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Abstract—A new system for object detection in cluttered
RGB-D images is presented. Our main contribution is a new
method called Bingham Procrustean Alignment (BPA) to align
models with the scene. BPA uses point correspondences between
oriented features to derive a probability distribution over
possible model poses. The orientation component of this distri-
bution, conditioned on the position, is shown to be a Bingham
distribution. This result also applies to the classic problem of [
least-squares alignment of point sets, when point features are "=
orientation-less, and gives a principled, probabilistic way to Fig. 1: Object detections found with our system, along with the
measure pose uncertainty in the rigid alignment problem. Our  feature correspondences that BPA used to align the model. Surface
detection system leverages BPA to achieve more reliable object features are indicated by red points, with lines sticking out of
detections in clutter. them to indicate orientations (red for normals, orange for principal

curvatures). Edge features (which are orientation-less) are shown
I. INTRODUCTION by magenta points.

Detecting known, rigid objects in RGB-D images relies
on being able to align 3-D object models with an observed . ) ]
scene. If alignments are inconsistent or inaccurate, tietec €ach iteration of ICP, Horn's method is used to solve for an
rates will suffer. In noisy and cluttered scenes (such #Ptimalt andq given a current set of correspondences, and
shown in figure 1), good alignments must rely on multipléhe” the correspondences are updated using nearest nighbo
cues, such as 3-D point positions, surface normals, curvatl@Ven the new pose. _ .
directions, edges, and image features. Yet there is ndrexist |CP can be slow, because it needs to find dense correspon-
alignment method (other than brute force optimization} thlences between the two point sets at each iteration. Sub-
can fuse all of this information together in a meaningful waySampling the point sets can improve speed, but only at the
The Bingham distributioh has recently been shown to €St of accuracy when the data is noisy. Another drawback
be useful for fusing orientation information for 3-D objectlS its sensitivity to outliers—for example when it is applied
detection [6]. In this paper, we derive a surprising resufi© @ cluttered scene with segmentation error.
connecting the Bingham distribution to the classical least Particularly because of the clutter problem, many modern
squares alignment problem, which allows our new systefPProaches to alignment use sparse point sets, where one
to easily fuse information from both position and orienta®nly uses points computed at especially unique keypoints in
tion information in a principled, Bayesian alignment syste the scene. These keypoint features can be computed from

which we call Bingham Procrustean Alignment (BPA).  €ither 2-D (image) or 3-D (geometry) information, and often
include not only positions, but also orientations derivemirf
A. Background image gradients, surface normals, principal curvaturis, e

Rigid alignment of two 3-D point set¥ andY is a well- However, these orientations are typically only used in the
studied problem—one seeks an optimal (quaternion) rotatidfaturé matching and pose clustering stages, and are gnore
q and translation vectot to minimize an alignment cost during the alignment step. _ _
function, such as sum of squared errors between correspong£\nother limitation is that the resulting alignments are
ing points onX andY. Given known correspondences, ©ften based on just a few features, with noisy position
andq can be found in closed form with Horn’s method [g].Measurements, and yet there is very little work on estirgatin
If correspondences are unknown, the alignment cost fun€onfidence intervals on the resulting alignments. This is
tion can be specified in terms of sum-of-squared distanc&sPecially difficult when the features have different noise
between nearest-neighbor points &nandY’, and iterative Models—for example, a feature found on a flat surface will
algorithms like ICP (lterative Closest Point) are guaradte Navé a good estimate of its surface normal, but a high
to reach a local minimum of the cost function [4]. DuringVariance principal curvature direction, while a featureaon

object edge may have a noisy normal, but precise principal
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given that@ is g's rotation matrix, and covariances;.

Given isotropic noise modélson point deviations (so
that ¥; is a scalar times the identity matrix)(x;, yil|q, t)
reduces to a 1-D Gaussian PDF on the distance betwgen
optimal t* independently ofy*, simply by takingt* to be andQ(x; + t), yielding
the translation which aligns the centroidsXfandY . Given
a fixedt*, solving for thegoptimaq* then becomes tractable. P, yila, t) = N(|1Q(i +t) — yi: 0, )
In a Bayesian analysis of the least-squares alignment prob- = N(di;0,0;)
lem, we seek a full distribution on given t, not just the
optimal value g*. That way we can assess the confidence
o el soees totaton). 0, + ) andy, 3 hown on he e offgure 3

i ' ) ) " By the law of cosines, the squared-distance betwgeét +

Remarkably, given t_he common assumption of mdeperb, andy; is d® = a? + b2 — abcos(9), which only depends

dent, isotropic Gaussian noise on position measurementis  via the angled between the vector§ (x; + t) andy;.

(which is implicit in the classical least-squares formiaaj, (We drop thei-subscripts onl, a, b, and@ for brevity.) We
we can show thap(q|t) is a Bingham distribution. This .54 thus replace(x;, yi|q, t) with

result makes it easy to combine the least-squares distribu-

tion on q|t with other Bingham distributions from feature 1 abcos(0)

orientations (or prior distributi [ [ i p(xi,yil0,t) = 7 exp 2 (3)
prior distributions), since the Bingham i Z

a common distribution for encoding uncertainty on 3-D . . o

rotations represented as unit quaterr?ions [5], [6],)/[2]. which has the form of a Von-Mises distribution én

The mode of the least-squares Bingham distribution on
gt will be exactly the same as the optimal orientation Qx; +t)
q* from Horn’s method. When other sources of orientation
information are available, they may bias the distribution
away fromq*. Thus, it is important that the concentration
(inverse variance) parameters of the Bingham distribstion
are accurately estimated for each source of orientati@r-inf
mation, so that this bias is proportional to confidence in the
measurements. (See the appendix for an example.)

We use our new alignment method, BPA, to build an object
detection system for known, rigid objects in cluttered RBGB-
images. Our system combines information from surface angy. 3: Distance between corresponding points as a function of
edge feature correspondences to improve object alignmemigentation.
in cluttered scenes (as shown in figure 1), and acheives state
of-the-art recognition performance on both an existingg€in
data set [1], and on a new data set containing far more clut
and pose variability than any existing data?set

Fig. 2: Rigid alignment of two point sets.

v%/heredi depends ory andt.
" Now consider the triangle formed by the origin (center of

d? = a® + b* — abceos(h) R = |:77f1 2 n5:|

Next, we need to demonstrate hofiv depends ong.
Without loss of generality, assume thgt points along
the axis(1,0,0). When this is not the case, the Bingham
distribution overq which we derive below can be post-
rotated by any quaternion which takek 0,0) to yi/||yill-

Clearly, there will be a family ofy’s which rotatex; + t
to form an angle ob with y;, since we can composgwith

Given two 3-D point setsX' and Y in one-to-one cor- any rotation about; + t and the resulting angle witly;
respondence, we seek a distribution over the set of rigigi| still be 6. To demonstrate what this family is, we first
transformations ofX, parameterized by a (quaternion) ro-jet s be a unit quaternion which rotateg + t onto y;'s
tation g and a translation vector. Assuming independent axis, and lets] = S(x; +t), whereS is ss rotation matrix.
Gaussian noise models on deviations between correspondifigen, letr (with rotation matrix ) be a quaternion that
points onY” and (transformed), the conditional distribution rotatesx} to Q(x; + t), SO thatq = r o s. Becausey; and
x; point along the axig1,0, 0), the first column ofR, 1,
will point in the direction of@(x; + t), and form an angle

[l. BINGHAM PROCRUSTEANALIGNMENT

2Most existing data sets for 3-D cluttered object detectiavehvery
limited object pose variability (most of the objects are uptjgand objects
are often easily separable and supported by the same flatsurfa 3This is the implicit assumption in the least-squares formoiati



of 6 with y;, as shown on the right side of figure 3. Thus, To demonstrate this fact, we relied only upon the assump-

1y - (1,0,0) = ni; = cosd. tion of independent isotropic Gaussian noise on position
The rotation matrix of quaternion= (ry,r9,73,74) IS measurements, which is exactly the same assumption made

Pr2 2 02 oryrsomrs 2raratrirs implicitly in the least-squares formulation of the optimal

R=| 2rorst2mrs 21241212 2rgra—2rrs alignment problem. This illustrates a deep and hitherto

rara—2rirs  2rgrat2rire  r2—ri—p2ir2 unknown connection between least-squares alignment and
the Bingham distribution, and paves the way for the fusion

of orientation and position measurements in a wide variety

of applications.

Thereforecos @ = njy = r? +r3 —r3 —rf =1-2r3 — 2r3.
We can now make the following claim abqu(x;, y;i|q, t):

Claim 1. Given thaty; lies along the(1,0,0) axis, then

the probability densityp(x:,yi|q,t) is proportional to a A. Incorporating Orientation Measurements

Bingham density on q with parameters Now that we have shown how the orientation information
from the least-squares alignment of two point s&tsand

A= (_QLb _2ab 0) and V= [8 0 (1)] os=TWWos Y is encoded as a Bingham distribution, it becomes trivial

o2’ o2’ 598 to incorporate independent orientation measurementsz so

where %" indicates column-wise quaternion multiplication. or all of the points, provided that the orientation noise glod

is Bingham. Given orientation measuremeftsy, Oy ),

Proof. The Bingham density in claim 1 is given b
J Y g Y p(qt, X,Y,0x,Oy)

3
p(alA, V) = & exp > Ay (w0 8)T ) @) x p(X,Y,Ox,Oyla,t) - p(qlt)

Foa = p(X,Ylq,t) - p(Ox,0y|q,t) - plalt) .

_ 1 _2ab 5 2ab (5) Similarly as in equation 8p(Ox,Oy|a,t) is the product
F P 023 g2 4 of Bingham distributions from corresponding orientation
1 abcos b measurements ifOx,0Oy), and so the entire posterior

=7 { 2 } (6)  p(qlt, X,Y,0x,0y) is Bingham (provided as before that

the priorp(q|t) is Bingham).
since (wj os)Tq = wj(qos™) = w;’r, andcosf =

1—2r2 = 2:2. Since (6) is proportional to (3), we concludeB: The Alignment Algorithm
that p(q|A, V) « p(x;,yilq, t), as claimed. To incorporate our Bayesian model into an iterative ICP-
0 like alignment algorithm, one could solve for theaximum
) , _ a posteriori (MAP) position and orientation by maximizing
Clalm.2. Let s’ be a quaternion that rotat@,p_, 0) onto p(a,t|X.Y,...) with respect toq and t. However, for
the axis ofy; (for arbitraryy;). Then the probability density ropapilistic completeness, it is often more desirablergod
p(xi,yilq, t) is proportional to a Bingham density epwith  samples from this posterior distribution.
parameters The joint posterior distribution(q, t|Z)—where Z con-
2ab  2ab tains all the measurement¥ (Y, Ox, Oy, ...)—can be bro-
A= (—?, T2 } °s ken up intop(qlt, Z)p(t|Z). Unfortunately, writing down a
closed-form distribution fop(t|Z2) is difficult. But sampling
where %" indicates column-wise quaternion multiplication. from the joint distribution is easy with an importance sam-
1 pler, by first samplingt from a proposal distribution—for
d example, a Gaussian centered on the optimal least-squares
translation (that aligns the centroids of and Y)—then
samplingq from p(q|t, Z), and then weighting the samples
by the ratio of the true posterior (from equation 2) and the
p(qlt, X,Y) HBingham(q; A;, Vi) -p(qlt) (7) proposal distribution (e.g., Gaussian times Bingham).
i We call this sampling algorithm Bingham Procrustean
= Bingham(q; A, V) - p(qt) 8) Alignment (BPA). It takes as input a set of (possibly ori-
ented) features in one-to-one correspondence, and returns
where A; and V; are taken from claim 2, and wherd samples from the distribution over possible alignments. In
and V' are computed from the formula for multiplication of section V, we will show how BPA can be incorporated into
Bingham PDFs, which is given in the appendix. an iterative alignment algorithm that re-computes feature
Equation 8 tells us that, in order to update a priorepn correspondences at each step and uses BPA to propose a
given t after data pointsY andY are observed, one must new alignment given the correspondences.
simply multiply the prior by an appropriate Bingham term.
Therefore, assuming a Bingham prior oeggivent (which Ill. BUILDING NOISE-AWARE 3-D OBJECTMODELS
includes the uniform distribution), the conditional poiig Our first step in building a system to detect known, rigid

p(qlt, X,Y) is the PDF of a Bingham distribution. objects—such as the ones in figure 4—is to build complete
3-D models of each object. However, the end goal of model

4See the appendix for an overview of the Bingham distribution building is not just to estimate an object’'s geometry cdtyec
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As explained above, the distribution @pfrom claim
must simply be post-rotated by/ wheny; is not aligne
with the (1, 0,0) axis. The proof is left to the reader. Putting
it all together, we find that
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Fig. 5: Our noise models predict range and normal errors (standard
deviations) as functions of surface angle and edge distance (both

Fig. 4: The 18 objects in our ne®lutter data set. with respect to the viewpoint).

Rather, we seek to predict what an RGB-D sensor would se&f, €ach cell in the occupancy grid to the nearest model point
from every possible viewing angle of the object. To generatér zero if the cell contains a model point).
such a predictive model, we will estimate both the most Next, for a fixed set of 66 viewing angles across the
likely observations from each viewing angle, and also th¥i€w-sphere, we estimate range edges—points on the model
degree of noise predicted in those measurements. That wi{ere there is a depth discontinuity in the predicted range
our detection system will realize that depth measuremeni¥age seen from that view angle. We also store the minimum
near object boundaries, on reflective surfaces, or on asfacdistance from each model point to a range edge for each
at a high oblique angle with respect to the camera, a®f the 66 viewing angles. Using these view-dependent edge
less reliable than front-on measurements of non-reflectivélistances, along with the angles between surface normals an
interior surface points. viewpoints, we fit sigmoid models across the whole data set
In our model-building system, we place each object olP estimatg the expected noise on range m(_aasurements and
a servo-controlled turntable in 2-3 resting positions anformal estimates as functions of (1) edge distance, and (2)
collect RGB-D images from a stationary Kinect sensargat ~ Surface angle, as shown in figure S.
turntable increments, for a total of 60-90 views. We then findy, | EARNING DISCRIMINATIVE FEATURE MODELS FOR
the turntable plane in the depth images (using RANSAC), DETECTION
and separate object point clouds (on top of the turntable) = ) ,
from the background. Next we align each set of 30 scans Similarly to other recent object detection systems, our
(taken of the object in a single resting position) by optimiz system computes a set of feature mode_l placement score
for the 2-D position of the turntable’s center of rotatiorithy  fUNCtions, in order to evaluate how well a given model place-
respect to an alignment cost function that measures the sufi€Nt hypothesis fits the scene according to different feafur
of-squared nearest-neighbor distances from each objant s¢UCh as depth measurements, surface normals, edge Iagation

to every other scan. We then use another optimization fj¢- In our early experiments with object detection usirg th
solve for the 6-dof translation + rotation that aligns tha 2- 9énerative object models in the previous section, the syste
was prone to make mis-classification errors, because some

sets of scans together into one, global frame of reference. bi d . v hiah in f
After the object scans are aligned, we compute their sm:{- jects scored consistently higher on certain featureescor

face normals, principal curvatures, and FPFH features, [1 gresumably due to trgin_ing set biag)..Because .Of this prob-
and we use the the ratio of principal curvatures to estima m, we trained discriminative, Ioglst!c regression medel
the (Bingham) uncertainty on the quaternion orientatiof"" each of the score components using the_ t_urntable scans
defined by normals and principal curvature directions aheadVith true m_ode_l placements as positive training examples
point. We then use ray-tracing to build a 3-D occupancfnfj a com.blnatlon of correct ob_Ject/wrong pose and wrong
grid model, where in addition to the typical probability ©Piect / aligned pose as negative examples. Alignments of
of occupancy, we also store each 3-D grid cell's mealf'®"Y objects were found by running the full object detattio
position and normal, and variance on the normals in thgystem (from the next section) with the wrong object on the

cell’. We then threshold the occupancy grid at an occupan%gmtable scans. By adding an (independent) discrimiaativ
probability of 0.5, and remove interior cells (which cannot yer to each (.)f. th(_e feature score types, we were able to
be seen from any viewing angle) to obtain a full modepoost the classification accuracy of our system considgrabl
point cloud, with associated normals and normal variance v DeTECTING SINGLE OBJECTS INCLUTTER
estimates. We also compute a distance transform of this

: : : The first stages of our object detection pipeline are very
model point cloud, by computing the distance from the center. . .
P y puting Similar to many other state-of-the-art systems for 3-D cbje

5The idea is to capture the orientation uncertainty on thecjpal detectlon,'wnh th.e exception th.at we re.ly more hea\”ly
curvature direction by measuring the “flatness” of the obsérsurface ON edge information. We are given as input an RGB-D
patch; see the appendix for details. image, such as from a Kinect. If environmental information
°In fact, we store two “view-buckets” per cell, each contaian s ayailable, the image may be pre-processed by another
occupancy probability, a position, a normal, and a normalavee, since - - .
on thin objects like cups and bowls, there may be points on tiffereint routine to crop the Image to an area of interest, and to label

surfaces which fall in the same grid cell. background pixels (e.g., belonging to a supporting sujface
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Fig. 6: Single object detection pipeline.

As illustrated in figure 6, our algorithm starts by esti-correspondences is often all it takes to lock down a very pre-
mating a dense set of surface normals on the 3-D poictse estimate of an object's pose when the correspondences
cloud derived from the RGB-D image. From these surfacare correct (Figure 7).
normals, it estimates principal curvatures and FPFH featur We proceed with a second round of model placement
In addition, it finds and labels three types of edges: rangelidation and rejection, this time using a scoring functio
edges, image edges, and curvature edges—points in timat includes (1) range and normal differences, which are
RGB-D image where there is a depth discontinuity, an imageomputed by projecting a new subset &0 randomly-
intensity discontinuity, or high negative curvature. This edgeselected model points into the observed range image, (2)
information is converted into an edge image, which is formedlisibility—the ratio of model points in the subset that are
from a spatially-blurred, weighted average of the threeeedainoccluded, (3) edge likelihoods, computed by projecting
pixel masks. Intuitively, this edge image is intended tahe model’s edge points from the closest stored viewpoint
capture the relative likelihood that each point in the image into the observed edge image, and (4) edge visibility—
part of an object boundary. Then, the algorithm uses k-meatise ratio of edge points that are unoccluded. Each of the
to over-segment the point cloud based on positions, normafeature score components is computed as a truncated (so
and spatially-blurred colors (in CIELAB space) into a set os not to over-penalize outliers), average log-likelihafd
3-D super-pixels. observed features given model feature distributions. €ares

components (1) and (3), we weight the average log-likelihoo
» by visibility probabilities, which are equal to 1 if predact
-' depth< observed depth, ant¥ (Adepth 0, ,;5)/N(0;0,1)
~ ) otherwisé.

el ; @f@ After rejecting low-scoring samples in round 2, we then

3 refine alignments by repeating the following three steps:

7)

Fig. 7: Examples of objects correctly aligned by BPA with only 1) Assign observed super-pixel segments to the model.

two correspondences. 2) Align model to the segments with BPA.

3) Accept the new alignment if the round 2 model place-
Next, the algorithm samples possible oriented feature ment score has improved.

corrﬁspondencez from the scg,_ge to tg.e r‘r‘?odélhen, for In step (1), we sample a set of assigned segments according
eac Cécl)ar'&esgpn ence, af can II adte OdJeICt posef IS SaMPy&Ghe probability that each segment belongs to the model,
using - Glven a set of sampled model poses from sing{Gi-p, e compute as the ratio of segment points (sampled

cr?rrespon(ljcenceg, we 5then rgjectl san|1ples dfor (‘j’VT'Ch_ moﬂ?\iformly from the segment) that are withimm in position
than20% of a subset 0600 randomly-selected model points oy /15 radians in normal orientation from the closest

project into free s.pace—places where th_e difference betwe%del point. In step (2), we randomly extract a subset
observed range image depth and predicted model depth js 1 segment points from the set of assigned segments,

aboveSem. Next, we fun a pose clustering stage, where Wfind nearest neighbor correspondences from the keypoints
group correspondences together whose sampled object PORFthe model using the model distance transform, and then

are within 2.5¢m and 7/16 radians of one another. After use BPA to align the model to the 10 segment points.

pose clustering, we reject any sample with less than W8egment points are of two types—surface points and edge
correspondences, then re-sample object poses with BPA. g P P b g

. oints. We only assign segment edge points to model edge
At this stage, we have a set of possible model pIacemeE y 9 9 gep 9

. bints (as predicted from the given viewpoint), and surface
hypotheses, with at least two features correspondenceés e

i X e , oints to surface points. Figures 1 and 8 show examples
Because BPA uses additional orientation information, tw f object alignments found after segment alignment, where

red points (with red normal vectors and orange principal

7 i i . . . . .
We use the Canny edge detector to find image edges. curvature vectors sticking out of them) indicate surfacetpo

8We currently use only FPFH correspondences in the first stfge
detection as we did not find the addition of other feature symeich as
SIFT [9] or SHOT [12], to make any difference in our detectiates. SWe usec,;s = lem in all of our experiments.



correspondences, and magenta points (with no orientation, z
are the edge point corresponderifes S
After round 2 alignments, the system removes redundant o
samples (with the same or similar poses), and then rejects

low scoring samples using the scores found at the end of; o= e S0 - & B

the segment alignment process. Then, it performs a fing: - -

gradient-based alignment, which optimizes the model posaem ¥ ’5’ =. 0 Ok 'f@
with a local hill-climbing search to directly maximize mdde Fig. 9: TheClutter testing data set.
placement scores. Since this alignment step is by far the

slowest, it is critical that the system has performed as much

alignment with BPA and has rejected as many low-scoring VIl. EXPERIMENTAL RESULTS

samples as possible, to reduce the computational burden. . , )
Finally, the system performs a third round of mode We tested our object detection system on two Kinect-

placement evaluation, then sorts the pose samples by sc f'aesed data sets—tiGnect data set from Aldoma et. al [1]

and returns them. This third round of scoring includes gvercontaining 35 mo_dels and 50 Scenes, and a new, more
additional feature score components: difficult data set with many more occlusions and object pose

variations that we collected for this paper which we will

« Random walk score—starting from an observed poirfefer to asClutter, which contains 18 models and 30 scenes
corresponding to the model, take a random walk in theFigure 9). We used the same parameters (score component
edge image (to stay within predicted object boundariesjyeights, number of samples, etc.) on both data sets. In
then measure the distance from the new observed poi@le 1, we compare the precision and recall of the top
to the closest model point. scene interpretations (multi-object-placement sampisyir

« Occlusion edge score—evaluate how well model ocmethod against Aldoma et. al on both data Yets
clusion edges (where the model surface changes from

visible to occluded) fits the observed edge image. this paper (BPA) | this paper (ICP) | Aldoma et. al [1]

« FPFH score—computes how well observed and model precision | recall | precision | recall | precision| recall
Kinect 89.4 86.4 71.8 71.0 90.9 79.5
FPFH features match. _ Cluter | 838 | 733 | 738 | 633 | 829 | 642
o Segment score—computes distances from segment i .
points to nearest model points. TABLE I: A comparison of precision and recall.

o Segment affinity score—measures how consistent the
set of assigned segments is with respect to predicted
object boundaries (as measured by the observed edge

image, and by differences in segment positions and _
normals). TABLE II: Recall on theClutter data set as a function of the number

of scene interpretation samples.

# samples[ 1 2 3 5 10 20
recall . .

VI. DETECTINGMULTIPLE OBJECTS INCLUTTER Our algorithm (with BPA) achieves state-of-the art recall
performance on both data sets. When multiple scene inter-
To detect multiple objects in a scene, we run the individugdretations are considered, we achieve even higher reced ra
object detector from the previous section to obtain the 30 be(Taple 11). Our precisions are similar to the baseline métho
model placements for each model, along with their indivlduz\?”ghuy higher onClutter, slightly lower on Kinec)). We
scores. Then, following Aldoma et. al [1], we use simulategyere unable to train discriminative feature models on the
annealing to optimize the subset of model placements (out @fnect data set, because the original training scans were not
50x N for N models) according to a multi-object-placemeniproyided. Training on scenes that are more similar to the
score, which we compute as a weighted sum of the following|yttered test scenes is also likely to improve precision on
score components: (1) the average of single object scorgge Clutter data set, since each training scan contained only
weighted by the number of observed points each objeghe, fully-visible object.
explains, (2) the ratio of explained / total observed points For our experiments, we implemented our algorithm in
and (3) a small penalty for the total number of detecteg++ and ran them on a single 64-bit, 2.4 GHz Intel Xeon
objects. We also keep track of the tdp0 multi-object- processor. On a single CPU, each scene took 1-2 minutes to
placement samples found during optimization, so we Cakocess, compared to 10.4 seconds per scene for Aldoma’s
return a set of possible scene interpretations to the us§fstem, which ran in parallel on multiple CPUs [1]. We are

particularly useful for robot vision systems because thay c

use tracking, prior knowledge, or other sensory input (like iSince neither ours nor the baseline method uses colors indhfct
touch) to provide additional validation of model placensgnt models, we considered a model placement “correct” forGheter data set

) : : N it was within a threshold of the correct pos&§cm, pi/16 radians) with
and we don't want detections from a single RGB-D Imag‘gespect to the model’s symmetry group. For example, we don’tlizena

to filter out possible model placements prematurely. flipping boxes front-to-back or top-to-bottom, since theuttisg difference
in object appearance is purely non-geometric. ForKirect data set, we
used the same correctness measure as the baseline method (RM&ED

101n future work, we plan to incorporate edge orientations al.w model in true pose and estimated pose), with a threshold:of.
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Fig. 8: Object detections found with our system, along with the featurespondences that BPA used to align the model. Surface features
are indicated by red points, with lines sticking out of them to indicate orientaffedsfor normals, orange for principal curvatures). Edge
features (which are orientation-less) are shown by magenta points.

current prototype system can detect single objects in abobDt scenes. The two most succesful systems to date are
1 second on an NDIVIA GeForce GTX 580 with 512 coresAldoma et. al [1] and Tang et. al [11]. Aldoma’s system is
purely geometric, and uses SHOT features [12] for model-
A. BPA vs. ICP X ; .
i _ scene correspondences. It relies heavily on pose clugtefin
We evaluated the benefits of our new alignment methogaaiyre correspondences to suggest model placetfefts

BPA, in two ways. First, we compared it to ICP by replacingmain contribution of Aldoma’s system is that they jointly
the BPA alignment step in round 2 with an ICP alignmengtimize multiple model placements for consistency, which
ste@?. This resulted in a drop of0% in both precision and inspired our own multiple object detection system.
recall on theClutter data. o Tang's detection system uses both geometry and image
For a second test of BPA, we initialized 50 model placegeaqres, and placed first in the ICRA 2011 Solutions in Per-
ments by adding random Gaussian noise to the ground ryfiniion instance recognition challenge. Their systeneseli
poses for each object in each scene of Getter data pLeayily on being able to segment objects in the scene from
set. Then, we ran BPA and ICP for 20 iterations on eaclne another, and most of the effort is spent on combining
of the model placemerits We then computed the averagegeometry and image features for classification of scene
of the minimum pose errors in each alignment trial, whergegments. It is unclear how well the system would perform

the minimum at time in a given trial is computed as the j g ,ch segmentations are not easy to obtain, as is the case
minimum pose error from stepto stept. (The justification ;, our newClutter data set.

for this measure is that this is approximately what the “aéce  the Bingham distribution was first used for 3-D cluttered
if score improves” step of round 2 is doing.) As shown inypiact detection in Glover et. al [6]. However, that system
figure 10, the pose errors decrease much faster in BPA. 1o incomplete in that it lacked any alignment step, and

differs greatly from this work because it did not use feature

003 028 - correspondences.
- ==ICcP (Y -T T
0.028 —_—
5 0026\ ic I | NN oA IX. CONCLUSION AND FUTURE WORK
5 N S 0.24 ~. _
NS - . ~-. We have presented a system for 3-D cluttered object
0.022 S~ 220 N0 S~=41 . . . ;
S S e o detection which uses a new alignment method called Bing-
5 10 15 2 ‘ 5 10 15 20 ham Procrustean Alignment (BPA) to improve detections in
alignment terations alignment iterations highly cluttered scenes, along with a new RGB-D data set

Fig. 10: Comparing BPA with ICP. (Left) The average of thewhich contains much more clutter and pose variability than
minimum position errors in each alignment trial. (Right) Theexisting data sets. Our system relies heavily on geometry,
average of the minimum orientation errors in each alignment tr'a!ind will clearly benefit from image and color models, such
as in Tang et. al [11]. OuClutter data set, while challenging,
VIII. RELATED WORK contains zero ambiguity, in that a human could easily detect

Since the release of the Kinect in 2010, much progres@l of the objects in their correct poses, given enough time

has been made on 3-D object detection in cluttered RGEC study the modgls. An important direction of future Wo_rk
Is to handle ambiguous scenes, where the parts of objects

12Both ICP and BPA used the same point correspondences; the only
difference was that BPA incorporated point feature origoms, while ICP 14This is essentially a sparse version of the Hough transf@jwhich
used only their positions. is limited by the number of visible features on an object, andfhy their
13| other words, we repeated the alignment step of round 2 wienes,  recall rates tend to be lower than in our system for objecis dne heavily
regardless of whether the total score improved. occluded.



that are visible are insufficient to perform unique aligntsen normal direction to differ from the uncertainty on the prin-
and instead one ought to return distributions over possibt@pal curvature direction. Luckily, the Bingham distritmrt
model poses. In early experiments we have performed as well suited for this task.

this problem, the Bingham distribution has been a useful To form such a Bingham distribution, we take the quater-
tool for representing orientation ambiguity. To follow upnion associated withR to be the mode of the distribution,
on our preliminary results, we are also in the process afhich is orthogonal to all the; vectors. Then, we sets
performing a more extensive comparison of BPA to differenio be the quaternion associated with = [n —p — p’l],

ICP variants. If BPA is indeed better than ICP, then itislijke which has the same normal as the mode, but reversed
to have an impact in a variety of applications beyond objegdirincipal curvature direction. In quaternion form, revegs
detection—such as SLAM, tracking, and modeling. the principal curvature is equivalent to the mapping:

(q1,92,93,91) — (—G2,q1,q4,—q3) -

The Bingham Distribution. The Bingham distribution is We then takev; andv; to be unit vectors orthogonal to the

APPENDIX

commonly used to represent uncertainty on 3-D rotatior‘g10de gndv3 (and each other). Given thesg's,_ the con-
(in unit quaternion form) [2], [5], [6]. For quaternionssit centration parameters; and A\, penalize deviations in the
density function (PDF) is giv,en b’y ’ normal vector, while\; penalizes deviations in the principal
curvature direction. Therefore, we sgt = Ao Kk (we
1 3 userx = —100 in all our experiments in this paper), and we
p(q; A, V) = T exp {Z )\i(viTq)Q} 9) use the heuristids = .Ina_x{l()(l - 01/02),.#;}, wherecy /co
i=1 is the ratio of the principal curvature eigenvaltfesVhen
. . ... the surface is completely flat; = ¢ and A3 = 0, so the
yvhereF is a normalizing constant so that th? dIStrIbutlonresulting Bingham distribution will be completely uniforim
integrates to one over the surface of the unit hypersphe{e e AR S
3 ; -, : he principal curvature direction. When the surface is hjighl
S°, the X's are non—posmvef.o) concentration parameters,curved ¢ > 5, 50 A3 will equal x, and deviations in
and thevy’s arg orthogonal direction vectors. . the principal curvature will be penalized just as much as
Product of Bingham PDFs.The product of two Bingham deviations in the normal
PDFs is given by adding their exponents: '
F(asA1, V1) fg; Ag, Va)
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