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Abstract: In many robotic applications, an autonomous agent must act within and
explore a partially observed environment that is unobserved by its human team-
mate. We consider such a setting in which the agent can, while acting, transmit
declarative information to the human that helps them understand aspects of this
unseen environment. In this work, we address the algorithmic question of how
the agent should plan out what actions to take and what information to trans-
mit. Naturally, one would expect the human to have preferences, which we model
information-theoretically by scoring transmitted information based on the change
it induces in weighted entropy of the human’s belief state. We formulate this set-
ting as a belief MDP and give a tractable algorithm for solving it approximately.
Then, we give an algorithm that allows the agent to learn the human’s prefer-
ences online, through exploration. We validate our approach experimentally in
simulated discrete and continuous partially observed search-and-recover domains.
Visit http://tinyurl.com/chitnis-corl-18 for a supplementary video.
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1 Introduction

Consider a scenario where a human operator must manage several autonomous search-and-rescue
agents that can move through, observe, and modify their respective environments, which are sites
of recent disasters. The agents have highly important objectives: to rescue trapped victims. Sec-
ondarily, they should keep the human operator informed about what is taking place, but should not
sacrifice their primary objective just to transmit information. Rather than receiving a continuous
stream of data such as a video feed from each agent, from which it would be hard to extract salient
findings, the human may only want to receive important information, forcing the agents to make
decisions about what information is worth giving. Naturally, the human will have preferences about
what information is important to them: for instance, they would want to be notified when an agent
encounters a victim, but probably not every time it encounters a pile of rubble.

In this work, we address the algorithmic question of how an agent should plan out what actions to
take in the world and what information to transmit. We treat this problem as a sequential decision
task where on each timestep the agent can choose to transmit information, while also acting in the
world. To capture the notion that the human has preferences, we model the human as an entity
that scores the agent based on how interesting the transmitted information is to them. The agent’s
primary objective is to act optimally in the world; secondarily, it should transmit score-maximizing
information while acting. We formulate this setting as a decomposable belief Markov decision
process (belief MDP) and give a tractable algorithm for solving it approximately in practice.

We model the human’s score function information-theoretically. First, we suppose that the human
maintains a belief state, a probability distribution over the set of possible environment states; this
belief gets updated based on information received from the agent. Next, we let the human’s score for
a given piece of information be a function of the change in weighted entropy induced by the belief
update. This weighting is a crucial aspect of our approach: it allows the human to describe, in a
natural way, which aspects of the environment they want to be informed about.
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We give an algorithm that allows the agent to learn the human’s preferences online, through explo-
ration. In this setting, online learning is very important: the agent must explore in order to discover
the human’s preferences, by giving them a variety of information. We validate our approach ex-
perimentally in simulated discrete and continuous partially observed search-and-recover domains,
and find that our belief MDP framework and corresponding planning and learning algorithms are
effective in practice. Visit http://tinyurl.com/chitnis-corl-18 for a supplementary video.

2 Related Work

The problem setting we consider, in which an agent must act optimally in its environment while sec-
ondarily giving information that optimizes a human’s score function, is novel but has connections to
several related problems in human-robot interaction. Our work is unique in using weighted entropy
to capture the human’s preferences over which aspects of the environment are important.

Information-theoretic perspective on belief updates. The idea of taking actions that lower the entropy
of a belief state has been studied in robotics for decades. Originally, it was applied to navigation [1]
and localization [2]. More recently, it has also been used in human-robot interaction settings [3, 4]:
the robot asks the human clarifying questions about its environment to lower the entropy of its
own belief, which helps it plan more safely and robustly. By contrast, in our method the robot is
concerned with estimating the entropy of the human’s belief, like in work by Roy et al. [5].

Estimating the human’s mental state. Having a robot make decisions based on its current estimate of
the human’s mental state has been studied in human-robot collaborative settings [6, 7, 8]. The robot
first estimates the human’s belief about the world state and goal, then uses this information to build
a human-aware policy for the collaborative task. This strategy allows the robot to exhibit desirable
behavior, such as signaling its intentions in order to avoid surprising the human.

Modeling user preferences with active learning. The idea of using active learning to understand
user preferences has received significant attention [9, 10, 11]. Typically in these methods, the agent
gathers information from the user through some channel, estimates a reward function from this infor-
mation, and acts based on this estimated reward. Our method for learning the human’s preferences
online works similarly, but we assume that the reward has an information-theoretic structure.

3 Background

3.1 Partially Observable Markov Decision Processes and Belief States

Our work considers agent-environment interaction in the presence of uncertainty, which is often
formalized as a partially observable Markov decision process (POMDP) [12]. An undiscounted
POMDP is a tuple 〈S,A,Ω, T,O,R〉: S is the state space;A is the action space; Ω is the observation
space; T (s, a, s′) = P (s′ | s, a) is the transition distribution with s, s′ ∈ S, a ∈ A; O(s, o) = P (o |
s) is the observation model with s ∈ S, o ∈ Ω; and R(s, a, s′) is the reward function with s, s′ ∈
S, a ∈ A. Some states in S are said to be terminal, ending the episode and generating no further
reward. The agent’s objective is to maximize its overall expected reward, E [

∑
tR(st, at, st+1)].

The optimal solution to a POMDP is a policy that maps the history of observations and actions
to the next action to take, such that this objective is optimized. Exact solutions for interesting
POMDPs are typically infeasible to compute, but some popular approximate approaches are online
planning [13, 14, 15] and finding a policy offline with a point-based solver [16, 17].

The sequence of states s0, s1, ... is unobserved, so the agent must instead maintain a belief state, a
probability distribution over the space of possible states. This belief is updated on each timestep,
based on the received observation and taken action. Unfortunately, representing this distribution
exactly is prohibitively expensive for even moderately-sized POMDPs. One typical alternative repre-
sentation is a factored one, in which we assume the state can be decomposed into variables (features),
each with a value; the factored belief then maps each variable to a distribution over possible values.

A Markov decision process (MDP) 〈S,A, T,R〉 is a simplification of a POMDP where the states are
fully observed by the agent, so Ω and O are not needed. The optimal solution to an MDP is a policy
that maps the state to the next action to take, such that the same objective as before is optimized.
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Every POMDP 〈S,A,Ω, T,O,R〉 induces an MDP 〈B,A, τ, ρ〉 on the belief space, known as a belief
MDP, where: B is the space of beliefs B over S; τ(B, a,B′) =

∑
o∈Ω P (B′ | B, a, o)P (o | B, a);

and ρ(B, a,B′) = Es∼B,s′∼B′R(s, a, s′). See Kaelbling et al. [12] for details.

3.2 Weighted Entropy and Weighted Information Gain

Weighted entropy is a generalization of Shannon entropy that was first presented and analyzed
by Guiaşu [18]. The Shannon entropy of a discrete probability distribution p, given by S(p) =
E [− log pi] = −

∑
i:pi 6=0 pi log pi, is a measure of the expected amount of information carried by

samples from the distribution, and can also be viewed as a measure of the distribution’s uncertainty.
Note that trying to replace the summation with integration for continuous distributions would not be
valid, because the interpretation of entropy as a measure of uncertainty gets lost; e.g., the integral
can be negative. The information gain in going from a distribution p to another p′ is S(p)− S(p′).

Definition 1. The weighted entropy of a discrete probability distribution p is given by Sw(p) =
−
∑
i:pi 6=0 wipi log pi, where allwi ≥ 0. The weighted information gain in going from a distribution

p to another p′ is Sw(p)− Sw(p′).

Weighted entropy allows certain values of the distribution to heuristically have more impact on the
uncertainty, but cannot be interpreted as the expected amount of information carried by samples.

Figure 1: Weighted entropy for a distri-
bution with three values: A,B,C. The x-
axis varies pA, with the remaining probabil-
ity mass split equally between B and C.

Intuition. Figure 1 helps give intuition about weighted
entropy by plotting it for the case of a distribution with
three values. In the figure, we only let pA vary freely and
set pB = pC = 1−pA

2 , so that the plot can be visualized in
two dimensions. When only one value is possible (pA =
1), the entropy is always 0 regardless of the setting of
weights, but as pA approaches 1 from the left, the entropy
drops off more quickly the higher wA is (relative to wB
and wC). If all weight is placed on A (the orange curve),
then when pA = 0 the entropy also goes to 0, because the
setting of weights conveys that distinguishing between B
and C gives no information. However, if no weight is
placed on A (the green curve), then when pA = 0 we
have pB = pC = 0.5, and the entropy is high because the
setting of weights conveys that all of the information lies
in telling B and C apart.

4 Problem Setting

We formulate our problem setting as a belief MDP (Section 3.1) from the agent’s perspective, then
give an algorithm for solving it approximately. At each timestep, the agent takes an action in the
environment and chooses a piece of information i (or null if it chooses not to give any) to transmit,
along with the marginal probability, BA(i), of i under the agent’s current belief. See Figure 2.

Figure 2: A diagram of our problem setting. Red: agent’s activities; blue: environment’s; green: human’s.

Our presentation of the formulation will assume that the agent knows 1) the human’s initial belief,
2) the model for how the human updates their belief, and 3) that only information from the agent can
induce belief updates; this assumption effectively renders the human’s belief state fully observed by
the agent. We can easily relax this assumption: suppose the agent were allowed to query only some
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aspects of the human’s belief; then, it could incorporate the remainder into its own belief as part of
the latent state. We will not complicate our presentation by describing this setting explicitly.

4.1 Belief MDP Formulation

Let the agent-environment interaction be modeled as a POMDP 〈SE ,AE ,ΩE , TE , OE , RE〉, where
SE is continuous or discrete. This induces a belief MDP 〈BE ,AE , τE , ρE〉, where BE is the space
of beliefs over SE . The agent maintains a belief state BA ∈ BE , updated with a Bayes filter [19].

The human maintains their own belief state BH ∈ BE over environment states, updated based only
on information transmitted by the agent, and gives the agent a real-valued score on each timestep for
this information. We model the human as a tuple 〈I, TH , B0

H , RH〉: I is a set of fluents (Boolean
atoms that may or may not hold in the state) that defines the space of information the agent can
transmit; TH(s, s′) = P (s′ | s) is the human’s forward model of the world with s, s′ ∈ SE ;
B0
H ∈ BE is the human’s initial belief; and RH(BH , B

′
H) is the human’s score function with

BH , B
′
H ∈ BE . The TH allows the human to model the degradation of information over time; we

use a simple TH that is almost the identity function, but gives ε probability to non-identity transitions.

At each timestep, the agent selects information i ∈ I to give and transmits it along with the marginal
probability of i under BA, defined as BA(i) =

∑
s∈SE :i holds in sBA(s). We update the belief BH

according to Jeffrey’s rule [20], which is based on the principle of probability kinematics for mini-
mizing the change in belief. First, we define B̃H(s) =

∑
s′∈SE TH(s′, s)BH(s′),∀s ∈ SE . Then

the full belief update, BH → B′H , is B′H(s) = B̃H(s)BA(i)

B̃H(i)
if i holds in s and B̃H(s)(1−BA(i))

1−B̃H(i)
if i

does not hold in s, ∀s ∈ SE . The summations can be replaced with integration if SE is continuous.

Objective. We define the agent’s objective as follows: to act optimally in the environment (maxi-
mizing the expected sum of rewards RE) and, subject to acting optimally, to give information such
that the expected sum of the human’s scores RH over the trajectory is maximized.

The full belief MDP P for this setting (from the agent’s perspective) is a tuple 〈B,A, τ, ρ〉:
• B = BE × BE . A state is a pair of the agent’s belief BA ∈ BE and the human’s belief BH ∈ BE .
• A = AE × I. An action is a pair of environment action a ∈ AE and information i ∈ I.
• τ(〈BA, BH〉, 〈a, i〉, 〈B′A, B′H〉) = τE(BA, a, B

′
A) if B′H satisfies the update equation, else 0.

• ρ(〈BA, BH〉, 〈a, i〉, 〈B′A, B′H〉) is a pair 〈ρE(BA, a, B
′
A), RH(BH , B

′
H)〉with the comparison op-

eration 〈x1, y1〉 > 〈x2, y2〉 ⇐⇒ x1 > x2 ∨ (x1 = x2 ∧ y1 > y2); similarly for <.

The following algorithm for solving P by decomposition will help us give an approximation next.

Algorithm DECOMPOSEANDSOLVE(P)
1 πact ← (solve agent-environment belief MDP 〈BE ,AE , τE , ρE〉)
2 // Define τH as τH(〈BA, BH〉, i, 〈B′

A, B
′
H〉) = τ(〈BA, BH〉, 〈πact(BA), i〉, 〈B′

A, B
′
H〉).

3 // Define ρH as ρH(〈BA, BH〉, i, 〈B′
A, B

′
H〉) = RH(BH , B

′
H).

4 πinfo ← (solve agent-human belief MDP 〈BE × BE , I, τH , ρH〉)
5 return policy π for P: π(〈BA, BH〉) = 〈πact(BA), πinfo(〈BA, BH〉)〉

Algorithm 1: Algorithm for solving P by decomposition. The agent-human belief MDP must include the
agent’s belief BA in the state so that the marginal probabilities of information, BA(i), can be determined.

Theorem 1. Algorithm 1 returns an optimal solution π∗ for P .

Proof. Note that a policy π for P maps pairs 〈BA, BH〉 to pairs 〈a, i〉, with a ∈ AE and i ∈
I. We have π∗ = argmaxπ E [

∑
t ρ(〈BA,t, BH,t〉, π(〈BA,t, BH,t〉), 〈BA,t+1, BH,t+1〉)]. Define

π(〈BA, BH〉)[0] = a, the first entry in the pair. Due to the comparison operation we defined on ρ,
we can write π∗ = argmaxπ E [

∑
t ρE(BA,t, π(〈BA,t, BH,t〉)[0], BA,t+1)], and if there are multiple

such π∗, pick the one that also maximizes E [
∑
tRH(BH,t, BH,t+1)]. The decomposition strategy

exactly achieves this, by leveraging the fact that the human cannot affect the environment.

4.2 Approximation Algorithm

P can be hard to solve optimally even using the decomposition strategy of Algorithm 1. A key
challenge is that πact branches due to uncertainty about observations and transitions, so searching
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for the optimal πinfo becomes computationally infeasible. Instead, we apply the determinize-and-
replan strategy [21, 22, 23], which is not optimal but often works well in practice. We determinize
P using a maximum likelihood assumption [21], then use Algorithm 1. This procedure is repeated
any time the determinization is found to have been violated. See Algorithm 2 for full pseudocode.

Line 3 generates the trajectory τBA
of the agent’s beliefs induced by pact, which works because

pact does not contain branches. Line 8 constructs a directed acyclic graph (DAG) G whose states
are tuples of (human belief, timestep). An edge exists between (BH , t) and (B′H , t + 1) iff some
information i ∈ I causes the belief update BH → B′H under the determinized P . The edge weight
is RH(BH , B

′
H), the human’s score for i. Note that all paths through G have the same number of

steps, and because the edge weights are the human’s scores, the longest weighted path through G
is precisely the information-giving plan pinfo that maximizes the total score over the trajectory. Our
implementation does not build the full DAG G; we prune the search using domain-specific heuristics.

Algorithm DECOMPOSEANDSOLVEAPPROXIMATE(P)
1 P .Determinize()
2 pact ← (solve agent-environment portion of P) // Acting plan (no branches).
3 τBA ← (trajectory of beliefs BA induced by pact)

Subroutine GETSUCCESSORS(state)
4 (BH , timestep)← state // Unpack state tuple.
5 for each i ∈ I do
6 B′

H ← (result of updating BH with i and marginal probability τBA [timestep](i))
7 emit next state (B′

H , timestep + 1) with edge label i and weight RH(BH , B
′
H)

8 G← (DAG constructed from root node (B0
H , 0) and GETSUCCESSORS)

9 pinfo ← LONGESTWEIGHTEDPATHDAG(G) // Information-giving plan (no branches).
10 return MERGE(pact, pinfo) // Zip into a single plan.

Algorithm 2: Approximate approach for solving P with determinization. See text for detailed description.

5 Learning an Information-Theoretic Score Function

In this section, we first model the human’s score function RH information-theoretically using the
notion of weighted entropy. Then, we give an algorithm by which the agent can learn RH online.

5.1 Score Function Model

We model the score function RH(BH , B
′
H) as a function f ∈ R of the weighted information gain

(Section 3.2) of the belief update induced by information:

RH(BH , B
′
H) = f(Sw(BH)− Sw(B′H)),

where the w are a set of weights. The human chooses both w and f to suit their preferences.

Assumptions. This model introduces two assumptions. 1) The human’s belief BH , which is ideally
over the environment state space SE , must be over a discrete space in order for its entropy to be
well-defined. If SE is continuous, the human can make any discrete abstraction of SE , and maintain
BH over this abstraction instead of over SE . Note that the agent must know this discrete abstraction.
2) If the belief is factored (Section 3.1), we calculate the total entropy by summing the entropy of
each factored distribution. This is an upper bound that assumes independence among the factors.

Motivation. Assuming structure in the form ofRH makes it easier for the agent to learn the human’s
preferences; the notion of weighted entropy is a compelling choice. The human’s belief state BH
captures their perceived likelihood of each possible environment state (or value of each factor in the
state). Each pi term in the entropy formula corresponds to an environment state or value of a factor,
so the wi encode the human’s preferences about which states or values of factors are important.

Interpretation of f . Different choices of f allow the human to exhibit various preferences. Choosing
f to be the identity function means that the human wants the agent to act greedily, transmitting the
highest-scoring piece of information at each timestep. The human may instead prefer for f to impose
a threshold t: if the gain is smaller than t, then f could return a negative score to penalize the agent
for not being sufficiently informative. A sublinear f rewards the agent for splitting up information

5



into subparts and transmitting it over multiple timesteps, while a superlinear f rewards the agent for
withholding partial information in favor of occasionally transmitted, more complete information.

5.2 Learning Preferences Online

We now give Algorithm 3, which allows the agent to learn w and f online through exploration. This
algorithm works for both single-episode lifelong learning problems where no states are terminal
and short-horizon problems where the agent must learn over several episodes. In Line 7, the agent
explores the human’s preferences using an ε-greedy policy that gives a random piece of information
with probability ε and otherwise follows π, the policy solving P under the current ŵ and f̂ .

If the human’s preferences (w or f ) ever change, we can reset ε to an appropriate value and continue
running the algorithm, so the agent can explore information that the human now finds interesting.
Additionally, with some small modifications we can make f depend on the last few timesteps of
transmitted information: we need only augment states in our belief MDP with this history so it can
be used to calculate RH , and include this history in the dataset D used for learning in Algorithm 3.

Algorithm TRAINLOOP

1 ŵ, f̂ ← (initial guess)
2 D ← (initialize empty dataset)
3 P ← (initialize problem) // Belief MDP described in Section 4.

4 π ← SOLVE(P, ŵ, f̂ ) // Solve P under ŵ and f̂ (e.g., with Alg. 2).
5 while not done training do
6 Act according to π in environment.
7 Give information according to ε-greedy(π ‖ random); obtain noisy human’s score s̃.
8 Store tuple of transition and noisy score, (BH , B

′
H , s̃), into D.

9 Sample training batch T ∼ D.
10 L ←

∑
T (s̃− f̂(Sŵ(BH)− Sŵ(B

′
H)))2/T.size // Loss is MSE of predicted score.

11 Update ŵ, f̂ with optimization step on L.
12 if agent reaches terminal state then
13 Repeat Lines 3-4.

Algorithm 3: Training loop for estimating the human’s true w and f , given noisy supervision.

6 Experiments

We show results for three settings of the function f : identity, square, and natural logarithm. All three
use a threshold t = 1: if the weighted information gain is less than 1, then f returns−10, penalizing
the agent. (This threshold is arbitrary, as the weights can always be rescaled to accommodate any
threshold.) If the information is null, then f returns 10−3, which causes the agent to slightly prefer
giving no information rather than information that induces no change in the human’s belief. We use
the same weights w for each factor in the belief, though this simplification is not required.

We implemented ŵ and f̂ in TensorFlow [24] as a single fully connected network, with hidden
layer sizes [100, 50], that outputs the predicted score. The model takes as input a vector of the
change, between BH and B′H , in pi log pi for each entry pi in the belief. We used a gradient descent
optimizer with learning rate 10−1, `2 regularization scale 10−7, sigmoid activations, batch size 100,
and ε exponentially decaying from 1 to roughly 10−2 over the first 20 episodes.

We experiment with simulated discrete and continuous partially observed search-and-recover do-
mains, where the agent must find and recover objects in the environment while transmitting infor-
mation about these objects based on the human’s preferences. Although the POMDPs we consider
are simple, the aim of our experiments is to understand and analyze the nature of the transmitted
information, not to require the agent to plan out long sequences of actions in the environment.

6.1 Domain 1: Search-and-Recover 2D Gridworld Task

Our first domain is a 2D gridworld in which locations form a discrete N × N grid, M objects are
scattered across the environment, and the agent must find and recover all objects. Each object is
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Figure 3: Example execution of Domain 1 with a single location L, showing how w and f affect the optimal
transmitted information. For this example, the agent knowsRH (no learning). T1, T2, T3, and T4 are the object
types. At each timestep, the agent DETECTs whether the object at L is of a particular type, and updates its belief
BA[L] accordingly. The human’s weights w are {T1: 10, T2: 5, T3: 1, T4: 1}, and f uses a threshold t = 1 as
discussed in the text. Agent and human beliefs are initialized uniformly over object types. Key points: (1) the
agent chooses not to transmit the information NotAt(T3, L) in the second row even though it could, because
T3 has low weight and thus the information gain would be too low, roughly 0.03 < 1; (2) the sublinear f (log)
incentivizes the agent to transmit more frequently than the superlinear f (sq) does, to maximize its score.

Experiment Score from Human # Info / Timestep Alg. 2 Runtime (sec)

N=4, M=1, f=id 375 0.34 6.2

N=4, M=5, f=id 715 0.25 6.7

N=6, M=5, f=id 919 0.24 24.1

N=4, M=1, f=sq 13274 0.25 4.7

N=4, M=5, f=sq 33222 0.2 6.7

N=6, M=5, f=sq 41575 0.19 23.6

N=4, M=1, f=log 68 0.39 5.6

N=4, M=5, f=log 91 0.32 5.7

N=6, M=5, f=log 142 0.3 23.8

Experiment Score from Human # Info / Timestep Alg. 2 Runtime (sec)

N=5, M=5, f=id 362 0.89 0.4

N=5, M=10, f=id 724 1.12 2.0

N=10, M=10, f=id 806 1.56 48.4

N=5, M=5, f=sq 37982 0.52 0.4

N=5, M=10, f=sq 99894 0.67 1.8

N=10, M=10, f=sq 109207 0.71 39.7

N=5, M=5, f=log 19 1.05 0.4

N=5, M=10, f=log 31 1.39 1.8

N=10, M=10, f=log 39 1.7 42.7

Table 1: Results on the 2D gridworld task (left) and 3D continuous task (right) for solving the MDP P with
Algorithm 2 (no learning; RH is known). Each row reports averages over 100 independent trials. N = grid size
or number of zones, M = number of objects. Planning takes time exponential in the environment size. The
agent gives information less frequently when f is superlinear (sq), and more when f is sublinear (log).

of a particular type; the world of object types is known, but all types need not be present in the
environment. The actions that the agent can perform on each timestep are as follows: MOVE by one
square in a cardinal direction, with reward -1; DETECT whether an object of a given type is present
at the current location, with reward -5; and RECOVER the given object type at the current location,
which succeeds with reward -20 if an object of that type is there, otherwise fails with reward -100.

An episode terminates when all M objects have been recovered. To initialize an episode, we ran-
domly assign each object a type and a unique grid location. The factored belief representation for
both the agent and the human maps each grid location to a distribution over what object type (or
nothing) is located there, initialized uniformly. This choice of representation implies that each wi
in the human’s weights w represents their interest in receiving information about object type i; for
example, the human may prioritize information regarding valuable objects. The space of informa-
tion I that the agent can select from is: At(t, l) for every object type t and location l; NotAt(t, l) for
every object type t and location l; and null (no information). Our experiments vary the grid size N ,
the number of objects M , the human’s choice of weights w, and the human’s choice of f . Table 1,
Figure 3, and Figure 4 show and discuss our results.

6.2 Domain 2: Search-and-Recover 3D Continuous Task

Our second domain is a more realistic 3D robotic environment implemented in pybullet [25]. There
are M objects in the world with continuous-valued positions, scattered across N “zones” which
partition the position space, and the agent must find and recover all objects. The actions that the
agent can perform on each timestep are as follows: MOVE to a given pose, with reward -1; DETECT
all objects within a cone of visibility in front of the current pose, with reward -5; and RECOVER the
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Figure 4: Domain 1 result graphs. Left. Confirming our intuition, the human gives higher scores for in-
formation about objects of higher-weighted types. These weights are chosen by the human based on their
preferences. Middle. Running Algorithm 3, which learns the true score function online, allows the agent to
adapt to the human’s preferences and give good information, earning itself high scores. Right. We experiment
with 1) making f history-based by penalizing the agent for giving information two timesteps in a row, and 2)
making w time-varying by changing the weights at the training epochs shown by the dotted lines. The agent
learns to give good information after an exploratory period following each change in the human’s preferences.
Note. Learning curves are averaged over 5 independent trials, with standard deviations shaded in green.

closest object within a cone of reachability in front of the current pose, which succeeds with reward
-20 if such an object exists, otherwise fails with reward -100.

An episode terminates when all M objects have been recovered. To initialize an episode, we place
each object at a random collision-free position. The factored belief representation for the agent maps
each known object to a distribution over its position, whereas the one for the human (which must be
over a discrete space per our assumptions) maps each known object to a distribution over which of
the N zones it could be in; both are initialized uniformly. This choice of representation implies that
each wi in the human’s weights w represents their interest in receiving information about zone i; for
example, the zones could represent sections of the ocean floor or rooms within a building on fire.
The space of information I that the agent can select from is: In(o, z) for every object o and zone
z; NotIn(o, z) for every object o and zone z; and null (no information). Our experiments vary the
number of zones N , the number of objects M , the human’s choice of weights w, and the human’s
choice of f . Table 1 and Figure 5 show and discuss our results.

Figure 5: Domain 2 results. Left. A pybullet rendering of the task. The robot is a blue-and-orange arm, and
each table is a zone. The green objects are spread across table surfaces. Middle+Right. See Figure 4 caption.
Note. Learning curves are averaged over 5 independent trials, with standard deviations shaded in green.

7 Conclusion and Future Work

We have formulated a problem setting in which an agent must act optimally in a partially observed
environment while learning to transmit information to a human teammate, based on their prefer-
ences. We modeled the human’s score as a function of the weighted information gain of their belief.

One direction for future work is to experiment with settings where the human has preferences over
information about the different factors. Such preferences could be realized by having different
scales of weights across factors, or by calculating the weighted entropy Sw(BH) as a weighted sum
across factors according to some other weights v (rather than an unweighted sum as in this work),
possibly learned. Another future direction is to have the agent learn to generate good candidates for
information to transmit, rather than naively consider all available options in I at each timestep.

8



Acknowledgments

We gratefully acknowledge support from NSF grants 1420316, 1523767, and 1723381; from
AFOSR grant FA9550-17-1-0165; from Honda Research; and from Draper Laboratory. Rohan is
supported by an NSF Graduate Research Fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of our sponsors.

References
[1] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete

Bayesian models for mobile-robot navigation. In Intelligent Robots and Systems’ 96, IROS
96, Proceedings of the 1996 IEEE/RSJ International Conference on, volume 2, pages 963–
972. IEEE, 1996.

[2] W. Burgard, D. Fox, and S. Thrun. Active mobile robot localization by entropy minimization.
In Advanced Mobile Robots, 1997. Proceedings., Second EUROMICRO workshop on, pages
155–162. IEEE, 1997.

[3] R. Deits, S. Tellex, P. Thaker, D. Simeonov, T. Kollar, and N. Roy. Clarifying commands with
information-theoretic human-robot dialog. Journal of Human-Robot Interaction, 2(2):58–79,
2013.

[4] S. Tellex, P. Thaker, R. Deits, D. Simeonov, T. Kollar, and N. Roy. Toward information theo-
retic human-robot dialog. Robotics, page 409, 2013.

[5] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue management using probabilistic reasoning.
In Proceedings of the 38th Annual Meeting on Association for Computational Linguistics,
pages 93–100. Association for Computational Linguistics, 2000.

[6] S. Devin and R. Alami. An implemented theory of mind to improve human-robot shared plans
execution. In Human-Robot Interaction (HRI), 2016 11th ACM/IEEE International Conference
on, pages 319–326. IEEE, 2016.

[7] S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, and R. Alami. Artificial cognition for
social human–robot interaction: An implementation. Artificial Intelligence, 247:45–69, 2017.

[8] G. Trafton, L. Hiatt, A. Harrison, F. Tamborello, S. Khemlani, and A. Schultz. Act-r/e: An
embodied cognitive architecture for human-robot interaction. Journal of Human-Robot Inter-
action, 2(1):30–55, 2013.

[9] M. Racca and V. Kyrki. Active robot learning for temporal task models. In Proceedings of
the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pages 123–131.
ACM, 2018.

[10] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia. Active preference-based learning of
reward functions. In Robotics: Science and Systems (RSS), 2017.

[11] C. Boutilier. A POMDP formulation of preference elicitation problems. In AAAI/IAAI, pages
239–246, 2002.

[12] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101:99–134, 1998.

[13] D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In Advances in neural
information processing systems, pages 2164–2172, 2010.

[14] A. Somani, N. Ye, D. Hsu, and W. S. Lee. DESPOT: Online POMDP planning with regular-
ization. In Advances in neural information processing systems, pages 1772–1780, 2013.

[15] B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief
space. In Proceedings of the Fifth International Conference on Artificial Intelligence Planning
Systems, pages 52–61, 2000.

9



[16] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In Robotics: Science and systems, volume
2008. Zurich, Switzerland., 2008.

[17] J. Pineau, G. Gordon, S. Thrun, et al. Point-based value iteration: An anytime algorithm for
POMDPs. In IJCAI, volume 3, pages 1025–1032, 2003.
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