: Real Robot with a Small Object

Figure 3-6 shows a picture of the PR2 robot with a small box, the target object; this

figure shows the actual world state represented in the simulator shown in Figure 3-3.

3.4.3 PR2 Robot

In order to execute a policy we need to use the robot within the same framework of the

MDP. The following defines how the 4-tuple 〈S,A, T,R〉 of the MDP is instantiated

on the robot:

States S

Joint Angles The joint angles of the robot are published in real time on the

ROS /l arm controller/state and /r arm controller/state topics. When the

get state() function is called, the most recently published joint angles are

returned.

Representing and Locating the Object The objects used in our experi-

ments are simple convex polygons or circle objects. The size of the object

is measured and imported into our Box2D simulator. Each object has an
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Figure 3-7: Robot in RVIZ with Information about the Object Location from AR
Tags

AR tag placed at its center. This is used with the ROS ar pose marker

package to locate the object with respect to the Torso link (the coordinate

frame for the Box2D simulator). Figure 3-7 shows the data received from

the AR tags in RVIZ, a robot visualization tool available from ROS.

Actions A

The ROS JointTrajectoryAction package allows us to command joint-positions

for the PR2 robot. We are using this package to hold four of the joints fixed

and send the joint angles that correspond to our 3-degree of freedom model. For

each joint an action consists of three possible values (increment, decrement, or

do nothing) by a fixed step size of 0.1 radians. The action is executed using the

JointTrajectoryAction package and takes approximately 1 second to complete.

Transitions T

The transition function is handled by having the robot execute the correspond-

ing action and returns its state after the action is complete. The execution of

the action on the real robot is stochastic and the effect of the action differs from

the 2D model.

Reward Function R

The reward depends on the position of contact locations between the object
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and the robot. Currently, we are using the Box2D simulator to compute where

the contact locations are by importing the current joint angles and the object

location from the AR tags. Then the reward is simply the reward computed

from the simulator.
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Chapter 4

Experiments

In this chapter we discuss our experiments and their results. In Section 4.1 we discuss

experiments we conducted in simulation to analyze the grasping capability, behavior,

and performance of the policies we derived using reinforcement learning. Then, in

Section 4.2 we explore preliminary results of our approach executed on a real robot.

4.1 Simulation

This section describes our simulator experiments and results. More specifically, in

Subsection 4.1.1 we look at the time performance of representing the state with a

radial basis function versus tile coding. In Subsection 4.1.2 we discuss the experiments

we conducted in simulation to analyze the grasping capability and grasping behavior

of the policies we derived using reinforcement learning. In Subsection 4.1.5 we explore

the effect of varying learning parameters on performance.

4.1.1 State Representation

In Section 2.3 we described different basis functions to represent the state space. The

two functions we investigated were radial basis functions (RBF) and tile coding. We

decided to choose one basis function to represent the state space in our experiments.

We made this decision based on their time performance. To test the time performance,
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Figure 4-1: Time Performance of RBF versus Tile Coding

we discretized the state space using a uniform grid for the tile coding. Then, we used

the same discretization to place RBF features at each point of the grid. Thus, the

number of features are the same. Figure 4-1 shows the time for executing one episode

of SARSA for a single-arm grasp.

We evaluated the time performance at different tile discretization factors which

are described in detail in Subsection 4.1.5. The learning time for RBF increases

extensively with the tile discretization factor, whereas tile coding appears constant.

There is, in fact, an increase in time for tile coding that is not shown in this graph

because tile coding is significantly faster than RBF. This is not surprising given tile

features are binary valued and are evaluated in constant time.

Since RBF features took such a long time to compute, we used tile coding to

represent the state space in our simulations and experiments. In the results, detailed

below, we will see that tile coding had good performance even though it is possibly

less descriptive than RBF.
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4.1.2 Simulation Experiment

We tested our implementation on a variety of different objects located in different

starting locations relative to the robot. We tested different initial locations for single

and dual-arm manipulation. To give an overview of our quantitative results, we will

discuss two experiments: dual-arm grasping with a large box and single-arm grasping

with a small box.

One of the important properties of function approximation methods is its ability

to generalize. Essentially, this means we should be able to use our reinforcement

learning algorithm with a limited set of training locations for the obstacle, and then

use the derived policy for starting locations outside of the training set. To test our

implementation and its ability to generalize we have created three test cases that vary

across training data. Each test contains a testing region, which is a 0.254m× 0.254m

box and contains 100 evenly distributed testing points. The three test cases are:

Base Policy The robot executes a simple policy that increments each joint at every

time step.

Single Training Case The learning algorithm trains with the origin of the testing

region as the sole training point.

Multiple Training Case The learning algorithm trains with a set of testing points

distributed about the region.

Evaluation

Each policy is evaluated with 100 test points in simulation as described above. While

executing a policy, the robot accumulates a reward at every state it encounters. The

overall score for a policy is the accumulated discounted reward as described in Section

2.2. To evaluate a policy for a specific test point we look at two metrics: a boolean

value of whether or not the policy terminated in a successful goal state and the

accumulated discounted reward. A state is a goal state if the object is in a force

closure grasp. A state is a failure state if it falls into one of the following categories:
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Failure Modes

1. Time out: The robot took 35 steps and did not arrive at a terminating state.

2. Links touch: The right and left arms of the robot have collided. (This mode

is included as a failure to ensure the robot does not collide into itself and cause

any damage)

3. Object too far: The object is farther away than the length of the robot’s

arm. This occurs when the robot pushes the object away from the grasp and

the object is no longer within reach.

4.1.3 Simulation Results

Figure 4-2 shows the results from the three test cases for a dual-arm and single-arm

grasping task. Each graph shows the 100 evenly distributed points within the testing

region; the axes are with respect to the torso-link frame. The black squares indicate

the initial positions of the training locations. The white circles indicate successful

policies starting from that initial position and the ’x’ markers indicate policies starting

from that state led to a failure state.

In both cases, we see the base policy performs much worse than the learned

policies. In the dual-arm case, the base policy only has green colored failures. This

means it failed because the links touched. The learned policies only failed due to the

policy taking more than 35 steps. None of the policies had the third failure mode of

moving the object too far away.

For the single-arm case, there were two types of failures: time out and the object

moving too far away. The base policy had the most failures due to moving the object

too far away, followed by the single training case. The multiple training case showed

the best results with the highest percent of successful grasps and the highest average

accumulated reward.
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(a) Dual-Arm Simulation Results

(b) Single-Arm Simulation Results

Figure 4-2: Simulation Results

4.1.4 Terminating State Locations

To characterize the derived grasping policies, we looked at the terminating state of

a grasp. The following analysis builds upon our previous simulation results. In the

previous graphs, we placed the object origin at each specific test point and then

executed the policy until it reached a terminating state. We then labeled the initial

starting points with their terminating mode. Now, we are including the final position
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of the object when the robot completed its execution.

Figures 4-3 and 4-4 show the terminating state simulation results. If the grasp

was successful, then the goal state is shown with a white diamond. If the grasp was

unsuccessful, the failure state is indicated with a cross and a color indicating its failure

mode. The interesting result from the graphs is that most of the successful grasps

terminated in similar positions.

The dual-arm case, shown in Figure 4-3, has a little more variation from the single

and multiple training cases; however in general all of the grasps are within a relatively

small area compared to the testing region box. This shows an interesting result that

in order to grasp an object, the robot intentionally moved it to its torso where it

could use its torso as another contact for the object and achieve force closure.

In the single-arm case, shown in Figure 4-4, the terminating successful states seem

to have an even tighter grouping than in the dual-arm case. Additionally, most of the

terminating success states end outside of the testing region which means the object

had to move a significant amount in order to achieve a force closure grasp. Once

again, the multiple training case showed the best results and had very few failures

due to moving the object too far away.
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(a) Base Policy

(b) Single Training Case (c) Multiple Training

Figure 4-3: Dual-Arm Terminating State Results
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(a) Base Policy

(b) Single Training Case

(c) Multiple Training

Figure 4-4: Single-Arm Terminating State Results
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4.1.5 Parameter’s Effect on Performance

There are two major parameters in the learning algorithm: number of learning

episodes and tile discretization factor. A learning episode is one execution of the

SARSA algorithm from an initial start state to a terminal state as described in Sec-

tion 2.3. For the single-arm manipulation we tested five types of tile discretization

factors and for the dual-arm case we tested four types of discretization factors. Table

4.1 shows the total number of tiles for each discretization factor type. In our perfor-

mance plots, we describe our plots using tile discretization names listed in the table

rather than the total number of tiles. For example, we will describe a line as “2 tiles”

rather than 64 tiles in a single-arm manipulation graph.

Manipulation Type 2 Tiles 3 Tiles 4 Tiles 5 Tiles 6 Tiles

Single-Arm 64 729 4096 15625 46656

Dual-Arm 512 19683 262144 1953125 n/a

Table 4.1: Tile Discretization Types

Time Performance

First, we review the effect tile discretization and the number of learning episodes has

on the learning time. Figure 4-5 shows the performance for both single and dual-

arm manipulation. In general, the multiple training cases have a larger learning time

than the single training cases. This is a natural result because the multiple training

cases do learning from five more start states. As expected, increasing the number

of learning episodes tends to increase the total time. Additionally, increasing the

number of tiles also increases the total learning time. The time performance results

are encouraging because they are all under two seconds.

Grasp Performance

In this section we will review the effect of tile discretization and the number of learn-

ing episodes on grasp performance. Figure 4-6 shows the performance for dual-arm
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Figure 4-5: Time Performance vs. Number of Learning Episodes
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grasping. The top graph shows the percent of successful grasps and the bottom graph

shows the average discounted cumulative reward. The average discounted cumulative

reward plot is slightly smoother than the percent successful plot; however, they both

show the same behavior. The 2 tiles training cases never perform better than the

base policy. The training cases with more than 2 tiles perform better than the base

policy and tend to converge after one episode.

Figure 4-7 and 4-8 show the performance for single-arm manipulation. These

results are much more noisy than the dual-arm case. Additionally, the percent graph

differs from the average reward graph in a significant way. In the percent graph four

trials have a lower percent than the base policy; however, the base policy scores the

lowest in the average reward graph. Similarly to the dual-arm case, most of the trials

peak after the first learning episode.

The most curious aspect of these results is the fact that most of the learning

happened in the first episode. This is caused by the action selection during the

reinforcement learning. The set of actions are ordered with the first action being

the base policy, which increments every joint. During the learning algorithm, all ties

are handeled by selecting actions in order to the predefined action set. This leads

to selecting the base policy action quite often. Essentially, this means our learning

algorithm builds upon the base policy, which already works over 45% of the time for

both experiments.

For the dual-arm case, the problem is not too difficult. The robot learned to use

the base policy for most of its actions, but when it was located in a particular tile, it

took the action that incremented only the wrist joints. By doing so, the robot learned

to not touch its links together. Once this failure mode was avoided, the robot was

able to grasp these large objects fairly simply because they had no rotation.

The single-arm case was a much more difficult problem and did not show the same

results. The single-arm case shows much more noise, but tends to peak or reach near

a peak after one episode as well. For example, if we consider ‘single tiles 3’ in the

single-arm performance graphs we notice they tend to oscilate around 75% successful

with a reward of -11. Additionally, increasing the number of episodes does not have
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Figure 4-6: Dual-Arm Grasps Performance vs. Number of Learning Episodes
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(a) Single Training Case

(b) Multiple Training Case

Figure 4-7: Single-Arm Grasps Average Reward Performance vs. Number of Learning
Episodes
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(a) Single Training Case

(b) Multiple Training Case

Figure 4-8: Single-Arm Grasps Percent Successful Performance vs. Number of Learn-
ing Episodes
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a dramatic effect on performance.

The goal of these experiments were to analyze our algorithm’s ability to generalize.

The derived policies for the dual-arm case showed positive generalization results and

could consistently grasp objects outside of the training data. However, the single-arm

case did not show as good of results. We believe this could be caused by two main

problems. First, the tile coding may not be discretized enough to accurately represent

the state. Second, the reinforcement learning algorithm does not explore much of the

space.

4.1.6 Simulation Results Overview

We tested our implementation in simulation for single and dual-arm grasping using

objects located within a 0.254m × 0.254m testing region. The testing region was

used to test our implementation’s ability to generalize, the ability to perform well on

states unvisited in learning.

Overall, these experiments show two main results. First, using policies derived

from reinforcement learning performed better than using a basic grasping strategy of

incrementing each joint. Also, using multiple training cases performed better than a

single initial training position.

Second, the grasps incorporated object dynamics. In both the single and dual-arm

grasping experiments we saw successful terminal states occurred in groupings away

from the initial state positions. This implies the robot had to move the object to a

position where it could achieve a force closure grasp.

In addition to successfully achieving grasps, our implementation had positive time

performance results. We were able to derive successful policies that were solved in

seconds. This fast learning time is due to the fact that most of the policies took

relatively few learning episodes to reach top performance. This indicates that the

problem is relatively easy and simple to solve. Therefore, we can conclude that this

approach could be reasonable to extend to handle more uncertainty by adding more
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stochasticity in the simulator and a more complex domain with varying orientations

and non-convex objects.

4.2 Real Robot

We executed our approach on the PR2 as outlined in Section 3.4. The object is

imported into the simulator and a policy is derived from reinforcement learning. To

execute the policy the robot imports its current joint angles and the observed object

location into the simulator. The simulator uses the policy to return the next action

and computes the reward of the current state. The trial ends when the simulator

rewards the imported state as a terminal state or if 35 steps have been taken. After

the trial ends we elevate the PR2’s torso. We evaluate a grasp as successful if the

object is lifted off the table when the torso is elevated. In our results, we also include

whether the simulator detected the final state as successful or not.

Overall, we had mixed results for single and dual-arm manipulation. Table 4.3

and Table 4.2 shows quantitative results of testing our grasping approach on the PR2.

Each table shows the results for 10 test grasps. We tested the dual-arm grasps with

a large box and the single-arm grasps with a small box. We give an in-depth analysis

on some of the trials indicated with an asterisk.

4.2.1 Dual-Arm Grasping Results

Table 4.2 shows the results of 10 trials of dual-arm grasping with a large box. The

robot successfully grasped the object nine out of ten times. The single failure case

occurred in Trial 6 when the object was rotated π
2

radians. However, Trial 7 had a

different initial location with the same rotation and was successful. In some trials the

PR2 successfully grasped the object, but the simulator resulted in a failed state. To

describe some of the results, we will give an in depth analysis of Trials 2,5, and 6.
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Trial Object Location rotation Success (reality) Success (simulation)

1 (0.35, 5.5) 0 Yes No

2* (0.11, 4.57) 0 Yes Yes

3 (0.13, 4.44) 0 Yes No

4 (0.82, 5.38) 0 Yes No

5* (-0.79, 5.06) 0 Yes; links touched Yes

6* (0.49, 4.90) π
2

No No

7 (-0.19, 4.18) π
2

Yes No

8 (0.31, 4.40) π
4

Yes No

9 (1.10, 5.55) π
4

Yes Yes

10 (0.96, 5.10) π
4

Yes Yes

Total 9 4

Table 4.2: Dual-Arm Grasping Results

(a) PR2 Terminal State
(b) Simulator Terminal State

Figure 4-9: Terminal State for Trial 2 of Dual-Arm Grasping Results

Success with Simulator and with PR2

Trial 2 was successful in reality and simulation. Figure 4-9 shows the successful

terminal states in simulation and with the real robot. Although this was a positive

57



result, the simulated robot does not have the contact with the right end effector.

(a) PR2 Terminal State
(b) Simulator Terminal State

Figure 4-10: Terminal State for Trial 5 of Dual-Arm Grasping Results

In Trial 5 the PR2’s arms touched while executing the policy. The end result was

a successful grasp in reality and in simulation. However, the simulator should have

returned a failed state because of the arms touching failure mode. Figure 4-10b and

Figure 4-10a show images of the terminal state in simulation and on the PR2. The

large box has a very different orientation in the simulator than in the real world.

This offset in orientation made it possible for the links to not touch in the simulator.

Although the misrepresentation of the object did not result in a failed grasp, it did

have the undesired effect of allowing the PR2 links to collide.
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(a) PR2 Terminal State (b) Side View of PR2 (c) Simulator Terminal

State

Figure 4-11: Terminal State for Trial 6 of Dual-Arm Grasping Results

Failure with Simulator and with PR2

Trial 6 failed in reality and simulation. Figure 4-11 shows the failure terminal

states in simulation and with the real robot. This trial used a initial starting location

with an object rotated π
2

radians from all of the training locations. It’s possible that

training with rotated initial object locations could have resulted in a successful grasp.

4.2.2 Single-Arm Grasping Results

Table 4.3 shows the results of 10 trials of single-arm grasping with a small box. The

robot grasped the object six out of ten times. Half of the failures occurred when the

object was rotated π
4

radians. Surprisingly, the successful grasps in reality were not

always consistent with the successful grasps in simulation. To understand this result,

we will discuss a few of the trials.
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Trial Object Location rotation Success (reality) Success (simulation)

1* (0.188288,4.39037) 0 Yes No

2* (1.17102,3.86922) 0 No Yes

3* (0.288461,3.7046) 0 Yes Yes

4* (0.244427,4.44992) 0 Yes No

5 (0.498114,3.69268) 0 No Yes

6 (1.43259,4.24403) 0 Yes No

7* (0.956065,4.49392) π
2

No No

8 (-0.474323,4.10908) π
2

No No

9 ((1.32666,4.63726) π
4

Yes No

10 (0.921646,4.91485) π
4

Yes No

Total 6/10 3/10

Table 4.3: Single-Arm Grasping Results

(a) PR2 Terminal State
(b) Simulator Terminal State

Figure 4-12: Terminal State for Trial 1 of Single-Arm Grasping Results

Failure in Simulator, but Success with PR2

Trial 1 was successful in reality, but failed in simulation. Figure 4-12 shows the

terminal states of the actual robot and the simulator. In this figure, we can see the

simulator does not accurately model the actual behavior of the object. The observed
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joint angles and object location are imported into the simulator, and the simulator

moves to recreate this state. If the object location, joint angles, and robot model are

inaccurate then it is not always possible to represent the state, as shown in this figure

where the robot’s arm is clearly misrepresented.

(a) PR2 Terminal State (b) Side View of PR2
(c) Simulator Terminal

State

Figure 4-13: Terminal State for Trial 2 of Single-Arm Grasping Results

Success with Simulator, but Failure with PR2

Trial 2 failed in reality, but was successful in simulation. An image of Trial 2 is

shown in Figure 4-13. In this case the robot did, in fact, have good contact positions,

but was not applying enough force to hold the object when the torso was elevated.

(a) PR2 Terminal State (b) Simulator Terminal State

Figure 4-14: Terminal State for Trial 3 of Single-Arm Grasping Results

Success with Simulator and PR2
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Trial 3 was successful in both the simulator and the PR2. Figure 4-14 shows the

successful terminating state in simulation and reality. Although this is a positive

result, we do not see the extra contact the robot is making with its left arm on the

box.

Figure 4-15: Failure State for Trial 7 of Single-Arm Grasping Results

Failure in Simulator and with PR2

Trial 7 was a failure in reality and simulation. Figure 4-15 shows the failure on

the actual robot. In this case, the object started fairly far away and was pushed away

from a grasp.

4.2.3 Real Robot Results Overview

The results of our experiments on the real robot were mixed. The dual-arm grasping

was successful in nine out of ten trials and the single-arm grasping was successful
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in six out of ten. Most of the grasping errors occurred when the object was rotated

substantially from the training cases. We did not use rotated objects for training

states in our learning algorithm and this result suggests we might want to do so.

Although some grasps were successful in reality, many returned failures in simulation.

Additionally, there were many inconsistencies of the simulated robot and the actual

world state. This result indicates that we need a more principled approach in handling

the uncertainty of the observed world state and dynamics. Furthermore, for the single-

arm experiments we saw a grasp fail in reality although it had relatively good contacts.

This indicates that we might require a method to apply force at the contacts and not

just use position control.
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Chapter 5

Conclusion and Future Work

In this thesis we presented a novel approach for robotic whole-arm grasping using

reinforcement learning. Our main focus in this project was treating grasping as

a process. Traditional grasping approaches separate grasping into distinct phases:

finding contacts for an optimal grasp and moving the robot to the optimal contacts

positions. We wanted to develop a method that considers the process of bringing the

object into a grasp and not just moving to the ideal final contacts.

By constructing the problem as a continuous space Markov Decision Process

(MDP) we were able to incorporate the object dynamics in the planning process.

This resulted in policies that exploit object dynamics, where the robot deliberately

moved the object into its torso to achieve a successful grasp. This was a substantial

departure from traditional grasping techniques where the object moving is typically

an undesired result.

In our approach the final grasp position is not given beforehand, only the criteria

for the desired goal state is given. This leads to a more flexible algorithm because

the criteria are consistent with a wide variety of final grasp configurations. This is

important because manipulation is a stochastic process and we cant generally guar-

antee that a specific target state can be achieved. However, by constructing a policy

for our MDP we can guide the object towards one of the acceptable final states.

Since we used a continuous MDP and a simulator rather than an explicit transition

model we could not apply optimal solutions for solving MDPs, such as value itera-
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tion. Instead, we used value-based function-approximation approaches for model-free

reinforcement learning. This approach does not scale well to high-dimensional spaces

but has proven effective for planar manipulation problems.

We tested this approach extensively in simulation and executed a proof of concept

on a real robot. The implementation on the robot had promising results and com-

pleted single and dual arm grasps on different testing objects. Some of the failures

when executing with a real robot are caused by our inability to accurately determine

the world state or simulate the dynamics.

The MDP framework we used in this thesis assumes the world state is completely

observable. However, in reality there is noise in the robot’s observations leading to

undesired behavior while executing a policy. Additionally, we also have the problem

of our simulator not being an accurate reflection of the underlying physics. When the

simulator was used to learn a Q-value function and the derived policy was executed

in simulation, we had positive results; however, execution on the robot resulted in

failures because the transitions were not predicted correctly. This may be addressable

by introducing appropriate noise into the transition model or may require recasting

the problem as partially observable.

Although the approach suffered from having an inaccurate transition model and

treating the world as completely observable, it did show a promising result for treating

grasping as a process. Not only did the policies take object dynamics into account,

they exploited them to move the object into a location the robot could grasp the

object. This was shown in the terminating state plots in Section 4.1.4. The successful

grasp locations were all near the torso where the robot could use the torso to apply

an extra contact and achieve force closure. Overall, we believe this approach has

promise and is a starting base for investigating robotic grasping as a single, cohesive

process.
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5.1 Future Work

Our investigation into grasping as a process has shown promising results; however

there is room for development. First, we will discuss direct extensions to the approach

and then we will discuss future research areas for investigation.

Current Approach

There is room for development and experimentation with our current approach. Cur-

rently, we are using a uniform grid for our tile coding to represent the state space;

however, we could look into multiple and non-uniform tile codings. Using multiple

grids could potentially generalize the state space better. Additionally, we could use

a higher discretization in parts of the state space where the dynamics are more inter-

esting. For example, the arm typically does not come into contact when the shoulder

joint angle is ∈ (0, π/6) so the discretization for those angles should be larger than

the rest of the space.

When executing our approach on a real robot, we found inaccuracies in the ob-

served state and errors in the simulated transition model. A potential way to handle

this would be to introduce noise into the simulator’s transition model. Currently

there is some stochasticity in the transition model; however, it would be interesting

to test the effects of adding more stochasticity into the transition model.

Another area we are interested in looking into is a more thorough analysis of our

approach. We would like to test using different starting orientations and non-convex

objects. Furthermore, it would be interesting to compare with another whole-arm

grasping approach, such as the one developed by Seo et al. [18].

Future Directions

There are three principal directions for future work.

First, we would like to tackle the problem of inaccuracy in the transition model

and error in the observed state. Currently, we are handling this uncertainty by treat-

ing the robots actions as stochastic. Next we will attempt to introduce stochasticity

67



Figure 5-1: Barrett Hand [16]

directly into the transition model. However, it may be that the state uncertainty is

too significant for the MDP approach and we will need to cast the problem as a Par-

tially Observable Markov Decision Process (POMDP). But, solving continuous state

POMDPs represents a substantial challenge, although some promising approaches

exist [20].

Second, we would like to tackle the problem of dimensionality, for example, for

grasping objects in full three dimensions. It may be that in this setting we will need

to pursue Policy Search methods, a reinforcement learning approach that scales with

higher dimensionality better than value-function based approaches.

The third area would be tackling different robot models. We would like to test

this approach on a multi-fingered gripper like the Barrett Hand shown in figure 5-1.

Additionally, we are interested in seeing the performance of whole-arm grasping of

interesting non-convex objects.
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