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Abstract

We present a ping-pong-playing robot that learns to im-
prove its swings with human advice. Our method learns
a reward function over the joint space of task and policy
parameters T ⇥P , so the robot can explore policy space
more intelligently in a way that trades off exploration
vs. exploitation to maximize the total cumulative reward
over time. Multimodal stochastic polices can also easily
be learned with this approach when the reward function
is multimodal in the policy parameters. We extend the
recently-developed Gaussian Process Bandit Optimiza-
tion framework to include exploration-bias advice from
human domain experts, using a novel algorithm called
Exploration Bias with Directional Advice (EBDA).

Introduction
As any athlete (or parent) knows, coaching is an essential
ingredient to human motor skill learning for manipulation.
Learning to tie one’s shoes, cook a meal, or shoot a basket-
ball is nearly impossible without the active guidance of a
teacher. With the right combination of demonstration, ver-
bal advice, goal-setting, and performance feedback, humans
routinely teach one another incredibly complex skills in a
wide variety of domains. Yet most work on manipulation
learning in robotics has focused on self-improvement. The
human teacher may be involved in an initial demonstration
via teleoperation or kinesthetic teaching, but after that the
robot is on its own; left to explore independently, often using
no more than a random walk in policy space, with rewards
few and far between.

The work that has been done on coaching robots (be-
yond the initial demonstration phase) has primarily used
goal-setting and feedback (i.e., rewards). But there has been
very little work on directly giving robots policy exploration
advice. Sometimes a simple “pull harder” or “keep your
knees bent” is enough to get human learners to master a
skill. Doing the same for robots in arbitrary domains will re-
quire AI systems that can translate generic natural language
commands into motor skill policy information. While there
has recently been some effort on this problem (Tellex et al.
2011), we are a long way from any complete solution.
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In this work we assume that the mapping between ver-
bal commands and policy parameters can be programmed
in ahead of time. Our focus is on integrating an advice
signal from a human coach into a robot’s exploration pol-
icy. We focus on episodic learning tasks, like hitting a ping
pong ball, where the robot executes a policy ⇡

✓

with pa-
rameters ✓ for some finite period of time, then receives a
reward y reflecting how well it performed the task. In the
case of ping pong, the policy ⇡

✓

is a computer program
(parameterized by ✓) for swinging a robot arm, and the re-
ward depends on whether or not the robot succesfully hit
the ball back to the other side of the table. The robot’s goal
is to maximize the total reward it receives over time. We
phrase this as a multi-armed bandit problem, and extend
the recently-developed Gaussian Process Bandit Optimiza-
tion framework (Srinivas et al. 2009; Krause and Ong 2011;
Contal and Vayatis 2013) to include advice in the regret-
minimizing exploration/exploitation strategy.

Policy Search for Dynamic Skill Improvement
There is a long-running debate in robotics on whether
model-based or model-free learning of motor control poli-
cies is the best way to get robots to perform dynamic
tasks like walking, juggling, or playing ping pong. Propo-
nents of model-based approaches boast that with carefully-
tuned models of system dynamics, robots can achieve skills
equalling or even surpassing those of their human teachers,
while the model-free crowd argues that acheiving such mod-
els isn’t always possible, and that robots’ ability to learn new
tasks from demonstration, with little or no prior domain-
specific programming, is the true measure of success.

Regardless of whether a robot uses model-based or
model-free methods to achieve basic competency at a new
skill, skill improvement for model-based methods is limited
by the accuracy of the model class. In contrast, model-free
methods, which directly explore the space of motor control
policies, are only limited by the class of policies. Of course,
this space is often too large to search exhaustively, and ag-
gressive search heuristics and priors are needed to increase
the data efficiency of model-free learning algorithms in all
but the simplest domains.

Policies must also typically be generalized over a task
space T , which we here parameterize by a task parameter
vector ⌧ . For example, in our application ⌧ includes the posi-
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tion, velocity and spin of the incoming ball when it bounces
on the robot’s side of the table. Complicating matters is that
⌧ is usually a hidden variable: the robot is given a noisy task
observation, ⌧̂ , from which it must infer the underlying task
parameters.

Representing the policy: explicit vs. implicit
There are two main ways that a policy search algorithm can
represent policies—explicitly, with a direct mapping from
task parameters to policy parameters (T ! P); or implic-
itly, with a reward function over the joint space of task and
policy parameters (T ⇥ P ! R)1. Although both repre-
sentations have been tried in classic reinforcement learning
domains (Engel, Mannor, and Meir 2005), only direct policy
mappings have been used in recent work where robots have
learned dynamic manipulation skills, like throwing darts,
flipping pancakes, or hitting balls (Kober et al. 2012; Kor-
mushev, Calinon, and Caldwell 2010; Da Silva, Konidaris,
and Barto 2012). In this (direct) approach, a continu-
ous (Kober et al. 2012) or piecewise-continuous (Da Silva,
Konidaris, and Barto 2012) function � is learned from T to
P , representing the robot’s current estimate of the reward-
maximizing policy parameters for each task parameter vec-
tor ⌧ . To explore, the robot perturbs � with random noise;
for example, by sampling from a Gaussian process (Kober
et al. 2012).

There are two problems with this direct-mapping-based
exploration policy. First, it may be difficult for the learn-
ing algorithm to escape from local maxima, since the explo-
ration only makes local perturbations to the policy parame-
ters. Second, it restricts the class of stochastic policies that
an agent can learn to those that are unimodal in policy pa-
rameter space.

In contrast, by learning a reward function over the joint
space of task and policy parameters T ⇥ P , the robot can
explore policy space more intelligently in a way that trades
off exploration vs. exploitation to maximize the total cumu-
lative reward over time. Multimodal stochastic polices can
also easily be learned with this approach when the reward
function is multimodal in the policy parameters. In figure 1,
we illustrate the difference between implicit and explicit pol-
icy representations. For smooth reward functions that are
unimodal in P (figure 1, left), both explicit and implicit pol-
icy models are suitable. But for “bumpy” reward functions
with many local maxima, explicit methods will lose infor-
mation (figure 1, right). Note that for many dynamic robotic
tasks like ping pong, both T and P are continuous.

Gaussian Process Bandit Optimization
The multi-armed bandit problem (Robbins 1952) is the de-
cision problem of choosing the sequence of “levers” to pull
when each lever ` has an associated “payoff” or reward dis-
tribution, D

`

. The agent pulls a lever, receives a reward, and
then gets to choose again, incorporating all the information
it has obtained from past lever pulls.

1The learning domains in this work are episodic (not sequen-
tial).

(a) (b)

Figure 1: Implicit vs. explicit policies. In the smooth reward
function on the left, a good explicit policy mapping T to
P can be found. In the reward function on the right, any
explicit policy mapping will be throwing away information
about alternative modes.

Maximizing the reward that a robot learner gets by ex-
ploring a reward function f : T ⇥ P ! R mapping con-
tinuous task and policy parameters to the reals is akin to a
multi-armed bandit problem with infinitely many levers. At
each round t, the world chooses task parameters ⌧

t

which the
robot observes with noise as ⌧̂

t

, then the robot selects pol-
icy parameters ✓

t

, executes policy ⇡
✓t , and receives a noisy

reward y
t

= f(⌧
t

, ✓
t

) + ✏
t

.
With some mild smoothness assumptions, the reward

function f can be modelled as a Gaussian process (GP).
There is a large body of literature on exploration heuris-
tics for GPs (Mockus 1989; Brochu, Cora, and De Freitas
2010). We use GP-UCB (Srinivas et al. 2009; Krause and
Ong 2011), which has recently been shown to achieve sub-
linear regret bounds for cumulative reward in bounded pol-
icy domains P . It has not yet been applied to active learning
of robot control parameters.

GP-UCB (Gaussian Process Upper Confidence Bound)
The GP-UCB algorithm (Srinivas et al. 2009; Krause and
Ong 2011) chooses the next ✓

t

so as to maximize a combi-
nation of the current GP mean and variance estimates of the
reward function f :

✓
t

= argmax

✓

µ
t�1(⌧̂t, ✓) + �

1/2
t

�
t�1(⌧̂t, ✓), (1)

where µ(·) and �(·) are the posterior mean and standard de-
viations functions of the GP after the first t�1 observations,
(⌧̂1, ✓1, y1), . . . , (⌧̂t�1, ✓t�1, yt�1). The �

t

’s are exploration
constants, which must increase over time as a function of
log t in order to obtain the theoretical regret bounds below.

Letting ✓⇤
t

be the reward-maximizing policy parameter
vector for the true task parameters ⌧

t

, the true cumulative
regret up to time step T is defined as

R
T

:=

TX

t=1

f(⌧
t

, ✓⇤
t

)� f(⌧
t

, ✓
t

). (2)

Unfortunately, since the ⌧
t

’s are unobserved, the best bound
we can achieve for R

T

is O(T ), since there will always be
a small constant expected regret at every time step t due to
task parameter observation noise, ⌧

t

� ⌧̂
t

.
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The sub-linear regret bounds that have been found for GP-
UCB assume that the agent has access to the true task param-
eters. We can achieve similar bounds for the noisy task pa-
rameter case with a modified definition of regret. Letting ˆ✓⇤

t

be the reward-maximizing policy parameter vector for task
parameters ⌧̂

t

, we define the observable cumulative regret
up to time step T as

ˆR
T

:=

TX

t=1

f(⌧̂
t

, ˆ✓⇤
t

)� f(⌧̂
t

, ✓
t

). (3)

ˆR
T

has a bound of O(

p
T�

T

�
T

) with probability 1 � �,
where � 2 (0, 1) is an exploration parameter that can be
controlled by the user. Since the robot doesn’t get to choose
⌧
t

, it is unfair to penalize it for the difference between ⌧
t

and
⌧̂
t

, and so the observable regret bounds still provide some
insight into our problem.

Giving Advice
There are many ways to train a robot. Some of the most com-
mon are:
• Demonstration: The coach can demonstrate a particular

skill to a robot, either by performing the skill while the
robot watches, or by teleoperating the robot.

• Goal setting: The coach can select a sequence of tasks to
give the robot, only moving on when the robot has demon-
strated a sufficient level of skill at the current task.

• Performance feedback: The coach can give the robot
learner a reward signal, which may be in addition to envi-
ronmental rewards that the robot observes on its own.

• Policy advice: The coach can suggest modifications to
the robot’s policy parameters, like “hit the ball harder”
or “angle your paddle down more”.
Learning from demonstration is a well-explored paradigm

in robotics (Atkeson and Schaal 1997; Peters et al. 2011).
However, it can be difficult for a human to teleoperate a
robot to perform complex and dynamic tasks, and computer
vision algorithms are not yet advanced enough to understand
most manipulation actions (for example, to determine that a
human is using their right hand to hold a jar between their
knees while the left hand tries to generate enough force to
twist off the cap). Nevertheless, learning from demonstration
has been applied successfully to several robotic domains, in-
cluding ping pong (Mülling et al. 2013).

Setting goals is less explored in the robotics literature, but
it is the de facto standard for all of robotics research. Typ-
ically, a human researcher explores policy parameter space
(by modifying the robot’s program) rather than the robot ex-
ploring on its own.

Performance feedback is perhaps the most-explored
mechanism for training computer agents (not just robots).
Particularly for reinforcement learning domains (MDPs)
like computer games and robot navigation, there is a long
history of incorporating a human reward signal (called re-
ward shaping) into reinforcement learning algorithms (Grif-
fith et al. 2013; Thomaz and Breazeal 2008; Judah et al.
2010; Pilarski and Sutton 2012).

Figure 2: The robot interprets advice from a human coach
as an exploration bias. The light green shaded areas on top
of the reward functions (top-down view of figure 1(a)) in
the left and right images indicate what the robots believes
are “good” regions to explore, and are inferred from a series
of policy gradients given by the human coach (e.g., “swing
harder” or “angle your paddle up more”). Note that the ex-
poration advice can either be global (left) or local (right).
In our system, local advice is the default; advice is only ap-
plied globally (for all ⌧ 2 T ) at the coach’s discretion (e.g.,
by saying “always swing harder”).

The approach to training robots that we use in this pa-
per is that of giving the robot policy advice. In RL domains,
this has been explored with action biasing–where the hu-
man biases the robot’s action-selection mechanism (Knox
and Stone 2012), and control sharing–where the human se-
lects some of the robot’s actions directly (Smart and Kael-
bling 2002). For manipulation, a recent technique is to give
the robot policy improvement advice–where the human pro-
vides the robot with incremental improvements to its manip-
ulation trajectories in order to indicate a step in policy space
that may increase reward (Jain, Joachims, and Saxena 2013).

Policy gradient advice
Giving robots entirely new policies as advice can be a time-
consuming process. Instead, we explore policy gradient ad-
vice, where the human trainer need only provide a direction
in policy space P in which reward is likely to increase, rather
than a new, complete policy. Intuitively, this type of advice
can directly capture information like “hit the ball harder”
or “angle your paddle down more”, so long as the mapping
between the natural language instructions and policy param-
eters is known.

There are two ways a robot can interpret policy gradient
advice: (1) as a pseudo-reward, or (2) as an exploration
bias. Treating the advice as a pseudo-reward involves a level
of trust: the robot believes that hitting the ball harder is a
good thing to do because the coach said so, and it may take
several trials to overcome the pseudo-reward in the case that
the coach is wrong. Using the policy gradient advice as an
exploration bias (which is akin to action biasing in RL do-
mains) is less susceptible to bad advice, since the robot can
decide for itself whether the advice was useful. In addition,
gradient-based pseudo-reward may be difficult to implement
in continuous policy domains, since it isn’t clear how far in
the direction of the gradient one should place the pseudo-
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rewards, or how many to place. For these reasons, we inter-
pret policy gradient advice as exploration bias.

Exploration Bias with Directional Advice (EBDA)
We now present our algorithm for turning directional (policy
gradient) advice into an exploration bias. Intuitively, EBDA
turns directional information into soft constraints on future
policy parameters; namely, that they be in roughly the same
direction as the advice indicates.

Let ⌧1, . . . , ⌧n be a sequence of tasks the robot has re-
ceived, let ✓1, . . . , ✓n be the policy parameters it chose for
each task, and let  1, . . . , n

be the coach’s policy gradient
advice. The direction of each  

i

indicates a direction of in-
creasing reward (according to the coach) in policy parameter
space, with respect to the current ✓

i

.
The robot interprets  1, . . . , n

as a sequence of proba-
bilistic constraints on the policy parameter vector ✓

n+1 for
the next task, ⌧

n+1. Each constraint is of the form {✓ :

 
i

· (✓� ✓
i

) > 0}, and is only applied if the advice is global
(indicated by | 

i

| > 1) or if the new task parameter vector
⌧
n+1 is close to ⌧

i

. EBDA then flips a biased coin (based on
an advice noise parameter ⇢) to determine whether or not to
include each constraint. Pseudo-code for EBDA is shown in
Algorithm 1.

Algorithm 1 EBDA
Input: History of task parameters ⌧1, . . . , ⌧n, policy param-

eters ✓1, . . . , ✓n, policy gradient advice  1, . . . , n

, ad-
vice noise ⇢, and a new task parameter vector ⌧

n+1

Output: Exploration region R ⇢ P
R P
for i = 1 to n do

Sample s ⇠ Uniform(0, 1)
if | 

i

| > 1 or |⌧
n+1 � ⌧i| < ⌧thresh then

if s > 1� ⇢ then
R R \ {✓ :  

i

· (✓ � ✓
i

) > 0}
end if

end if
end for

Robot Ping Pong
There are several reasons for choosing ping pong as an ap-
plication to study human coaching for dynamic robots. First,
ping pong is a high-speed, underactuated control task, re-
quiring a level of precision and timing not seen in many
robot systems outside of the factory setting. At the same
time there is substantial uncertainty about the world. The
spin on the ball is difficult to observe directly, and the op-
ponent’s actions are unpredictable. For these reasons it is
very difficult to conquer with model-based optimal control
methods alone, leaving room for learning methods to im-
prove significantly upon the state of the art. Ping pong is
also similar in spirit to other high-skill manipulation tasks,
such as those often found in cooking—chopping vegetables,
stirring ingredients in a bowl, flipping burgers—in that they
are all dynamic and underactuated and are defined by repet-
itive motions applied to a limited range of objects. Finally,

Figure 3: Our ping pong robot uses a 7-dof Barrett WAM
arm with a ping pong paddle rigidly attached at the wrist.

ping pong has been used as an application for learning dy-
namic control policies (Mülling et al. 2013), which makes it
a good application for comparison.

Background There have been several robot ping pong
systems since the late 1980s (Andersson 1988; Miyazaki,
Matsushima, and Takeuchi 2006; Sun et al. 2011; Mülling et
al. 2013). The closest work to ours is (Mülling et al. 2013).
Their robot also learns to improve its swing parameters from
experience, but they use an explicit policy mapping from
task parameters to policy parameters, and they do not use
human advice to help the robot learn. We compare to their
learning method, CrKR, in our experimental results.

Hardware Our system consists of a 7-dof Barrett WAM
arm, mounted sideways on the wall behind the ping pong ta-
ble, along with a pair of high-speed 200Hz black-and-white
Silicon Video SV-640M cameras mounted on a fixed frame
above the arm (Figure 3). A Kinect is also used to detect
human opponents and predict ball spin based on the type of
swing they use to hit the ball to the robot.

Sensing Since the cameras are stationary and the ping
pong ball is much lighter than the table, we use a sim-
ple background-subtraction-based blob tracker to detect and
track the ping pong ball. Detections in the left and right cam-
eras are triangulated to estimate depth, and the ball’s 3-D
position is then transformed into ping pong table coordi-
nates. The camera-table transform is estimated using a gra-
dient descent algorithm which optimizes the fitness of the
table’s edges projected into left and right Canny edge im-
ages. The human opponent’s body configuration is tracked
in the Kinect depth image with OpenNI.

Tracking and predicting the ball’s trajectory In order
to decide when and where the robot should swing its paddle,
it needs to predict the ball’s future trajectory based on its
past trajectory. Although it would be possible for the robot
to learn the ball’s dynamics autonomously, this is not the
focus of our current work. Therefore, for simplicity we use
Andersson’s models to predict ball aerodynamics and colli-
sions with the table (Andersson 1988).

The ball’s state is defined by the 9-dimensional vector
b = (x, y, z, v

x

, v
y

, v
z

, w
x

, w
y

, w
z

), representing the ball’s
current position, velocity, and spin. During flight, the ball’s
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acceleration is given by

a = �C
d

|v|v + C
m

|v|w ⇥ v � g, (4)

where C
d

and C
m

are drag and Magnus coefficients, and g is
the gravity acceleration vector (in the negative z-direction).

The bounce dynamics model is slightly more complex,
since the ball may change from a “slipping” to a “rolling”
mode during contact with the table. First define

vrel = (v
x

� w
y

r, v
y

+ w
x

r, 0) (5)

v̂r =
vrel

kvrelk (6)

where r = 20mm is the ball’s radius. Then rolling occurs if

kvrelk < �5

2

C
f

v
z

(1 + C
r

) (7)

where C
f

is the coefficient of friction and C
r

is the coeffi-
cient of restitution. If rolling occurs during the bounce, the
ball’s final velocity vf and spin wf are

vf = (

3v
x

+ 2rw
y

5

,
3v

y

� 2rw
x

5

,�C
r

v
z

) (8)

wf = (

2rw
x

� 3v
y

5r
,
2rw

y

+ 3v
x

5r
, w

z

). (9)

Otherwise, the ball experiences friction during the whole
bounce, and the final velocity and spin are

vf = v + (C
f

v̂r � k̂)v
z

(1 + C
r

) (10)

wf = w +

3C
f

2r
(v̂

ry

,�v̂
rx

, 0)v
z

(1 + C
r

) (11)

where ˆk = (0, 0, 1) is the table normal.
To track the ball’s state, we use an Extended Kalman Fil-

ter (EKF) derived from these equations of motion. We ini-
tialize the ball’s spin vector based on the human opponent’s
paddle hand velocity vector (determined by smoothing a fi-
nite difference of hand position signals from OpenNI) at the
time of contact with the ball. Letting (h

x

, h
y

, h
z

) be the
hand’s velocity vector, we empirically set the ball’s spin to
be w = (240, 40h

x

, 0) if h
z

> 0 for a topspin stroke, and
w = (�240,�80h

x

, 0) otherwise2.

Swing planning Our approach to swing planning is hierar-
chical. First, the robot finds a hit plan—indicating a desired
contact between the ball and paddle. The hit plan includes
the paddle’s position, velocity, normal, and time when it hits
the ball. Then, a kinodynamic paddle trajectory is planned
that achieves the desired contact state. Finally, the robot uses
inverse kinematics to find a trajectory in joint angle space to
satisfy the paddle trajectory constraints.

For our learning experiments, the hit plan is precisely the
policy parameter vector, ✓. Task parameters ⌧ are the posi-
tion, velocity and spin of the incoming ball when it bounces
on the robot’s side of the table.

2This is clearly a gross approximation to the true effect of the
human hand’s velocity vector on the initial ball spin, but with high
initial EKF variance, they provide a suitable prior on the ball’s spin
state for our experiments.

The paddle always starts in the same configuration with
position p0 = (x0, y0, z0) and normal n0 = (n

x0 , ny0 , nz0)

at the beginning of every swing. To find a paddle trajectory
that achieves the desired hit (paddle position p

hit

, normal
n
hit

, and velocity v
hit

at time t
hit

), we compute three sep-
arate bang-bang control laws for the paddle’s x–, y–, and
z–trajectories, and we interpolate the paddle normals to tran-
sition smoothly from n0 to n

hit

.
Let T be the duration of the swing (starting at t0 =

t
hit

� T ), discretized into N time steps (so each time step
is �t = T/N ). The bang-bang control law we use is to
accelerate at �a for k time steps, then at +a for N � k
time steps. Assuming the system starts at rest at the ori-
gin, the velocity trajectory given by this control law is
�t · a · (�1, . . . ,�k,�k+1, . . . , N � 2k), and so the final
position is

x
N

= (�t)2a
⇣
(N � 2k)(N � 2k + 1)

2

� k2
⌘
. (12)

Thus the acceleration is uniquely determined by x
N

and k;
we set a to make x

N

= x
hit

, so the paddle always reaches
the desired final position. Changing k yields different final
velocities, v

N

= �t·a·(N�2k); we choose the k that makes
v
N

as close as possible to the desired hit velocity. Note that
we compute three different pairs: (a

x

, k
x

), (a
y

, k
y

), (a
z

, k
z

)

for controllers in the paddle’s x, y, and z coordinates.

Learning a swing controller Given a planned trajectory
Q = (q0, . . . , qN ) from times t0 to t

N

in joint angle space,
the robot must find a way to execute the swing by sending
torque commands to the motors at each joint. This is accom-
plished with feed-forward + proportional control in joint an-
gle space. Given current joint angles and velocities q and q̇,
and desired joint angles and velocities q

t

and q̇
t

, the robot
applies torques:

u = K
p

(q
t

� q) +K
d

(q̇
t

� q̇) + u
t

, (13)

where K
p

and K
d

are gain matrices, and u
t

are the feed-
forward (constant) torques at time t.

Controllers of this form have been applied to execute dy-
namic motions with robot arms in the past. Often, u

t

is com-
puted with an inverse dynamics model that estimates the
torques needed to achieve varying joint accelerations q̈ in
state (q, q̇). Such models assume q̈ is a function of q, q̇, and
u; higher-order effects like vibrations, cable stretching, gear
thrashing, etc. are ignored.

Our ping pong robot needs to operate at the very limits of
its specifications, with paddle speeds up to 3 meters/second
and swing durations of less than half a second. Because of
this, we found inverse dynamics models to be too noisy to
rely on for swing control. Instead, our system learns a li-
brary of feed-forward torque trajectories, U1, . . . , Um

, cor-
responding to hit plans H1, . . . , Hm

(which uniquely deter-
mine joint trajectories Q1, . . . , Qm

. This library is learned
incrementally–a new (U,H) pair is only added when the er-
ror between a desired swing and actual swing (as measured
by joint encoders) is larger than a given threshold.

To learn a new swing (U,H) with corresponding Q and
˙Q, the robot initializes U to either: (i) the U

i

corresponding
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to the closest H
i

if |H � H
i

| < thresh, or (ii) G(Q
i

): the
torques needed to cancel out gravity at each joint angle con-
figuration in Q

i

3. Then, the robot executes the current swing
according to equation 13 and computes the errors between
desired and measured joint angles and velocities, Q� ˆQ and
˙Q� ˆ

˙Q. These errors are used to update U :

dU  �K
p

(Q� ˆQ) +K
d

(

˙Q� ˙

ˆQ) (14)
U  U +min(max(�dU

max

, dU), dU
max

), (15)

and then the robot repeats the swing and updates U until con-
vergence. This U update is a functional control law for tra-
jectories that tries to drive Q� ˆQ and ˙Q� ˆ

˙Q to zero over time
as the robot practices the swing over and over again. Note
that each time the robot practices the swing, it decreases the
position gains K

p

in equation 13 so it relies more and more
heavily on the feed-forward torques U to drive the swing.

Experimental Results
We compare five learning methods: GP-UCB, CrKR, GP-
UCB + EBDA, CrKR + EBDA, and Direct—where the hu-
man coach directly controls the robot’s hit plan with incre-
mental changes to policy parameters. CrKR is a direct policy
mapping method (Kober et al. 2012) that has been applied
to learning ping pong swings (Mülling et al. 2013). For the
three learning algorithms that use advice, we only allowed
the coach to give information about one parameter at a time.

Simulation As a pilot domain, we simulated mixture-of-
Gaussian reward functions and ran each learning method
(except CrKR + EBDA) for 100 trials. Direct advice was
given by adding random noise to the true maximum policy
parameter ✓⇤ in the slice of P with all other policy parame-
ters fixed to their last values. Directional advice  for EBDA
was given by the direction of ✓⇤ with respect to the last ✓
along one randomly chosen axis. We repeated each experi-
ment 50 times. Average cumulative rewards for each method
are shown in figure 4. For GP-UCB, we tried using both the
� from the original paper (Srinivas et al. 2009) and � = log t
(beta1 and beta2 in figure 4). Since � = log t performed
the best in simulation, we used that beta throughout the rest
of the experiments. Adding advice (with EBDA) improved
GP-UCB further, while direct advice performed the best (be-
cause it is an oracle + noise).

Robot Ping Pong We next compared the learning algo-
rithms on the task of improving the ping pong robot’s hit
plans. We ran each algorithm for 100 trials of a human ping
pong expert hitting balls to the robot in a predetermined se-
quence (e.g., “high backhand topspin to (.2,.4) on the table”,
“low forehand underspin to (.7,.5) on the table”) . If an in-
coming ball trajectory from the human differed significantly
from the desired ball trajectory, the human was prompted to
hit another ball to the robot.

3The anti-gravity torques are also learned: the robot moves to
a list of pre-specified configurations with a PID control law and
records the torques needed to keep the system at rest.
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Figure 4: Simulation results (cumulative reward vs. learning
trials) with mixture-of-Gaussian reward functions, for task
and parameter spaces of different dimensions.

As a starting point and a baseline, we implemented a de-
fault hit plan as follows. Given an estimate of the ball’s pre-
dicted future trajectory, it finds the ball’s highest point in that
trajectory within ±15cm of the robot’s end of the table. That
ball position is the hit plan’s paddle position. The paddle ve-
locity is a constant (1.3, 0, 0) m/s, and the paddle normal
points in the opposite direction of the ball’s (x, y)-velocity
vector (in order to hit the ball back the way it came).

We ran the default hit plan for 50 trials of topspin balls
only to generate an initial swing table of 12 swings. Then—
resetting to the initial swing table and hit policy each time—
we ran 5 different learning methods on 100 trials of top-
spin balls and 100 trials of underspin balls, for a total of
10 learning experiments. The policy parameter vector for
each learning experiment was ✓ = (x, v

x

, v
z

, n
y

, n
z

): a
subset of the hit plan parameters from section . x was de-
fined as a displacement from the default hit plan’s x posi-
tion, and controlled whether the ball was hit before or af-
ter its highest point. Policy parameters were bounded from
(�.1, 1, 0,�.1,�.5) to (.1, 2, .5, .1, .5).

Due to the real-time nature of the ping pong task, it was
infeasibile to run the learning methods to choose a hit plan ✓
for every new task parameter vector (i.e., ball parameters) ⌧ .
Instead, a lookup table of hit plans was computed between
trials for every ⌧1, . . . , ⌧n the robot has seen in that exper-
iment. Then, when a new incoming ball is detected by the
robot (with ball parameters ⌧

n+1), the robot uses the pre-
computed hit plan from the closest ⌧

i

, or the default hit plan
if no nearby ⌧

i

is found.
Rewards were given by the experimenter of 0 or 1 depend-

ing on whether the ball was succefully hit back to the other
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Figure 5: Robot ping pong results (cumulative reward vs.
learning trials) for topspin and underspin balls.

side of the table. In addition, a coach’s pseudo-reward of 0.5
was added if the coach liked the way the robot hit the ball,
for a total reward in each trial between 0 and 1.5.

The cumulative reward (without the coach’s pseudo-
rewards) is shown in figure 5 for each learning method. Us-
ing EBDA to include human advice increased reward for
both GP-UCB and CrKR for both topspin and underspin.
GP-UCB and CrKR are comparable on topspin, while GP-
UCB is the clear winner for the harder underspin experi-
ment, which requires a great deal more exploration since the
default policy is designed to return topspin balls only.

The results support the idea that global exploration of a
reward function (with GP-UCB) is better than local explo-
ration of policy space (with CrKR) when the default policy
is far from the optimum. However, the best method may be
to combine the two: starting globally and then exploring lo-
cally for improvement once a good policy has been found.

Videos of the robot playing ping pong are available at
https://sites.google.com/site/aaairobotpingpong/.

Conclusion
We have presented EBDA, a general method for incorporat-
ing policy gradient advice into a robot’s exploration strategy.
By incorporating EBDA into two recent exploration meth-
ods, CrKR and GP-UCB, we were able to boost the robot’s
cumulative reward both in simulation and on a ping pong
robot. On the robot, we demonstrated an approach to learn-
ing both low-level swing controllers (feed-forward torques)
and high-level hit parameters. Our robot was able to learn
policies to return both topspin and underspin balls—to our
knowledge, this is the first time this has been accomplished,
as the underspin “push” is a difficult skill to master, even for
human ping pong players.
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Krömer, O. 2011. Towards motor skill learning for robotics.
In Robotics Research. Springer. 469–482.
Pilarski, P. M., and Sutton, R. S. 2012. Between instruction
and reward: Human-prompted switching. In 2012 AAAI Fall
Symposium Series.
Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society
58(5):527–535.
Smart, W. D., and Kaelbling, L. 2002. Effective reinforce-
ment learning for mobile robots. In Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Con-
ference on, volume 4, 3404–3410. IEEE.
Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M.
2009. Gaussian process optimization in the bandit set-
ting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.
Sun, Y.; Xiong, R.; Zhu, Q.; Wu, J.; and Chu, J. 2011. Bal-
ance motion generation for a humanoid robot playing table
tennis. In 2011 11th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 19–25. IEEE.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M. R.; Banerjee,
A. G.; Teller, S. J.; and Roy, N. 2011. Understanding nat-
ural language commands for robotic navigation and mobile
manipulation. In AAAI.
Thomaz, A. L., and Breazeal, C. 2008. Teachable robots:
Understanding human teaching behavior to build more ef-
fective robot learners. Artificial Intelligence 172(6):716–
737.

2541


