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Abstract
As drones and autonomous cars become more widespread it is becoming increasingly important that robots can
operate safely under realistic conditions. The noisy information fed into real systems means that robots must use
estimates of the environment to plan navigation. Efficiently guaranteeing that the resulting motion plans are safe under
these circumstances has proved difficult. We examine how to guarantee that a trajectory or policy is has at most ε
collision probability (ε-safe) with only imperfect observations of the environment. We examine the implications of various
mathematical formalisms of safety and arrive at a mathematical notion of safety of a long-term execution, even when
conditioned on observational information. We explore the idea of shadows which generalize the notion of a confidence
set to estimated shapes and present a theorem which allows us to understand the relationship between shadows and
their classical statistical equivalents like confidence and credible sets. We present efficient algorithms that use shadows
to prove that trajectories or policies are safe with much tighter bounds than in previous work. Notably, the complexity of
the environment does not affect our methods ability to evaluate if a trajectory or policy is safe. We then use these safety
checking methods to design a safe variant of the RRT planning algorithm.
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1 Introduction

1.1 Motivation
Safe and reliable operation of a robot in a cluttered
environment can be difficult to achieve due to noisy and
partial observations of the state of both the world and
the robot. As autonomous systems leave the factory floor
and become more pervasive in the form of drones and
self-driving cars, it is becoming increasingly important to
understand how to design systems that will not fail under
these real-world conditions. While it is important that these
systems be safe, it is also important that they not operate so
conservatively as to be ineffective. They must have a strong
understanding of the risks induced by their actions so they
can avoid unnecessary risk and operate efficiently.

While most previous work focuses on robot state
uncertainty, this paper focuses on safe navigation when the
locations and geometries of these obstacles are uncertain. We
focus on two aspects:

1. Quantifying uncertainty in obstacle estimates, and
2. Devising algorithms that find safety “certificates”—

easily verifiable proofs that the trajectory or policy is
safe.

Quantifying uncertainty in obstacle estimates leads to the
notion of a shadow—a generalization of a confidence set
to an estimated shape. In addition to proposing a formal
construction of shadows, we explore some fundamental
properties of shadows. This line of work culminates in a
correspondence theorem that is instructive in understanding
the construction, existence and optimality of shadows.

We examine two implications of the algorithms developed
here. First, the computational complexity of reasoning about
uncertainty can be quite low. Second, the mathematics
surrounding robot safety can have surprising behavior. We
demonstrate how these tools can be used to design a motion
planner guaranteed to give only safe plans, and inform the
design of more general systems that make decisions under
uncertainty.

1.2 Problem Formulation
We consider two settings. In the offline setting we have
a fixed set of information about the environment and are
searching for an open-loop trajectory. In the online setting
the robot has access to a stream of observations and can
change its trajectory as a function of new information; the
problem is to find a policy, a function from observations
to actions, that allows the robot to adapt to changing
circumstances. We show that different notions of safety are
required for the two cases to ensure that the robot can
guarantee a low probability of collision throughout its entire
execution.
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Figure 1. The desired trajectory found by the planner shown
with its specialized shadows that certify the probability of
collision as less than 0.26%.

Safety in the offline setting amounts to staying out of
regions likely to be occupied by obstacles, and can be
analyzed by computing geometric bounds on obstacles for
which we have only partial information. Safety in the online
setting builds on offline safety by requiring that the robot
respect a contract with respect to the aggregate lifetime risk
of operation while always having a guaranteed safe trajectory
available to it.

We analyze safety through the use of “shadows”–a notion
of a confidence set adapted to inference over geometry and
provide an example of applying this framework to a specific
model. We wish to emphasize that this framework can be
applied to a wide variety of models beyond the example
shown here.

We develop a framework for inference and computation
over polytopes in Rn. In this paper we focus on examples of
typical robotic domains in R2 and R3, but we note that the
math carries over directly to higher dimensional spaces that
can incorporate information such as the velocity of obstacles.
We say that a trajectory is safe if its swept volume is unlikely
to collide with any obstacles. These swept volumes can be
computed geometrically, or, for dynamical systems, via sum-
of-squares programs (Majumdar et al. 2012).

We say that a trajectory, a map from time to robot
configurations Q, τ : [0,∞)→ Q, is ε−safe if the swept
volume of the robot along trajectory τ intersects an obstacle
with probability less than ε. Formally, if A is the event that
the swept volume of τ intersects any obstacle, then τ is
ε−safe in the offline sense if P (Aτ ) ≤ ε.

We say that a policy, π, a map from observation historyO,
state history H and time to a trajectory τ ,

π : O ×H × [0,∞)→ τ

is ε−safe if, under all sequences of observations O,
P (Aπ, O) ≤ ε. This notion of safety will be referred to as
policy safety; it is a departure from previous models of robot

safety, capturing the notion of a contract that the total risk
over the lifetime of the system always be less than ε.

The requirement that the safety condition hold under all
observations sequences is strictly more conservative than
requiring safety on average (simply requiring the failure
probability to be low on average). It is crucial to prevent
undesirable behavior that can “cheat” the definition of safety;
this is discussed in detail in Section 4.

1.3 Related Work
Planning under uncertainty has been studied extensively.
Some approaches operate in generality and compute
complete policies (Kaelbling et al. 1998) while others
operate online, computing a plausible open-loop plan and
updating it as more information is acquired (Platt et al. 2010;
Erez and Smart 2010; Du Toit and Burdick 2010; Hadfield-
Menell et al. 2015).

Generating plans that provide formal non-collision safety
guarantees when the environment is uncertain has proven
difficult. Many methods use heuristic strategies to try to
ensure that the plans they generate are unlikely to result in
a collision. One way of ensuring that a trajectory is safe is
simply staying sufficiently far away from obstacles. If the
robot’s pose is uncertain this can be achieved by planning
with a robot whose shape is grown by an uncertainty
bound (Bry and Roy 2011). Alternatively, if the obstacle
geometry is uncertain, the area around estimated obstacles
can be expanded into a shadow whose size depends on the
magnitude of the uncertainty (Kaelbling and Lozano-Pérez
2013; Lee et al. 2013).

Another approach focuses on evaluating the probability
that a trajectory will collide. Monte-Carlo methods can
evaluate the probability of collision by sampling, but
can be computationally expensive when the likelihood
of failure is very small (Janson et al. 2015). When the
uncertainty is restricted to Gaussian uncertainty on the
robot’s pose, probabilistic collision checking can yield
notable performance improvements (Sun et al. 2016; Park
et al. 2016b,a).

Another perspective is finding a plan that is safe by
construction. If the system is modeled as a Markov Decision
Process, formal verification methods can be used to construct
a plan that is guaranteed to be safe (Ding et al. 2013;
Feyzabadi and Carpin 2016). Recent work on methods
that are based on signal temporal logic (STL) model have
also uncertainty in obstacle geometry. With PrSTL Sadigh
and Kapoor (2016) explicitly model uncertainty in the
environment to help generate safe plans but offer weaker
guarantees than our work.

1.4 Contributions
This paper makes four main contributions. The first is a
formal definition of online safety that provides risk bounds
on the entire execution of a policy.

The second is the development of a theory of shadows.
It formalizes a notion of confidence intervals for estimating
shapes and relates them to the standard statistical concepts
of confidence sets and credible sets. Finally it provides an
impossibility result that helps us understand when interesting
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shadows do not exist. We also introduce a model of random
shapes and how to compute shadows under said model.

The third contribution is an algorithm for efficiently
verifying offline safety with respect to polytopes with
Gaussian distributed faces (PGDFs) that is then generalized
to the online case. In comparison with previous methods, the
quality of the resulting bound is not dependent on the number
of obstacles in the environment. The presented algorithms
produce a certificate, which allows another system to
efficiently verify that the actions about to be taken are safe.
For a maximal collision probability of ε, the runtime of the
algorithm grows as log 1

ε making it efficient even for very
small ε’s.

The fourth contribution is a modification to the RRT
algorithm that generates safe plans. For any fixed ε, the
resulting planner is guaranteed to only return trajectories for
which the probability of failure is less than ε. We note that
for n obstacles, the runtime of the RRT is increased only by a
log n

ε factor, which suggests that reasoning about uncertainty
can come at a low computational cost. A result of running
this algorithm is shown in Figure 1.

2 Shadows
In order to be able to provide safety guarantees for robot
operation in domains with uncertainty about obstacles, we
must develop a formal understanding of the relationship
between randomness in the observations and resulting
estimate of the volume occupied by obstacles. Consider the
following scenario: the robot must avoid an obstacle but gets
only a noisy observation of said obstacle. Given this noisy
observation, it computes an estimate of the space occupied
by the obstacle and avoids this region. Conditioned on the
observation, however, the true space occupied by the obstacle
is random. In other words the true space occupied by the
obstacle is not guaranteed to be inside the estimated region.
It is not sufficient for the robot to avoid the estimated region
to ensure non-collision.

In order to provide theoretical guarantees about a robot’s
operation in such a domain we must develop mathematics
regarding the random shapes that come from estimating
geometry with noisy observations. The ultimate aim of
this section is to develop shadows, a geometric equivalent
of confidence intervals for uncertain obstacles. Shadows
will prove useful in the development of provably correct
algorithms for the safe robot navigation problem.

2.1 Inference over Geometry
To provide such safety guarantees we must formalize the
setting in which we wish to prove them. This section assumes
operation in the offline setting with a constant information
set.

Throughout this work we assume that the robot’s
execution and environment follow the following model:

1. A set of obstacles is fixed in the environment. The
obstacles remain static after this point.

2. The robot receives a set of noisy observations of the
obstacles.

3. The robot computes and executes a trajectory as a
function of its observations.

Figure 2. A fair coin is flipped. If the coin is heads the obstacle
is placed in the left position, otherwise in the right. The orange
region identifies the points with probability at least 0.5 of being
in the obstacle. Both outlines represent a valid 0.5−shadow.
The shadow is sufficient to show that a trajectory that avoids the
shadow has probability less than 0.5 of colliding with the
obstacle. Merely knowing that the orange region is the set of
points with at least 0.5 probability of being in the obstacle is not
sufficient to provide any guarantees about the safety of a
trajectory. We also note that shadows need not be unique—two
0.5-shadows are shown.

We say that a trajectory is safe if the probability of
colliding in step 3 is smaller than some fixed ε.

In particular, we examine the case where step 3 begins
with an attempt to recover the true geometry from the noisy
estimates, using a geometric estimator.

Definition 1. Geometric Estimator. For an observation
X , a geometric estimator is a function X → P (Rn) that
maps observations to a subset of Rn that corresponds to the
estimated shape.

Note that if we are using Bayesian decision theory, we can
examine the conditional distribution of obstacles given the
observations. This notion of a geometric estimator allows us
to define shadows for a corresponding notion of confidence
sets in frequentist statistics and credible sets in Bayesian
statistics.

Definition 2. ε−shadow. A set S ⊆ Rn is an ε−shadow of
a potentially random obstacle O if P (O ⊆ S) ≥ 1− ε.

In other words a shadow is a region that contains the
true obstacle with sufficiently high probability. The next
section will demonstrate an algorithm that uses shadows to
certify that trajectories are safe. It suffices to show that a
trajectory avoids an ε-shadow to show that the total collision
probability is less than ε.

It is important to understand the distinction between an ε-
shadow and points with probability greater than ε of being
inside the obstacle. This can most clearly be seen in the
example illustrated in Figure 2. As we will show later in
the paper, the probability calculation for a shadow and the
likelihood that a point is inside the obstacle is quite different.
This discrepancy allows us to provide stronger guarantees
than works such as PrSTL that only consider the likelihood
Sadigh and Kapoor (2016).

2.2 Geometry Preliminaries
The next section discusses the relationship between the
geometry of probability distributions in the parameter space
of shapes and the corresponding behavior of the random
shapes. To understand the results presented there, it helps to
be familiar with some concepts from convex geometry.

First is the notion of homogeneous coordinates. Take
a coordinate x ∈ Rn from the robot’s workspace. We
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can represent it as homogeneous coordinate as x→<
x1, x2, ...xn, 1 >, or more generally:

x→< λx1, λx2, ...λxn, λ >

We can take a homogeneous coordinate z ∈ Rn+1 and
convert it to our standard workspace by normalizing by the
last coordinate.

z →< z1/zn+1, z2/zn+1, ..., zn/zn+1 >

Note that these maps are not defined at zn+1 = 0 and λ = 0.
The geometry of shadows will be much easier to work with
in homogeneous coordinates because of their relationship to
polar and dual cones.

First we define the notion of a cone.

Definition 3. Convex Cone. We say that a set C ⊂ Rn is a
convex cone if C is convex and closed under positive scaling.
In other words, C is a cone if for any x, y ∈ C, λ1, λ2 ≥ 0,
λ1x+ λ2y ∈ C.

Polar and dual cones are defined relative to a set X ⊂ Rn.

Definition 4. Dual Cone. The dual cone C? ofX is defined
as follows:

C? = {y ∈ Rn | yTx ≥ 0 ∀x ∈ X}.

In other words the dual cone of a subset of a vector space
X is the set of linear functions that do not contain any point
of X . If X is a set of linear functionals, its dual cone can
be interpreted as contained in all the half-spaces defined by
αTx ≤ 0 with x in the set X .

Taking the dual cone of the dual cone of X yields the
minimal convex cone containing X . If X was already a
convex cone then taking the dual twice yields exactly the
original set.

Definition 5. Polar Cone. The polar cone C◦ of X is
defined as follows:

C◦ = {y ∈ Rn | yTx ≤ 0 ∀x ∈ X}.

An image of the polar and dual cone of a set can be seen in
Figure 3. Note that the polar cone is a reflection of the dual
cone about the origin.

In order to do concrete computations later in this paper we
use the notion of a norm cone and a dual norm.

Definition 6. Norm Cone. Let || · || be a norm (distance
measure) on Rn. The corresponding norm cone is

C = {(x1, ...xn, r) | ||x|| ≤ r}.

Definition 7. Dual Norm (|| · ||?). The dual norm of || · || is
||x||? = sup

y
{yTx | ||y|| ≤ 1}.

2.3 Useful Theorems
We will use several theorems without proof through the
remainder of the text. They are stated here for convenience.
The proofs may be found in the texbook by Boyd and
Vandenberghe (2004).

Theorem 1. LetC? be the dual cone ofX , andC◦ the polar
cone of X . Then C? = −C◦.

Figure 3. The red cone is the dual cone of the blob outlined in
blue. The blue cone is the polar cone of the same region. Note
how the polar cone is a reflection of the dual cone. The red and
blue cones are in the dual space while the blob outlined in blue
is not.

Theorem 2. LetC be the norm cone corresponding to || · ||.
Then the dual cone, C? is the norm cone with norm || · ||?,
the dual norm of || · ||.

Theorem 3. Let ||x|| =
√
xTΣx for Σ � 0. Then ||y||? =√

yTΣ−1y.

2.4 Characterization of Affine Shadows
First we attempt to characterize shadows of half-spaces
under a general distribution. This section attempts to answer
the following questions:

1. How can one construct a shadow?
2. Do shadows always exist? If so, are they unique?
3. How can one compute the exact probability of colli-

sion given a probability distribution over obstacles?

The choice of half-space shadows ends up being crucial.
Not only does it correspond to the algorithm we present later
in the paper, but there is a natural correspondence between
the convex geometry of the homogeneous coordinate
system and shadows that allows us to give a complete
characterization of shadows in this case.

For the remainder of this section we assume that our
random obstacle αTx ≤ 0, is parametrized by α ∈ Rn. Note
that α and kα correspond to the same half-space if k is
positive. We assume that α is drawn from some known
distribution with probability measure µ. For a set X we
use the notation µ(X) to denote Pr[α ∈ X] under the
distribution defined by µ.

We will use different scripts to distinguish between
the space of half-space parameterizations, Rn, and the
workspace of the robot, Rn.

2.4.1 Probability Computation First we define a proce-
dure for computing the exact probability that a random half-
space αTx ≤ 0, parametrized by α, will intersect an arbitrary
set A ⊆ Rn. We relate this value to the measure of a dual
cone, a notion from convex geometry. More formally, we
examine how to find:

P (∃x ∈ A such that αTx ≤ 0).
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Theorem 4. Pr(∃ x ∈ A : αTx ≤ 0) = 1− µ(C?) where
C? is the dual cone ofA.

Proof. Recall that the dual cone C? of A is the set {α |
αTx ≥ 0, ∀x ∈ A}. First we examine the set of parameters
α such that there exists an x ∈ A such that αTx ≤ 0. The
complement of this set is the set {α | αTx > 0, ∀x ∈ A}.
Thus

Pr(∃ x ∈ A : αTx ≤ 0) = 1− Pr(αTx > 0, ∀x ∈ A).

Up to the boundary, which is measure zero, {α | αTx >
0, ∀x ∈ A} is exactly the dual cone ofA.

Pr(∃ x ∈ A : αTx ≤ 0) = 1− Pr(αTx > 0, ∀x ∈ A)

= 1− µ(C∗)

2.4.2 Construction via Polar Cones A related notion in
convex geometry, the polar cone, allows us to relate the
construction of shadows with a distribution in the halfspace
parameter space. Please see Section 2.2 for the related
definitions. A correspondence theorem defines a bijection
between a elements of set we understand (polar cones) and
elements of a set we are trying to characterize (shadows).
This will allow us to use our knowledge of the existence
and uniqueness of polar cones to understand the existence
and uniqueness of shadows. Following the theorems we will
provide a statistical interpretation in terms of frequentist
confidence set and bayesian credible sets.

The proof of the correspondence theorem (theorem 6) will
highlight an important nuance of our current definitions;
an ε shadow contains the shape with probability at least
1− ε instead of exactly probability 1− ε. For example, a
0.25−shadow is also a 0.5−shadow. This ambiguity will
make it difficult to construct a one-to-one map between all
shadows and another object which we understand.

We resolve this ambiguity by restricting our attention to
maximal shadows.

Definition 8. Maximal ε-shadow. An ε−shadow A ⊆ Rn
of a random shape O is maximal if P (O ⊆ A) = 1− ε.

This leads to our first, and most general, method of
constructing shadows.

Theorem 5. For every set Y ⊆ Rn of measure 1− ε, the
polar cone C◦ of Y is a ε−shadow for the random shape
defined by the same measure.

Proof. Recall that a point x is in collision with the halfspace
defined by α if αTx ≤ 0.

Consider a set Y of measure 1− ε. Since sets with empty
interiors have zero measure, we can assume without loss of
generality that Y is open.

First we identify the set of points not inside any halfspace
defined by a point in Y:

A = {x | αTx > 0, ∀α ∈ Y} ⊆ Rn

Up to the boundary, which is a set of measure zero, this is
exactly the polar cone, C◦, of Y .

With probability 1− ε, a draw of α will be in Y and thus
not correspond to a halfspace that intersectsC◦. This implies
that C◦ is an ε−shadow.

Theorems 4 and 5 can be combined to give a
correspondence theorem that will allow us to better
understand shadows.

Theorem 6. There is a one-to-one correspondence between
convex cones in parameter space of measure (cumulative
probability mass) 1− ε and maximal ε-shadows.

Proof. Our proof will show that applying the constructions
in theorems 4 and 5 yields the identity.

First we start with a convex cone in the space of half-space
parameters, Y , of measure 1− ε. Theorem 5 tells us that the
polar cone of Y is an ε−shadow. The construction in theorem
4 tells us that the probability of the shadow not containing the
random halfspace is the measure of the negative of its dual
cone.

Since Y is a convex cone, the negative of the dual cone of
the polar cone the original set Y itself.

The same procedure works for the reverse direction.

Theorem 6 gives us guidelines about how to construct
shadows. It shows if we wish for our ε−shadows to be tight,
we should construct them by taking the polar cone of convex
cones of measure 1− ε.

It also gives insight as to when ε−shadows are not unique.
Any set of measure 1− ε with a distinct polar cone can be
used to create a distinct shadow.

The non-uniqueness gives insight into why not all shadows
are equivalent when bounding the probability of intersection.
One ε−shadow may be sufficient to certify non-collision, but
another might not, similar to the situation in Figures 7 and 8.
This non-uniqueness has the following important practical
implication: ensuring safe, but not conservative, behavior
may require searching for the “right” shadow to prove safety.

Finally it helps us answer the question of whether
nontrivial shadows always exist. In Rn = Rn, if the
distribution over parameters is such that any halfspace
through the origin has measure greater than ε then the
only shadow is the entire space (the trivial shadow).
This comes from the fact that the minimal convex cone
with sufficient measure then becomes the entire space.
For example, consider constructing an ε = 0.25-shadow
with α ∼ N (0, I). The distribution is symmetric and all
halfspaces through the origin have measure 0.5. Thus we
cannot construct any non-trivial 0.25−shadows for this
distribution.

Note that in practice, this means that for a given set of
observations, it is not always possible to find a trajectory with
probability less than ε of collision. One can have insufficient
information to certify any trajectory as safe, no matter how
conservative.

This suggests a procedure by which we can find the
maximal ε such that no ε-shadow smaller than the full space
cannot exist.

Theorem 7. Let

ε? = inf
α∈Rn

µ(αTx ≤ 0)

Then for all ε′ < ε?, there do not exist any ε′−shadows.

Since any convex cone whose interior contains a halfspace
through the origin must be the entire vector space, and no
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halfspace has measure more than ε?, for any ε′ < ε? there
cannot exist an ε′−shadow. In other words there is no shadow
that contains the set with probability more than 1− ε. Any
distribution which does not contain all of its measure on one
side of the origin must then exhibit this threshold behavior.

2.4.3 Statistical Interpretation Finally theorem 6 has a
more statistical interpretation. The polar cone operator maps
a confidence set or credible set to a shadow. In other
words, our standard machinery to construct confidence sets
and credible sets can be used to construct shadows (by
simply taking the polar cone of the confidence/credible set).
Furthermore, when the confidence set or credible set is
a convex cone, nothing is lost in the transition from the
classical statistical setting to our setting.

2.5 PGDF Shadows
In the previous section we constructed shadows for halfspace
obstacles in full generality. Unfortunately, even the integrals
required to determine the probability that a shadow contains
an obstacle can be difficult to compute.

In this section we will restrict our attention to a particular
model and propose an efficient algorithm to construct
shadows. Furthermore, instead of trying to compute a
shadow that is tight with respect to its probability, we will
construct shadows for which it is easy to compute a lower
bound on the probability that a shadow contains a random
shape.

2.5.1 Model In order to compute shadows we must specify
the distribution from which the obstacle is drawn. One way to
arrive at a distribution on the shape and position of obstacles
is to imagine that sensor data is obtained in the form of
point clouds in which the points are segmented according
to the face of the obstacle to which they belong. Then, the
points belonging to a particular obstacle face can be used to
perform a Bayesian linear regression on the parameters of the
plane containing the face; given a Gaussian prior on the face-
plane parameters and under reasonable assumptions about
the noise-generation process, the posterior on the face-plane
parameters will also be Gaussian (Bishop 2006; Rasmussen
and Williams 2006).

Note that we use homogeneous coordinates to allow us
express faces in the form αTx ≤ 0 instead of αTx ≤ b. This
allows us to give formal definitions:

Definition 9. A face is said to be Gaussian distributed
with parameters µ,Σ if αTx ≤ 0 defines the face and α ∼
N (µ,Σ).

Definition 10. A random polytope is said to be a Polytope
with Gaussian Distributed Faces (PGDF) if it a known
number of faces, each of which is Gaussian distributed with
known parameters; that is, if it is of the following form:⋂

i

αTi x ≤ 0

αi ∼ N (µi,Σi)

2.5.2 Construction In this section we construct a shadow
for a given distribution of random shapes as follows. We
identify a sufficiently large scaled covariance ellipse around
the mean parameter vector such that its measure is 1− ε.

Figure 4. Set B corresponds to parameters of half-spaces that
will be occupied our shadow. We provide a lower bound on the
measure of set B using the measure of set A, an ellipsoid of
measure 1− ε.

We then take the polar cone of this ellipse and use it as our
shadow. A pictorial outline of the derivation is presented in
Figure 4.

We begin by identifying required size of the covariance
ellipse.

Lemma 1. Let α ∼ N (µ,Σ), φ be the CDF of the Chi-
Squared distribution with n degrees of freedom and:

X = {β | (β − µ)TΣ−1(β − µ) ≤ φ−1(1− ε))}.

Then P (α ∈ X ) = 1− ε.

Proof. First we note that α is equal in distribution to the
following random variable:

Σα′ + µ, α′ ∼ N (0, I).

α′Tα′ is then a Chi-Squared random variable with n degrees
of freedom. It follows that:

P (α′Tα′ ≤ φ−1(1− ε)) = 1− ε

Define Z as follows:

Z = {α | α′Tα′ ≤ φ−1/2(1− ε)}.

Then P (α′ ∈ Z) = 1− ε. Let Y be the image of Z under
the map we used to generate a random variable identical in
distribution to α.

Written out explicitly:

Y = {β | (β − µ)TΣ−1(β − µ) ≤ φ−1(1− ε)}

The measure of Y under the distribution over α must be the
same as the measure ofZ under the distribution over α′. Thus
P (α ∈ Y ) = 1− ε.

Now, given this ellipse of sufficient measure, we can
compute its polar cone and resulting ε−shadow. We note
that if the ellipse given in lemma 1 contains the origin
in its interior, the resulting polar cone will be empty
since the minimal enclosing convex cone is the complete
space (recall that operating homogeneous coordinates means

Prepared using sagej.cls



Axelrod et al. 7

that containing a neighborhood about the origin implies
containing the whole space). We compute the polar cone
by first computing the minimal cone C which contains the
ellipse, and then computing the polar cone of C.

For the remainder of the section we assume that the space
has been rotated and scaled such that µ = (0..., 0, 1) and the
generated ellipses do not contain the origin.

Theorem 8. For nondegenerate PGDF halfspaces, there
exists Σ′ such that

X = {< x1....xn−1, z >| xTΣ′x ≥ z}

is an ε−shadow.

Our proof is constructive and tells us how to compute Σ′.

Proof. Let X = {β | (β − µ)TΣ(β − µ) ≤ r2} be the
ellipse identified in lemma 1. For the remainder of the proof
we work with the surface and not the volume (switching to
an equality).

We expand the equation of the above surface for
convenience:

r2 = (β − µ)TΣ(β − µ)

= βTΣβ − 2βTΣµ+ µTΣµ.

Now we compute the equation for the normals to the surface
at point x

2Σx− 2Σµ.

Then we identify the set where the normal vectors are
orthogonal to the vector to the point x:

xT (Σx− Σµ) = 0

xTΣx− xTΣµ = 0

xTΣx = xTΣµ.

Substituting this into the equation of the original ellipse gives
us the equation for the plane that contains the set where the
ellipse is tangent to the minimal containing cone:

βTΣµ− 2βTΣµ+ µTΣµ = r2

−βTΣµ+ µTΣµ = r2

µTΣβ = µTΣµ− r2.

This is a linear equation in β which we can use to solve for
βn in terms of the remaining indices of β. Substituting it into
the original equation yields the equation of a new ellipse.
Let ΣE , x0, r

′ be the parameters of this new ellipse of the
following form:

(βT1...n−1 − x0)TΣE(β1...n−1 − x0) ≤ r′2

Now we can directly identify the equation of the cone as:

C = βT
(

ΣE 0
0 −r2

)
β ≤ 0; βn ≥ 0.

Alternatively we can describe the set C as a second order
cone:

C =

{
β |
√
βT1..n−1Σ′β1..n−1 ≤ βn

}
Σ′ =

ΣE

r2

(a) A cone can be dehomogenized into an unbounded shadow.

(b) Other cones can be dehomogenized into bounded shadows.
Note that in order to be safe in this scenario the robot may be
forced to stay within a bounded, safe “bubble” as opposed to
avoid a bounded “bad” region.

Figure 5. Taking the dehomogenized version of a set is exactly
taking a linear slice (corresponding to xn = 1). When the set we
are dehomogenizing is a convex cone this means that the result
is a conic section. Depending on the cone we may get different
results after dehomogenization. Even in 2 dimensions
(illustrated above), these results may differ quite drastically.
They can be unbounded (a), bounded (b), and empty.

This identifies our cone as a standard-norm cone with
the norm induced by Σ′, and makes finding the dual cone
a standard problem. The dual cone is just ||β1...n||? ≤
βn where || · ||? denotes the dual norm (see Boyd and
Vandenberghe 2004, example 2.25, page 52). The dual norm
is the natural one induced by Σ′−1. Thus the dual cone is

βT
(

Σ′−1 0
0 1

)
β ≤ 0; βn ≥ 0.

Finally since C◦ = −C? we can write down the equation of
the polar cone which defines the shadow.

βT
(

Σ′−1 0
0 1

)
β ≤ 0; βn ≤ 0

When we dehomogenize the coordinate system we get a
conic section as a shadow. We refer to Handlin (2013) for a
classification of different sections and a discussion of conic
sections in high dimensions, but we note that this step implies
that the procedure does not always produce non-degenerate
shadows, as shown in Figure 5.

Now that we can construct shadows for an individual face
we can combine several to create a shadow for a PGDF
obstacle.

Theorem 9. Let X =
⋂
xTαi ≤ 0 with αi ∼ (µi,Σi). Let

Si be an εi-shadow for xTαi ≤ 0. Then S =
⋂
Si is a∑

εi−shadow for X .

The proof follows by application of a union bound. Before
we continue on to algorithms that use shadows, we further
examine the limiting behavior of the PGDF model.
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2.5.3 Threshold Behavior Recall theorem (7) that states
that unless there exists a halfspace through the origin of
measure 1, there exists some ε? such that no nontrival
ε−shadows exist for ε < ε?.

Normal distributions clearly satisfy this property meaning
that PGDF shadows exhibit this threshold behavior. This
suggests that future work may wish to examine other
noise models. Note that the current noise model suggests
that it is possible observe points “behind” the sensor—an
unreasonable assumption for most depth sensors currently on
the market.

Theorem (7) suggests that the failure to generate a shadow
during the dehomogenization step is not simply an artifact
of the current approach. While the threshold at which this
behavior manifests can be increased, it is fundamentally
unavoidable under this noise model since there will always
be a threshold below which non-trivial shadows cannot be
constructed.

3 Certifying Safety
We will verify that trajectories are safe by finding a set of
shadows that proves the swept volume of the trajectory is
unlikely to collide with an obstacle. In order to minimize
the number of scenarios in which a trajectory is actually
safe, but our system fails to certify it as such, we will
search for the optimal set of shadows for the given trajectory,
allowing shadows for distant obstacles to be larger than those
for obstacles near the trajectory. In order to understand the
search for shadows of multiple obstacles we first examine
the case of a single obstacle and space X potentially visited
by the robot (for example compuated as the swept volume of
a trajectory or SOS funnel).

3.1 Single Obstacle
For a single obstacle with index i, we want to find the
smallest εi risk bound, or equivalently, largest shadow that
contains the estimate but not the volume of space that the
robot may visit. That is, we wish to solve the following
optimization problem:

minimize
ε∈(0,1)

ε

subject to shadow(ε) ∩X = ∅

If we restrict ourselves to the shadows obtained by theorem
8, a shadow with a larger ε is strictly contained in a
shadow with a smaller ε. This implies that the intersection
is monotone in ε, allowing us to solve the above problem
with a line search as shown in Figure 6. While we restrict
our attention to the general case, in certain cases, such as
where X is a collection of points, this optimization can be
solved analytically.

Essentially we are growing the size of the shadow until it
almost touches the space that the robot can visit, X .

We define FIND MAXIMAL SHADOW(εp,µi,Σi, V ),
which takes the precision εp, PGDF parameters µi,Σi, and
swept volume V , and uses a standard bisection search to
find and return the largest ε for which the shadows are
non-intersecting with V . This requires O(log 1/εp) calls
of intersection—proportional to the number of digits of

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Figure 6. A line search for the maximal shadow. The shadow
“grows” and “shrinks” until it contacts the green space visited by
the robot.

precision required. The runtime grows very slowly as the
acceptable probability of collision goes to zero.

3.2 Multiple Obstacles
In order to extend the algorithm to multiple obstacles we
search for multiple shadows and use a union bound to
guarantee safety. Before we present the algorithm we present
the lemma underlying its correctness.

Lemma 2. Consider a robot operating in an environment
with n random (uncertain) obstacles. If its trajectory avoids
the εi-shadow of obstacle i, then the robot avoids collision

with any obstacle with at least probability
n∑
i=0

εi.

The proof follows by application of the union bound on
the probability of colliding with each obstacle.

To compute this probability, we run a line search to
determine the largest allowable ε for every obstacle, and sum
the resulting ε’s to get the ultimate bound on the risk. The
psuedocode is presented in algorithm 1.

Algorithm 1 FIND MAXIMAL SHADOW SET

Input: εp, {µi}, {Σi}, V
Output: ε, s.t. the path generating volume V is at least ε safe

and each shadow is less than εp away from the minimal
ε for which this class of bound may be obtained.

1: for i = 1...n do
2: εi = FIND MAXIMAL SHADOW(εp, {µi}, {Σi}, V )
3: end for
4: return

∑
εi

This algorithm is embarrassingly parallel because every εi
can be computed independently without increasing the total
amount of required computational operations. The resulting
risks can be added with an adder tree of O(log n) depth.
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To obtain a total accumulated numerical error less than δ
we only need to set εp = δ/n. If ω is the complexity of a
single evaluation of intersection, our serial algorithm runs in
O(ωn log n/δ) time. However, since the search for shadows
can be done in parallel in a work-efficient manner, the
algorithm can be parallelized to run in O(ω log n log n/δ)
time on Θ(n) processors. Note that there is only a
polylogarithmic n computation time penalty for obstacles
given sufficient parallelism.

If the intersection check is implemented with a tesselation
of the shadow collision checker then finding a safety
certificate is only log factors slower than running a collision
check–suggesting that systems robust to uncertainty do not
necessarily have to have significantly more computational
power.

Furthermore, since the algorithm computes a separate ε for
every obstacle, obstacles with little relevance to the robot’s
actions do not significantly affect the resulting risk bound.
This allows for a much tighter bound than algorithms which
allocate the same risk for every obstacle.

3.3 Experiments
We can illustrate the advantages of a geometric approach
by certifying a trajectory with a probability of failure very
close to zero. For an allowable chance of failure of ε, the
runtime of sample-based, Monte-Carlo methods tends to
depend on 1/ε as opposed to log 1/ε. Monte-Carlo based
techniques rely on counting failed samples requiring them
to run enough simulations to observe many failed samples.
This means that they have trouble scaling to situations where
ε approaches zero and failed samples are very rare. For
example, Janson et al.’s method takes seconds to evaluate a
simple trajectory with ε = 0.01, even with variance reduction
techniques (Janson et al. 2015).

We demonstrate our algorithm on a simple domain with
ε = 2.2× 10−5. Our algorithm required just 6 calls to a
collision checker for each obstacle. We also demonstrate
that our algorithm can certify trajectories which cannot be
certified as safe with shadows of equal sizes. Figures 7 and 8
show the problem domain. Figure 7 shows that the trajectory
cannot be certified as safe with a uniform risk assigned to
each obstacle. Figure 8 shows the shadows found by our
algorithm that prove the trajectory is safe.

4 Online Safety
The bounds in the previous section do not immediately
generalize to a setting where the robot acquires more
information over time and can be allowed to change its
desired trajectory. Additional care must be taken to ensure
that the system cannot “trick” the notion of safety used, and
not honor the desired contract on aggregate lifetime risk of
the execution instance. We do not wish to ever allow the
system to take actions that are known to be unsafe. Consider
the case where, if a fair coin turns up as heads the robot
takes a path with a 1.5ε probability of failure and it takes
a trajectory with a 0.5ε probability of failure otherwise. This
policy may take an action that is known to be unsafe, but
randomization is exploited to ensure that the probability of
failure is less than ε. We note that while the above example
requires a randomized policy, there is no fundamental reason
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Figure 7. Computing the optimal equal allocation of
probabilities fails to certify the safety of the path.
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Figure 8. Computing the optimal probability for each shadow
allows us to successfully verify that the trajectory is safe.

why the policy would need direct access to random bits to
achieve this effect. Random bits may instead be extracted
from noise in the observations. This allows the policy to take
unsafe actions in certain scenarios, even without access to
internal randomization.

Furthermore, the history of actions is also important in
ensuring aggregate lifetime safety. In Figure 9 we illustrate a
example of how the robot can always be committed to some
trajectory that is ε-safe but have more than an ε probability
of collision over the lifetime of the execution.

Figure 9 highlights the need to ensure low probability
of failure under all sets of observations. If this scenario is
run multiple times the failure rate will be much greater than
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P (A1) = 0.2 P (A2) = 0.05 P (A3) = 0.05

(a) At first the robot chooses the thin black trajectory which is
has a probability of collision of only 0.3. It is more likely to
collide with the first obstacle than the remaining obstacles.
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P (A1) ≈ 0 P (A2) = 0.2 P (A3) = 0.1

(b) After observing that it had not collided with the first obstacle,
it readjusts the plan to follow the bold trajectory so that the
probability of collision is still less than 0.3. However, a system
that follows this policy will collide with probability greater than
0.65 even though at every point it was following a trajectory with
probability of collision less than 0.3. In other words, for this set
of observations O, P (A|π,O) > 0.3. A system that is allowed
to change its action after seeing additional information (in this
case the fact that it did not collide) must properly account for the
risk already taken.

Figure 9. Tricking ”safety” by changing paths once more
information is acquired. Note that even knowing that the system
did not collide can serve as information.

acceptable. In order to propose an algorithm that allows the
robot to change the desired trajectory as a function of a
stream of information, we develop an alternative criterion
for safety that accounts for risks as they are about to be
incurred. We let pt denote the probability of collision at time
t, given the information available at time t and conditioned
on no collision before time t, provided that we follow the
trajectory currently predicted by the policy π. We note that
since the information itself is random, pt is a random variable
for future times. We say that a policy π is absolutely safe if
for all times t, equation (1) is satisfied. The expectation in
the integral is with respect to the information available at the
current time t.

∞∫
0

E[pt | π]dt =

t∫
0

ptdt+

∞∫
t

E[pt | π] dt ≤ ε (1)

We note that the
t∫
0

ptdt can be evaluated as an accumulation

with standard numerical techniques for evaluating integrals.

The second term,
∞∫
t

E[pt | π] dt, is exactly the probability

that the remaining part of the trajectory will collide and can
be evaluated with the method for solving the offline safety
problem.

4.1 Absolute Safety vs Policy Safety
Algorithm 2 provides a method for performing safe online
planning in the case that the PGDF parameters are updated
during execution. While it shows that absolute safety can be
verified efficiently, it is not clear how to efficiently verify
policy safety. However, unlike absolute safety, policy safety
is a very direct condition on aggregate lifetime probability
of collision and can be easier to interpret. In this section we
compare policy safety to absolute safety in order to identify
when they are equivalent.

First we show that absolute safety is a strictly stronger
condition than policy safety in theorem 10. This comes by
integrating the probability of failure over time to get the total
probability of failure. Since the absolute safety condition
in equation (1) must always be satisfied, regardless of the
observation set, the probability of failure for that information
set will always be sufficiently small.

Theorem 10. If a policy is absolutely safe, then it is also
safe in the policy safety sense.

Proof. Assume for the sake of contradiction that a policy is
absolutely safe, but not policy safe. That means there exists a
set of observations O and time t for which policy safety does
not hold, but absolute safety does.

The probability of collision conditioned on these
observations is:

t∫
0

pt|Odt+

∞∫
t

E[pt|O]dt

Note that once the set of observations is fixed, pt becomes
constant so the above expression is not a stochastic integral.

Since the integral evaluates to less than ε, so must the
probability of collision. However, this implies that the system
is policy safe for this set of observations O and time t,
yielding a contradiction.

Thus if a policy is absolutely safe it must also be policy
safe.

Absolute safety, however, is not always equivalent to
policy safety. The key difference lies in how the two
conditions allow future information to be used. Absolute
safety requires that the system always designate a safe
trajectory under the current information while policy safety
allows the robot to postpone specifying a complete, safe
trajectory if it is certain it will acquire critical information
in the future.

In order to formalize when policy safety and absolute
safety are equivalent, we introduce the notion of an
information adversary. An information adversary is allowed
to (1) see the observations at the same time as the agent,
(2) access the policy used by the agent, and (3) terminate
the agent’s information stream at any point. Policy safety
under an information adversary is guaranteed by the policy
safety conditions if the information stream can stop naturally
at any point. Theorem 11 shows that policy safety with an
information adversary is equivalent to absolute safety.

Theorem 11. A policy that is safe at all times under an
information adversary is also absolutely safe.
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Algorithm 2 FIND MAXIMAL SHADOWS ONLINE

Input: εp, t, {pt′ |∀t′ ∈ [0, t]}, V
Output: ε, s.t. ε is greater than the sum cumulative risk

taken before the current time t and the future risk. ε is
at most εp away from the minimal ε for which a bound
of this class may be obtained.

1: ε1 =
t∫
0

ptdt

2: ε2 = FIND MAXIMAL SHADOW SET(εp,µ1...n,Σ1...n, V )
3: return ε1 + ε2

Proof. Assume for the sake of contradiction that there exists
set of observations O and a time t for which absolute safety
does not hold. That is to say that conditioned on these
observations

t∫
0

ptdt+

∞∫
t

E[pt|π]dt > ε.

Let the information adversary stop the flow of information to
the robot at time t. Let A1 denote the event that the system
fails during times (0, t] and A2 denote the event that the
system fails during times (t,∞). We note that a system can
fail at most once, so A1, A2 are exclusive.
E[pt | O] is martingale so we can use the oracle developed

in our algorithm:

∞∫
t

E[pt|O]dt = P (A2|O).

Since
t∫
0

pt|Odt = P (A1|O), we get that the probability of

failure exceeds ε:

P (A1 ∪A2) = P (A1) + P (A2) ≥ ε.

The above violates our assumption that the system is policy
safe under the set of observations O.

Thus if a system is policy safe under an information
adversary, it is also absolutely safe.

4.2 Experiments
We demonstrate a simple replanning example based on the
domain presented in Figure 8. During execution the robot
will receive a new observation that helps it refine its estimate
of the larger, second obstacle. This allows it to shrink the
volume of the shadow corresponding to the same probability
and certify a new, shorter path as safe. This new path is
shown in Figure 10. It takes this new trajectory without
exceeding the lifetime risk threshold.

5 Computing Safe Plans
The safety certification algorithms we presented above can
be used for more than just checking safety. They can enable
safe planning as well. We present a modification to the RRT
algorithm that restricts output to only safe plans (Lavalle
1998). Every time the tree is about to be expanded, the risk
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Figure 10. In the continuation of the scenario described in
Figure 8 the robot makes a new observation of the obstacle
after reaching the top of the old trajectory. This allows it to
shrink the shadow around the second obstacle and take the
less conservative path that is shown above.

Algorithm 3 SAFE RRT

Input: εsafe, εp, qs,µ1...n,Σ1...n

Output: A tree of trajectories with collision probability
less than εsafe of collision, computed with numerical
precision εp.

1: tree = new TREE(qs)
2: for iteration = 1...num iters do
3: xrand = RANDOM STATE
4: xnear = NEAREST NEIGHBOR(TREE, xrand)
5: xnew = EXTEND(xnear, xrand)
6: X = GET TRAJECTORY SWEPT VOL(tree, xnear, xnew)
7: risk =
8: FIND MAXIMAL SHADOW SET(εp,µ1...n,Σ1...n, X)
9: if risk ≤ εsafe then

10: ADD CHILD(tree, xnear, xnew)
11: end if
12: end for
13: return tree

of the trajectory to the node is computed. The tree is only
grown if the risk of the resulting trajectory is acceptable.

We note that it is not necessary to check the safety of the
entire trajectory every time the tree is extended. Since the
bounds for each obstacle are determined by a single point
in the trajectory (where the trajectory contacts the shadow),
we can reuse information without running a new collision
check on the whole trajectory. It is sufficient to compute the
collision check for the trajectory from xnear to xnew, and
use the contact points that define the highest risk shadows.

Finally we note that, unlike soundness, analyzing
probabilistic completeness is quite different in the risk
constrained case from the original case. We do not
believe this method is probabilistically complete. Unlike
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the deterministic planning problem, the trajectory taken to
reach a point affects the ability to reach future states—
breaking down a crucial assumption required for RRTs to be
probabilistically complete.

We demonstrate the safe-RRT algorithm on a point robot
trying to escape a box. The box has two exits. While the robot
can safely pass through the larger exit, it cannot safely pass
through the smaller exit. The planner is run to only return
paths with a probability of failure less than 0.5%. Figure 11a
shows a safe tree from the red dot inside the box to the red dot
above the box. Figure 11b shows just the ultimate trajectory
with its corresponding shadows that certify the probability of
failure as less than 0.26%. Note that some shadows did not
extend all the way to the trajectory as their risk was already
below the numerical threshold.

The experiment shown in Figure 11a demonstrates offline-
safety. If the robot were given additional information during
execution, we could use the equations for online-safety to
re-run the RRT with the new estimates of obstacles while
preserving the safety guarantee.

6 Conclusion
We presented a framework to compute shadows, the
geometric equivalent of a confidence interval, around
observed geometric objects. Our bounds are tighter than
those of previous methods and, crucially, the tightness of
the bounds does not depend on the number of obstacles. In
order to achieve this tightness we rely on computing a bound
specific to a trajectory instead of trying to identify a generic
“safe” set.

We present offline and online variants of algorithms that
can verify safety with respect to the shadows identified
above for both trajectories and policies. The online method
highlights nuances and potential issues with a mathematical
definition of safety, and presents a strong, but still
computationally verifiable notion of safety. These algorithms
do not have a computational complexity much larger than a
collision check, and are only a O

(
log n

ε

)
factor slower than

a collision check for n obstacles and an ε−safety guarantee.
Finally the output of these algorithms is easy to verify,
allowing the output to serve as a safety certificate.

These safety certification algorithms are important not
only in ensuring that a given action is safe, but also
in enabling the search for safe plans. We demonstrate
an extension to the RRT algorithm that, while no longer
probabilistically complete, only outputs safe plans.

6.1 Future work
Many of the exciting lines of work building upon the ideas
presented here can be split into two categories.

6.1.1 Statistics of Estimating Geometry While we
present a method of computing shadows as a way of
quantifying the quality of an estimated shape we do not
explore different noise models and geometric estimators.
The threshold behavior in the PGDF model suggests that
we may be able to develop better models for this setting.
Furthermore, there is little evidence that the averaging
estimator used to justify the PGDF model is optimal in
practice. Considering the relationship between the shape

(a) A tree of safe trajectories branching from the red dot in
interior of the box. Equally sized shadows are shown for
reference.

(b) The trajectory found by the above RRT and the
corresponding shadow safety certificate

Figure 11. A graph generated by Safe-RRT to find a plan
between the two red dots.

parameter space and the robot’s workspace may inform the
design of estimators other than the maximum likelihood
estimator that have smaller shadows similar to how the
bias-variance trade-off allows one to reduce the variance of
an estimator in a classical statistical setting. Furthermore,
additional assumptions about the environment may allow
one to construct more efficient estimators. Even in the case
of PGDF obstacles, one may examine generalizations that
use other approximations of the measure of the cone to
create tighter shadows, mixture models that allow one to
discard the assumption that the number of faces is known
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apriori, methods that compute different level shadows for
different faces, etc.

6.1.2 Algorithmic Aspects of Safety with Respect to
Uncertain Geometry The planning algorithm presented
in this paper is not probabilistically complete. Regaining
probabilistic completeness with a polynomial time increase
in complexity is non-trivial, even when considering
modifications to more complicated algorithms such as RRG,
PRM and PRM* (Karaman and Frazzoli 2011; Kavraki
et al. 1996). Minimizing risk in the setting presented in this
paper on a graph can be reduced to a path-finding problem
with a very structured submodular cost. While constrained
submodular minimization is NP-hard in general, it remains
to be seen if there are useful heuristic and approximation
algorithms for this setting (Goel et al. 2009; Goemans et al.
2009; Svitkina and Fleischer 2011).

Efficient algorithms for computing shadows under
different noise models and tighter bounds also remains open.

6.1.3 Other Applications of Shadows and Geometric
Estimators While we propose using shadows for ensuring
safe robot operation, we believe there are many other
applications for geometric estimators and shadows. One
could also consider modifying the definition of shadow to
be a volume inside the shape with probability at least 1− ε.
The construction would remain similar. This inverted notion
of a shadow may be useful in applications such as grasping
where high probability of contact with the object is desirable.
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