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Abstract— A crucial challenge in robotics is achieving reliable
results in spite of sensing and control uncertainty. In this
work, we explore the conformant planning approach to robot
manipulation. In particular, we tackle the problem of pushing
multiple planar objects simultaneously to achieve a specified
arrangement without external sensing. Conformant planning
is a belief-state planning problem. A belief state is the set
of all possible states of the world, and the goal is to find a
sequence of actions that will bring an initial belief state to a
goal belief state. To do forward belief-state planning, we created
a deterministic belief-state transition model from supervised
learning based on off-line physics simulations. We compare our
method with an on-line physics-based manipulation approach
and show significantly reduced planning times and increased
robustness in simulated experiments. Finally, we demonstrate
the success of this approach in simulations and physical robot
experiments.

I. INTRODUCTION

Constructing multi-object arrangements is an important
component of a variety of robot tasks: arranging boxes in a
warehouse, placing groceries on a shelf, packing objects in
boxes, etc. The fundamental goal in these tasks is to achieve
a set of relative position constraints among a set of parts;
in general, these constraints require contacts among multiple
objects. These contacts are difficult or impossible to perceive
visually and difficult or impossible to achieve via open-loop
positioning actions.

A key strategy for robustly constructing object arrange-
ments is to use actions, such as pushing and compliant
motions, that achieve desired contact relationships between
objects by exploiting the task mechanics. For example, the
robot can achieve contact between two object faces by
pushing one up against the other, or achieve an insertion
by using a remote-center compliance strategy. These actions
have a tendency to act as “funnels,” [1, 2] which can map
a large set of possible initial configurations into a more
compact set.

In general, the result of these actions is non-deterministic,
depending on the actual (partially observed) initial state
of the world and (unobserved) properties of the robot and
objects. Given this setting, we are faced with the question of
how to plan sequences of actions that can achieve a desired
goal state without the ability to sense the precise outcome
of each action. We frame this problem as one of conformant
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Fig. 1. Robust execution of 7-block arrangement on a real robot; results
shown for 1000 noisy simulated executions and 5 executions on a real robot.

planning: given a set of possible initial object configurations,
a set of actions with non-deterministic outcomes, and a set
of goal configurations, the objective is to find a sequence
of actions that is guaranteed to drive the objects into a
configuration satisfying the goal. The problem of conformant
planning can be seen as a search through a space of belief
states, which are sets of possible configurations of the objects
in the arrangement. Each primitive action is modeled using
a transition function that maps an initial belief state into a
resulting belief state; the resulting belief state is the union
of the possible configurations resulting from applying that
action primitive to every configuration in the initial belief
state.

It is difficult to analytically derive a belief-state transition
function because it depends on interactions among multiple
objects which may be affected by detailed physical properties
of the objects and robot. One approach is to rely on physics-
based simulations. In the presence of uncertainty, we can
use multiple simulations to model transitions, as in a particle
filter. We show later that obtaining reliable plans with this
approach requires a relatively large number of “particles”
and prohibitive amounts of computation.

We present an alternative approach that uses machine
learning methods to acquire belief-state transition models
from physics simulations prior to planning. We learn tran-
sitions for the belief state of individual objects given local
context, called compositional belief-state transition models
(CBSTs), and then compose these to construct a belief-
state transition model for the overall system. Although we
demonstrate the learned model in the context of conformant
planning, with no external sensing, it could be used to



Fig. 2. Real robot reliably assembling an arrangement. First the robot
places a block, then pushes it using a paddle.

implement a belief-space replanning strategy [3] that would
incorporate intermediate sensing. The conformant setting
offers a simpler, cleaner framework for evaluating the ef-
fectiveness of these learned models.

We begin by describing a very general class of confor-
mant arrangement planning problems and outlining a generic
search-based solution strategy for them. We then describe
a particular instance of this problem class, in which the
robot pushes objects resting on a table into a specified
configuration, as shown in Figure 1. Although this task is
quite constrained, it does require simultaneous interaction
between the robot, the pushed objects, and static objects
in the environment. We show that, in spite of its apparent
simplicity, deterministic approximations are ineffective and
on-line simulation approaches are intractable. We present
methods for learning the compositional transition model
from a physics-based simulation. We finish by describing
experiments on both simulated and physical robots, as seen
in Figure 2. Our results demonstrate effective planning and
execution for assemblies of up to seven objects that consid-
erably outperforms deterministic and particle-based models.

Related work: A key challenge in the “exploit task
mechanics” approach to manipulation is to understand the
task mechanics well enough to be able to choose actions
to achieve the desired outcomes. A number of operations,
most notably pushing, have been the subject of extensive
study, and analytic models have been derived for the task
mechanics; Mason [4] provides a helpful overview. In many
cases, however, the outcomes of actions depend on physical
properties that we do not have access to, such as pressure
distributions or frictional coefficients. Nevertheless, in some
cases the understanding of task mechanics can be exploited to
plan robust manipulation. For example, Lynch and Mason [5]
showed how to exploit multiple contacts to produce stable
pushing trajectories and Dogar and Srinivasa [6] showed how
to reliably funnel a range of initial locations of an object with
known shape into a target location in the hand.

Recently, there have been a number of examples of
physics-based manipulation, which exploit the availability
of physics simulation engines, originally developed for com-
puter games, to predict the effect of actions in situations
where analytic methods would be cumbersome at best.
Most relevant to our work is the work on rearrangement
planning [7], which addresses pushing an object to a target
location in the presence of “clutter”, objects that are allowed
to be pushed out of the way. Planning these operations

relies on being able to predict, using physics simulations, the
motion of multiple interacting objects being pushed by the
robot. Related work on grasping through clutter also relies
on such simulations [8, 9]. Note that this work is generally
focused on placing or grasping a single object, even though
several “clutter” objects will end up being moved in the
process; it does not address the goal of achieving a final
arrangement of multiple objects.

An alternative to using analytical models or on-line sim-
ulation for physics-based planning is to learn compact mod-
els from experience (real or simulated). In the observable
case, where the state of the world after an action can be
determined, this is a simple regression problem: given many
observations of (state, action, next state) learn a function
to predict the next state given (state, action). Given such a
learned function, planning proceeds as before. A number of
instances of this approach exist [10, 11, 12].

It is also possible to try to learn a policy directly and
bypass planning; for example, Laskey et al. [13] learn a
policy for grasping in clutter. However, such learned policies
tend not to generalize as well as learning a model and then
planning.

The work described above typically assumes that the initial
state is known and the actions are reliable. In the presence
of uncertainty in the initial placements of objects or in
the outcome of the actions, we are interested in finding
actions, such as pushing and compliant motions, that reliably
achieve the goal state in spite of this uncertainty and without
assuming the availability of additional observations. This
class of problems is known as conformant planning; it has
been explored in robotics for planning compliant motions [2]
and sequences of tray tilting operations [14] and, more
recently, for rearrangement planning [15, 16].

Outside the context of planning, there has been work in
learning to predict the effect of object interactions without
full state information [17, 18, 19]. For example, Kroemer et
al. [19] worked on classifying object contact distributions to
predict whether a set of inputs would yield a stable grasp
or place. This contact classifier in conjuction with sampling
object positions enabled a 1-step planner that could be used
sequentially to stack objects resting on a table. In contrast,
we are learning composable models to be used in a multi-step
planner for construcing multi-object arrangements.

More broadly, the notion of conformant planning has been
explored in the AI community starting with Kushmerick et
al. [20], who addressed it within the framework of proba-
bilistic planning, and Goldman and Boddy [21] who used
expressions in a logic of knowledge to characterize belief
states. Early work from theoretical computer science [22]
shows that finding a finite-horizon optimal policy for a
completely unobservable MDP is NP-complete, making this
class of problems more efficient to solve than POMDPs in
general. Yu et al. [23] found that conformant planning is an
effective strategy for a multi-robot “tag” domain.

In this paper we address a problem that is related to
the physics-based rearrangement planning problem of prior
work [7, 15] but is substantially different; in particular, it



requires assembling a number of objects into a specified
pattern. A sequence of distinct trajectories (some placing,
some pushing) must be planned to achieve the goal.

II. CONFORMANT ARRANGEMENT PLANNING

A conformant arrangement planning problem is specified
by (Ω, CF , AΩ, Am, T , G), where
• Ω is a set of n known rigid objects;
• CF is a set of collision-free complete configurations of all
n objects, a subset of the whole configuration space C; we
additionally define CO, where O ⊆ Ω, to be the space of
collision-free configurations of the subset of objects O;

• Ao is a set of actions that introduce object o into the
arrangement; we let AΩ = ∪o∈ΩAo;

• Am is a set of actions that manipulate (change the configu-
rations) of some or all objects currently in the arrangement
that are guaranteed to terminate;

• τa,o,O : CO → P(CO∪{o}) is a transition function for the
introduction action a that characterizes the effect of intro-
ducing object o to the arrangement currently consisting of
objects in O by mapping an initial configuration in CO to a
set of configurations that is a subset of CO∪{o} (P denotes
the powerset operator);
τa,O : CO → P(CO) is a transition function characterizing
the effects of manipulation action a on objects in the
current arrangement; let T be the union of these τa,o,O
and τa,O;

• G ⊂ CF is the set of configurations that are successful
assemblies.
Our approach is to convert this problem into a for-

ward search in belief space; a belief space (or information
space [24]) is a space of elements that characterizes the
robot’s information or uncertainty about its domain. In this
work, we will let the belief space B = P(CF ), that is, the
set of all subsets of CF , and BO = P(CO) be the restriction
to subset of objects O.

We have defined the transition models τ as mappings from
a single configuration to a set of configurations; in some
cases it may be more convenient to specify τ ′ : B → B,
mapping a set of configurations into the set of possible result-
ing configurations; such a model can be directly constructed
from τ as τ ′(b) =

⋃
c∈b τ(c).

In a continuous configuration space, it will be impossible
to finitely represent all possible subsets of CF . Therefore,
we propose to use a conservative approximation of τ ′ that
generates belief states that are correct (contain all possible
true configurations) but may not be as small as possible. Let
B̂ be a set of compactly representable elements of B; then
we define a conservative transition model τ̂ : B̂ → B̂, such
that τ̂(b) is a smallest element b̂ ∈ B̂ such that b ⊆ b̂.

The size of the configuration space grows exponentially
with the number of objects in the arrangement, and the
size of the belief space grows exponentially with the size
of the configuration space (in the discrete case). In order
to fight this curse of dimensionality we use a factored
representation of belief states. If we think of a configuration
c = 〈c1, . . . , cn〉, where ci ∈ Ci is the configuration of object

i, then C = C1 × . . . × Cn is the Cartesian product of the
configuration spaces of the individual objects. We cannot
generally represent CF as a Cartesian product, however, due
to collisions between the objects.

This decomposition leads us to the idea of representing
the belief space as the product of independent beliefs about
the configuration of each individual object, so that B̂ =
B̂1 × . . . × B̂n, where B̂i ⊂ P(Ci). Representing sets of
possible configurations of each object rather than sets of
possible complete configurations is much more compact,
although it is not as expressive. For example, it is necessary
to augment such a factored representation with a constraint
that the entire configuration must be collision free, so we
will in general define B̂ = (B̂1 × . . .× B̂n) ∩ CF .

Given a conformant arrangement planning problem spec-
ification (Ω, CF , AΩ, Am, T , G) and a belief-state represen-
tation B̂, we can apply the A∗ (or other forward search)
algorithm to solve it, if we restrict the action sets AΩ and Am
to be finite. There may be sample-based search strategies that
are effective in infinite action spaces but we do not consider
them here. The search problem given to A∗ is:
• Initial state: the belief state containing a single element,

which is the empty configuration {〈 〉};
• Successor function:

succ(b̂) = {τ̂a,O(b̂) | a ∈ Am} ∪
{τ̂a,o,O(b̂) | o ∈ Ω \O, a ∈ Ao}

where b̂ contains the set of objects O;
• Goal test: g(b̂) = b̂ ⊆ G.

We illustrate the general class of conformant arrangement
planning problems with an example domain, implemented
in simulation and on a real robot, which uses a manipulator
arm to place and push objects into planar arrangements.

III. ARRANGEMENT BY PUSHING

In this section, we formalize a concrete robotics problem
as an instance of conformant arrangement planning. The goal
is to create planar arrangements of objects in contact with
one another and with fixed obstacles using a combination
of “gross” and “fine” motions [2]. The gross motions use
a robot hand to place objects near their target poses, with
considerable error in object placement due to control and
calibration error in the arm and to objects sticking slightly
to the fingers when they are released. In addition, the robot’s
fingers are large, so objects cannot be placed directly next to
other objects. The fine motions use the robot hand, holding a
paddle, to push objects up against one another and the fixed
obstacles, effectively aligning them and moving them into
place.

We can describe these problems as instances of the general
conformant arrangement planning problem as follows:
• The objects Ω are wooden cubes, 1 inch on each side,

that can be placed on a planar surface, which has fixed
obstacles in a “u” shape as shown in Figure 1.

• The configuration space of each individual object Ci con-
sists of its position and orientation in SO2, bounded by



Fig. 3. Execution of a sample 8-step plan; in each pair, the left figure shows the results of 1000 simulations of the plan (gray blocks) as well as the
predicted workspace bounding boxes from the transition model (in red and blue) and the right figure shows execution on the real robot.

the workspace area; the free configuration space CF of the
whole system is the product of the Ci together with the
constraint that the objects are not in collision with each
other or the walls.

• The actions AΩ add an object to the arrangement by using
a robot gripper to place an object into free space at a
selected (x, y) position; the robot attempts to place the
object so that it is rotationally aligned with the workspace,
but there is significant error in the calibration, resulting in
errors that are well bounded by ±0.2 in in x and y and
±15° in θ; in our current implementation we consider 9
possible values for (x, y) corresponding to constant offsets
from the object’s target position (xg, yg) in the goal.

• The actions Am manipulate one or more objects already in
the arrangement through push actions, in which the robot
holds a 2.5-inch paddle, places it at pose (xp, yp, θp) just
above the surface of the table and attempts to move in
the direction orthogonal to the face of the paddle; the
controller has a low gain so that if it encounters obstacles
during the motion they remain on the table and are pushed
until they can move no further.

• The transition models τ are presented in section III-.1.
• The goal test G specifies a workspace bounding-box
〈xg, yg,∆xg,∆yg〉 for each object and is satisfied if each
object is guaranteed to be inside its bounding box.
The representable belief space for each object i,

B̂i, is a “box” in SO2, represented with parameters
〈x, y, θ,∆x,∆y,∆θ〉 specifying the center and dimensions
of the box; typically θ = 0. We will often denote the center
of a belief box by q = 〈x, y, θ〉 and its dimensions (the
‘‘uncertainty’’) as ∆q = 〈∆x,∆y,∆θ〉. The complete belief
space is the product of B̂i for each object, together with the
non-collision constraint.

The bounding box can be computed from the
configuration-space belief, where, for a square block
of dimension 2r,

BB(〈x, y, θ,∆x,∆y,∆θ〉) =

〈x, y, r + ∆x+ r cos(θ + ∆θ), r + ∆y + r sin(θ + ∆θ)〉.

The parameters of push actions are selected from a set that
depends on the current belief state. The pushing angle θ is
selected to be either 0 or π/2 (down or to the right) because
the set of goals we consider is limited to arrangements of

objects that are supported by the bottom and right walls.
We generate the push parameters of a belief state b for a
downward push as follows. For each object i currently in
the arrangement, with workspace bounding box BB(bi) =
(x, y,∆y,∆x), we let θp = 0, xp = x + ∆x + ε and we
consider several possible yP values, corresponding to y + δ
for δ ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. For a rightward push,
θp = π/2, xp = x+ δ, and yp = y + δy + ε.

A belief state b satisfies the goal G if BB(b) is entirely
contained in 〈xg, yg,∆xg,∆yg〉.

The transition model for object placement is straightfor-
ward, simply appending the belief for the object being placed
to the existing belief representation:

τ(x,y,θ),o,O(〈b1, . . . , bm〉) = 〈b1, . . . , bm, 〈x, y, θ, dx, dy, dθ〉〉

where m = |O| and (dx, dy, dθ) are bounds on the error
in the placement operation. An object placement action is
invalid if the workspace bounding box of the introduced
object BB(bo) overlaps any existing object’s workspace
bounding box.

The transition model for push actions is significantly more
complex, both because the results of pushing a single object
are difficult to predict given variability in quantities such as
surface texture and force applied by the robot, and because
the robot may affect the state of several objects with a single
push action. We discuss transition models for pushing in
detail in the following subsection.

1) Structured transition model for pushing: The transition
model for the push action has a structured decomposition
and a local quantitative model that is learned from simulated
data. Intuitively, the strategy is to find one or more sequences
of blocks that will be pushed up against one another,
constrained on one side by the robot paddle and on the
other side by a wall (see Figure 3). Given such a sequence,
we apply a learned quantitative local uncertainty model to
compute the the delta values for the resulting object beliefs,
starting from the object closest to the wall and working
back toward the paddle. Because we are ultimately going
to use this model to search for a plan with reliable effects,
it is only necessary to make predictions for actions for
which we can confidently predict the posterior belief state.
Thus, the transition model will be partial, in some situations
declining to make a prediction. This partiality will allow us
to maintain the correctness of the planner, but may cause it



(a) Swept volumes and bounding
boxes

(b) Contact graph

Fig. 4. a) An example contact graph constructed from the swept volumes
in (a). For clarity some arcs are omitted: nodes R and W are connected to
all other nodes.

to be incomplete (in the sense that there may be problem
instances for which a legal plan exists, but our system is
unable to find it.)

The first step is to determine which objects are affected
by the pushing operation. To do this, we construct a contact
graph and extract contact paths of objects that are mutually
constraining.

The contact graph has a root node R for the robot, a
leaf node W for the wall, and nodes for objects that are
potentially moved by this pushing operation. Figure 4(a)
illustrates a belief state and the process of determining
possible contacts.

For each object i, we construct a swept volume of the
belief bounding box moving in the direction of the push
action. Then we test the bounding box for every object j
currently in the arrangement. Every intersection of object
j’s bounding box with the swept volume creates a potential
contact from object i to object j. These potential contacts
form directed edges in the contact graph. Figure 4(b) shows
the resulting contact graph. Further details on construction
of the contact graph and pseudocode can be found in [25].

The next step is to find maximal contact paths between
nodes R and W . A contact path p is maximal if there is no
other path p′ between R and W such that p ⊂ p′. These paths
represent “trains” of objects that will end up nearly in contact
with one another, pushed between the robot and the wall. In
this example, there are two maximal paths: RABCW and
RDEFW . If the paths are not of the same length, then
the prediction process also fails. Consider the case in which
object D is not present in this example; the robot paddle will
compress objects A, B, and C against the wall but leave E
and F unaffected. However, if D were present, but E and/or
F were missing, then D would be pushed, but without a
constraint on its right, so we are unable to reliably predict its
resulting position and uncertainty; in this case, the prediction
model returns None, indicating that this operation cannot be
used to construct a plan.

For each valid contact path, we use a local predictive
model compositionally to compute the posterior belief for
each object. The predictive model takes as input the belief
states of three objects that occur sequentially in the contact
path. In the single-object pushing model, we disallow any
operations in which there is more than one path of influence
between the robot and the wall.

2) Learning a quantitative model for pushing: We will
work with a factored version of τ ′, which maps the belief
state of an object and its neighbors on either side to its
resulting belief state. In the transition model for a push to the
right, we begin by predicting the uncertainties in the resulting
object position, using a function PREDICT, which is learned
from data. It has inputs and outputs in the form:

∆q′ = 〈∆x′,∆y′,∆θ′〉 = PREDICT(b[prev ], b[cur ], b[next ]) ,

where the inputs to the procedure are the current beliefs
about three sequential objects in a pushing sequence. We
assume that the center of the resulting uncertainty box has
the same y coordinate as before and that the median rotation
is 0. The median x coordinate is computed by finding the
median x coordinate of the object to its right, subtracting the
dimension of an object, d, and then subtracting the resulting
x uncertainty, ∆x′/2.

The problem of learning the PREDICT function can be
treated as a supervised regression problem with three output
dimensions. Again, for simplicity of exposition, we limit our
attention to the push-right action. The inputs to the PREDICT
procedure are (qp,∆qp, qc,∆qc, qn,∆qn). We compute from
these inputs a feature vector φ:

〈∆qp,∆qc,∆qn, qp.y − qc.y, qn.y − qc.y, ct〉.

The fourth element of the feature vector (qp.y − qc.y)
represents the vertical offset between the previous object and
current object uncertainty centers. Correspondingly, the fifth
element represents the vertical offset between the current
object and the next object. The last feature in this vector,
ct , encodes the types of the objects involved in this contact;
it can take on the values in {row , roo, ooo, oow} where r
stands for robot , o for object , and w for wall. For a fixed
object, such as a wall, which can only appear as the last
object, we assume ∆qn = (0, 0, 0), and that qn.y−qc.y = 0.

Because generating training data on the real robot would
be prohibitively costly in time, we generate training data
using a Box2D simulation [26]. We construct a data set of
1800 examples, using the following process to construct each
example:
• An initial belief state b is randomly constructed, with

∆x and ∆y values drawn uniformly in the interval
[0.0, 0.4] inches and ∆θ values drawn uniformly in the
interval [0, 15]°; b may contain 1, 2, or 3 blocks.

• For 1000 iterations, an initial state is drawn uniformly
from b and constructed in Box2D, with the robot paddle
offset to the left and a fixed wall, parallel to the paddle,
to the right of all the objects. The paddle’s y coordinate is
randomly varied to generate a variety of offset values. The
friction coefficients for the simulation of robot, table, and
objects are drawn uniformly in the range [0.25, 0.55]. The
robot’s paddle is moved in the desired direction using a
position controller to a distant set-point with gains of 1.0
for position and angular error; the controller is run for 50
simulation steps with ∆t = 0.01 s. The final pose of the
each object (xi, yi, θi), together with its contact type, is
recorded.



• The resulting belief state dimensions are computed as:

∆x =xmax −min
i
xi

∆y = max
i
‖yi − y‖

∆θ = max
i
‖θi‖

where xmax is the maximum possible x coordinate for
this object, if all the objects to its right were perfectly
aligned and as far to the right as possible. Notice that ∆y
and ∆θ are computed based on the assumed structure of
the transition function: the resulting uncertainty box has
the same y coordinate as before and the median rotation
is 0. Even though the median values may vary from this
assumption, the computed uncertainty widths increase to
account for this error making the structured belief-state
transition a conservative over approximation.
This data is then used to train a multi-output random-

forest regressor using the Scikit-Learn toolkit [27] using
hyper-parameters that were found using a grid search with
8-fold cross-validation. We used 90% of the data for training
and hyper-parameter optimization and held out 10% for final
evaluation, in which we found a root-mean-squared test error
of 0.509 in ∆x, 0.079 in ∆y and 2.799 in ∆θ.

Search: In section II we described a generic forward-
search problem that could be solved using A∗ and in the
previous section we specified the necessary state space and
successor function for our example arrangement-by-pushing
domain. We assign a cost of 1 to every action.

To improve the performance of the search we implemented
two heuristics. The first, which is admissible, effectively acts
as a binary filter on states, assigning infinite cost to any state
in which the objects in a horizontal or vertical contact path
are not in the order specified by the goal. It is not possible,
given the operations in this space, to reach the goal from such
a state. This heuristic provides some useful search guidance
but is not very strong.

We define an additional heuristic that is inadmissible in
general, but highly effective at improving the speed of the
search without much reduction in the solution quality. We
define:

H(b, g) =
∑
o∈Ω

H(BB(b[o]), g[o])

where

H(bo, go) =



2 if bo == None
2 if bo.x 6⊆ go.x and bo.y 6⊆ go.y
1 if bo.x ⊆ go.x and bo.y 6⊆ go.y
1 if bo.x 6⊆ go.x and bo.y ⊆ go.y
0 otherwise

This heuristic estimates that it will take one place action
and one push action to add a new object to the arrangement
and one push per object dimension that is not currently
contained within its goal interval. It is inadmissible because
it is possible to push multiple blocks at once.

The simple belief representation of CBST leads to a
natural dominance-based pruning method to further improve

Fig. 5. Comparison of planning time and different belief-state transition
models for (a) 4-block and (b) 7-block arrangement.

the search performance. We begin by observing that some
belief states are contained by others: given two belief states,
b and b′, we say that b dominates b′ if and only if:
• b and b′ are both defined on the same set of objects O;
• for all o ∈ O: the configuration space cube b[o] is a subset

of the configuration space cube b′[o], that is b[o] ⊆ b′[o].
Intuitively, if b dominates b′, then b may be a more useful
state in the search: the objects have overlapping possible
states and less uncertainty in b than in b′. Therefore, we
apply a pruning strategy in which, during the process of A∗

search, whenever it reaches a state b′ that is dominated by
some state b that has already been visited, then b′ is not added
to the agenda. This strategy can result in computational
improvements but it does risk pruning out correct solution
paths.

IV. RESULTS

In this section we present quantitative results of our
approach in the arrangement-by-pushing domain.

For comparison, we implemented a planner that approxi-
mates the belief state using P sampled states, or “particles”
and computes the transition by simulating the action on each
one. For place actions, P collision-free placements are sam-
pled. For push actions, each of the particles, which specify
the configurations of all the placed objects, is simulated as
we do during off-line learning, including adding “noise” in
the form of parameter variations in friction, mass, and push
parameters. A state satisfies the goal if all of its particles
are in the goal region. We also implement a deterministic
planner by using a single particle to represent the nominal
configuration of the objects and not adding noise during
simulation. In these planners, we defined the heuristic value
of a particle-based belief state to be the maximum over the
particles of the H value for each particle, assuming that its
BB consists only of a single point.

A. Belief-state transition comparison

We compared the performance, both in terms of accuaracy
and speed, of our CBST planner against four different
planners based on on-line simulation: a deterministic planner
as well as particle-based planners with 5, 25, and 50 particles.
We ran each planner on a 4-block arrangement problem and
a 7-block arrangement problem, each a total of 10 times.

Figure 5 compares the average planning time for different
belief-state transition models. As expected, the deterministic
model and CBST are fastest. The planning time with the
particle transition models might be expected to scale linearly



Fig. 6. Execution accuracy for different planning strategies.

with the number of particles, although, as the number of
particles increases, they will tend to be more diffused and
might actually require a longer plan. We would expect the
number of particles required to achieve a reliable planner to
grow exponentially with the number of objects. For the 7-
block problem, we capped the running time for an expansion
at 5000 search nodes; none of the particle-based planners
found a solution under this constraint. The reported times
for the failed searches show the amount of time it took to
reach the 5000 search node constraint.

We evaluated the robustness of the solutions found by the
different planners using the physics simulator. We tested each
of the 10 plans 1000 times and added simulated noise as used
in learning. We reported the percentage of tests in which all
objects were in their goal region at termination in Figure 6.
The learned CBST planner produced 100 percent accurate
results, whereas the on-line simulation approaches produced
many non-conformant plans. The deterministic planner is
successful a little more than half the time in the 4-block case
and a little more than 10% of the time in the 7-block case,
showing the need to consider the effect of stochastic actions.
In the 4-block case, the particle-based planners improve
slowly as function of the number of particles and approach
respectable levels of accuracy for 50 particles. In the 7-block
case the running time to construct a plan with more than one
particle was prohibitive.

B. Detailed CBST experimentation

Planner performance: We tested the CBST planner for
four arrangements with 2, 3, 4, and 7 blocks. We varied
the goal tolerances (the dimension of the goal regions)
between ±0.1 inches and ±0.5 inches. The initial placement
uncertainty was, unless stated otherwise, ±0.2 inches in x
and y and ±15 degrees rotation. When a plan was obtained,
we simulated it 1000 times. We found that whenever a plan
was found, all the simulations satisfied the goal. However,
for tight goal conditions, especially for larger assemblies, the
search can exceed our limit of 5000 search nodes.

The search performance, as measured by number of search
nodes expanded, is affected primarily by the quality of the
heuristic used. In this experiment, the search node limit
was 5000. In the table in Figure 7, we see that using the
“inadmissible” heuristic cuts the number of expanded nodes
substantially, at the cost of longer plans. The domination test
has a small beneficial effect given this heuristic, but a very
large effect when a weaker or no heuristic is used.

The effect of uncertainty: Figures 8 and 9 show the
effects of goal tolerance and initial placement uncertainty on

Fig. 7. Search Results Table.

Fig. 8. The effect of goal tolerance on solution length.

plan length. Tighter goals and higher initial uncertainty both
increase the length of the required plans. Once the required
plans exceed a length of about 16, the search process exceeds
the allowed number of search nodes (5000); in such cases,
there is no corresponding result plotted in the graphs.

Real robot experiments: An example arrangement se-
quence found by the planner, as well as its execution using
a real PR2 robot, are shown in Figure 3; the accompanying
video shows many more examples. We obtained plans for
5 different assemblies (with 2, 3, 4, 7 and 9 blocks) and
executed each one on the robot 5 times. The placement
uncertainty was ±0.2 inches and ±15 degrees rotation; the
goal tolerance was ±0.2 inches. We saw one execution
failure (in a 2-block arrangement) during the 25 assemblies,
for a 96% success rate.

The execution failure appears to be due to an initial
placement outside of the modeled placement uncertainty
bounds. Increasing the modeled placement uncertainty could
decrease this type of failure, at the expense of increasing the
planning and execution times for the typical case. This is an
unavoidable trade-off in conformant planning that could be
ameliorated by moving to a belief-space replanning paradigm
that adds some sensing, such as the final position of the
paddle after a push.

Conclusion and future work: One key question is: what
fidelity of the transition model is needed for planning?

Fig. 9. The effect of initial place uncertainty on solution length. Small
uncertainty is ±0.05 in, large uncertainty is ±0.2 in; angle uncertainty is
±15 deg in both cases.



Fig. 10. Approximation of the belief state with different number of
particles.

Figure 10 shows a push action that usually pushes the
block to the wall, but in some cases misses the block
with the paddle due to uncertainty in the vertical offset.
In this example, it took over 50 simulations just to see the
unlikely result. How should a robot deal with this? Doing
on-line simulations to detect unlikely outcomes would be
computationally difficult. Learning from on-line simulations
is more promising, but representing and planning with a
complex posterior distribution is problematic. Following the
thread of this work, we could learn a relatively simple model
and use sensing and replanning to detect prediction failures.
We believe that the replanning approach is most practical,
but probing the tradeoff in fidelity of prediction vs sensing
is important.

We have shown how a belief-space transition model can
be acquired from off-line physics-based simulations and used
to plan reliable planar push-arrangements in the presence of
substantial uncertainty. We have compared this work with
on-line physics-based simulation methods and found results
showing much higher accuracy with significantly decreased
search time in the box arrangement domain. Clearly, there
are cases where the detailed approach described here will not
work, such as a cylindrical robot pushing a cylindrical object.
Future work will explore whether some of the basic ideas,
especially learning factored models, can be generalized more
broadly.
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