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Abstract— A new system for object detection in cluttered
RGB-D images is presented. Our main contribution is a new
method called Bingham Procrustean Alignment (BPA) to align
models with the scene. BPA uses point correspondences between
oriented features to derive a probability distribution over
possible model poses. The orientation component of this distri-
bution, conditioned on the position, is shown to be a Bingham
distribution. This result also applies to the classic problem of
least-squares alignment of point sets, when point features are
orientation-less, and gives a principled, probabilistic way to
measure pose uncertainty in the rigid alignment problem. Our
detection system leverages BPA to achieve more reliable object
detections in clutter.

I. I NTRODUCTION

Detecting known, rigid objects in RGB-D images relies
on being able to align 3-D object models with an observed
scene. If alignments are inconsistent or inaccurate, detection
rates will suffer. In noisy and cluttered scenes (such as
shown in figure 1), good alignments must rely on multiple
cues, such as 3-D point positions, surface normals, curvature
directions, edges, and image features. Yet there is no existing
alignment method (other than brute force optimization) that
can fuse all of this information together in a meaningful way.

The Bingham distribution1 has recently been shown to
be useful for fusing orientation information for 3-D object
detection [6]. In this paper, we derive a surprising result
connecting the Bingham distribution to the classical least-
squares alignment problem, which allows our new system
to easily fuse information from both position and orienta-
tion information in a principled, Bayesian alignment system
which we call Bingham Procrustean Alignment (BPA).

A. Background

Rigid alignment of two 3-D point setsX andY is a well-
studied problem—one seeks an optimal (quaternion) rotation
q and translation vectort to minimize an alignment cost
function, such as sum of squared errors between correspond-
ing points onX and Y . Given known correspondences,t
andq can be found in closed form with Horn’s method [8].
If correspondences are unknown, the alignment cost func-
tion can be specified in terms of sum-of-squared distances
between nearest-neighbor points onX andY , and iterative
algorithms like ICP (Iterative Closest Point) are guaranteed
to reach a local minimum of the cost function [4]. During
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1See the appendix for a brief overview.

Fig. 1: Object detections found with our system, along with the
feature correspondences that BPA used to align the model. Surface
features are indicated by red points, with lines sticking out of
them to indicate orientations (red for normals, orange for principal
curvatures). Edge features (which are orientation-less) are shown
by magenta points.

each iteration of ICP, Horn’s method is used to solve for an
optimal t andq given a current set of correspondences, and
then the correspondences are updated using nearest neighbors
given the new pose.

ICP can be slow, because it needs to find dense correspon-
dences between the two point sets at each iteration. Sub-
sampling the point sets can improve speed, but only at the
cost of accuracy when the data is noisy. Another drawback
is its sensitivity to outliers—for example when it is applied
to a cluttered scene with segmentation error.

Particularly because of the clutter problem, many modern
approaches to alignment use sparse point sets, where one
only uses points computed at especially unique keypoints in
the scene. These keypoint features can be computed from
either 2-D (image) or 3-D (geometry) information, and often
include not only positions, but also orientations derived from
image gradients, surface normals, principal curvatures, etc.
However, these orientations are typically only used in the
feature matching and pose clustering stages, and are ignored
during the alignment step.

Another limitation is that the resulting alignments are
often based on just a few features, with noisy position
measurements, and yet there is very little work on estimating
confidence intervals on the resulting alignments. This is
especially difficult when the features have different noise
models—for example, a feature found on a flat surface will
have a good estimate of its surface normal, but a high
variance principal curvature direction, while a feature onan
object edge may have a noisy normal, but precise principal
curvature. Ideally, we would like to have a posterior distri-
bution over the space of possible alignments, given the data,
and we would like that distribution to include information
from feature positions and orientation measurements, given
varying noise models.

As we will see in the next section, a full joint distribution
on t and q is difficult to obtain. However, in the original
least-squares formulation, it is possible to solve for the



Fig. 2: Rigid alignment of two point sets.

optimal t∗ independently ofq∗, simply by takingt∗ to be
the translation which aligns the centroids ofX andY . Given
a fixedt∗, solving for the optimalq∗ then becomes tractable.
In a Bayesian analysis of the least-squares alignment prob-
lem, we seek a full distribution onq given t, not just the
optimal value,q∗. That way we can assess the confidence of
our orientation estimates, and fusep(q|t) with other sources
of orientation information, such as from surface normals.

Remarkably, given the common assumption of indepen-
dent, isotropic Gaussian noise on position measurements
(which is implicit in the classical least-squares formulation),
we can show thatp(q|t) is a Bingham distribution. This
result makes it easy to combine the least-squares distribu-
tion on q|t with other Bingham distributions from feature
orientations (or prior distributions), since the Bingham is
a common distribution for encoding uncertainty on 3-D
rotations represented as unit quaternions [5], [6], [2].

The mode of the least-squares Bingham distribution on
q|t will be exactly the same as the optimal orientation
q∗ from Horn’s method. When other sources of orientation
information are available, they may bias the distribution
away fromq∗. Thus, it is important that the concentration
(inverse variance) parameters of the Bingham distributions
are accurately estimated for each source of orientation infor-
mation, so that this bias is proportional to confidence in the
measurements. (See the appendix for an example.)

We use our new alignment method, BPA, to build an object
detection system for known, rigid objects in cluttered RGB-D
images. Our system combines information from surface and
edge feature correspondences to improve object alignments
in cluttered scenes (as shown in figure 1), and acheives state-
of-the-art recognition performance on both an existing Kinect
data set [1], and on a new data set containing far more clutter
and pose variability than any existing data set2.

II. B INGHAM PROCRUSTEANALIGNMENT

Given two 3-D point setsX and Y in one-to-one cor-
respondence, we seek a distribution over the set of rigid
transformations ofX, parameterized by a (quaternion) ro-
tation q and a translation vectort. Assuming independent
Gaussian noise models on deviations between corresponding
points onY and (transformed)X, the conditional distribution

2Most existing data sets for 3-D cluttered object detection have very
limited object pose variability (most of the objects are upright), and objects
are often easily separable and supported by the same flat surface.

p(q|t, X, Y ) is proportional top(X,Y |q, t)p(q|t), where

p(X,Y |q, t) =
∏

i

p(xi,yi|q, t) (1)

=
∏

i

N(Q(xi + t)− yi;0,Σi) (2)

given thatQ is q’s rotation matrix, and covariancesΣi.
Given isotropic noise models3 on point deviations (so

that Σi is a scalar times the identity matrix),p(xi,yi|q, t)
reduces to a 1-D Gaussian PDF on the distance betweenyi

andQ(xi + t), yielding

p(xi,yi|q, t) = N(‖Q(xi + t)− yi‖; 0, σi)

= N(di; 0, σi)

wheredi depends onq andt.
Now consider the triangle formed by the origin (center of

rotation),Q(xi+ t) andyi, as shown on the left of figure 3.
By the law of cosines, the squared-distance betweenQ(xi+
t), andyi is d2 = a2 + b2 − ab cos(θ), which only depends
on q via the angleθ between the vectorsQ(xi + t) andyi.
(We drop thei-subscripts ond, a, b, andθ for brevity.) We
can thus replacep(xi,yi|q, t) with

p(xi,yi|θ, t) =
1

Z
exp

{

ab cos(θ)

σ2

}

(3)

which has the form of a Von-Mises distribution onθ.

Fig. 3: Distance between corresponding points as a function of
orientation.

Next, we need to demonstrate howθ depends onq.
Without loss of generality, assume thatyi points along
the axis(1, 0, 0). When this is not the case, the Bingham
distribution overq which we derive below can be post-
rotated by any quaternion which takes(1, 0, 0) to yi/‖yi‖.

Clearly, there will be a family ofq’s which rotatexi + t

to form an angle ofθ with yi, since we can composeq with
any rotation aboutxi + t and the resulting angle withyi

will still be θ. To demonstrate what this family is, we first
let s be a unit quaternion which rotatesxi + t onto yi’s
axis, and letx′

i = S(xi + t), whereS is s’s rotation matrix.
Then, let r (with rotation matrixR) be a quaternion that
rotatesx′

i to Q(xi + t), so thatq = r ◦ s. Becauseyi and
x′

i point along the axis(1, 0, 0), the first column ofR, n̂1,
will point in the direction ofQ(xi + t), and form an angle

3This is the implicit assumption in the least-squares formulation.



of θ with yi, as shown on the right side of figure 3. Thus,
n̂1 · (1, 0, 0) = n̂11 = cos θ.

The rotation matrix of quaternionr = (r1, r2, r3, r4) is

R =

[

r2
1
+r2

2
−r2

3
−r2

4
2r2r3−2r1r4 2r2r4+2r1r3

2r2r3+2r1r4 r2
1
−r2

2
+r2

3
−r2

4
2r3r4−2r1r2

2r2r4−2r1r3 2r3r4+2r1r2 r2
1
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2
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3
+r2

4

]

Therefore,cos θ = n̂11 = r21 + r22 − r23 − r24 = 1−2r23 −2r24.
We can now make the following claim aboutp(xi,yi|q, t):

Claim 1. Given thatyi lies along the(1, 0, 0) axis, then
the probability densityp(xi,yi|q, t) is proportional to a
Bingham density4 on q with parameters

Λ = (−
2ab

σ2
,−

2ab

σ2
, 0) and V =

[

0 0 0
0 0 1
1 0 0
0 1 0

]

◦ s = W ◦ s ,

where “◦” indicates column-wise quaternion multiplication.

Proof. The Bingham density in claim 1 is given by

p(q|Λ, V ) =
1

F
exp

3
∑

j=1

λj((wj ◦ s)
Tq)2 (4)

=
1

F
exp

{

−
2ab

σ2
r23 −

2ab

σ2
r24

}

(5)

=
1

F ′
exp

{

ab cos θ

σ2

}

(6)

since (wj ◦ s)Tq = wj
T (q ◦ s−1) = wj

T r, and cos θ =
1− 2r23 − 2r24. Since (6) is proportional to (3), we conclude
that p(q|Λ, V ) ∝ p(xi,yi|q, t), as claimed.

Claim 2. Let s′ be a quaternion that rotates(1, 0, 0) onto
the axis ofyi (for arbitraryyi). Then the probability density
p(xi,yi|q, t) is proportional to a Bingham density onq with
parameters

Λ = (−
2ab

σ2
,−

2ab

σ2
, 0) and V = s′ ◦

[

0 0 0
0 0 1
1 0 0
0 1 0

]

◦ s ,

where “◦” indicates column-wise quaternion multiplication.

As explained above, the distribution onq from claim 1
must simply be post-rotated bys′ when yi is not aligned
with the (1, 0, 0) axis. The proof is left to the reader. Putting
it all together, we find that

p(q|t, X, Y ) ∝
∏

i

Bingham(q; Λi, Vi) · p(q|t) (7)

= Bingham(q; Λ̃, Ṽ ) · p(q|t) (8)

where Λi and Vi are taken from claim 2, and wherẽΛ
and Ṽ are computed from the formula for multiplication of
Bingham PDFs, which is given in the appendix.

Equation 8 tells us that, in order to update a prior onq

given t after data pointsX and Y are observed, one must
simply multiply the prior by an appropriate Bingham term.
Therefore, assuming a Bingham prior overq given t (which
includes the uniform distribution), the conditional posterior,
p(q|t, X, Y ) is the PDF of a Bingham distribution.

4See the appendix for an overview of the Bingham distribution.

To demonstrate this fact, we relied only upon the assump-
tion of independent isotropic Gaussian noise on position
measurements, which is exactly the same assumption made
implicitly in the least-squares formulation of the optimal
alignment problem. This illustrates a deep and hitherto
unknown connection between least-squares alignment and
the Bingham distribution, and paves the way for the fusion
of orientation and position measurements in a wide variety
of applications.

A. Incorporating Orientation Measurements

Now that we have shown how the orientation information
from the least-squares alignment of two point setsX and
Y is encoded as a Bingham distribution, it becomes trivial
to incorporate independent orientation measurements at some
or all of the points, provided that the orientation noise model
is Bingham. Given orientation measurements(OX , OY ),

p(q|t, X,Y,OX , OY )

∝ p(X,Y,OX , OY |q, t) · p(q|t)

= p(X,Y |q, t) · p(OX , OY |q, t) · p(q|t) .

Similarly as in equation 8,p(OX , OY |q, t) is the product
of Bingham distributions from corresponding orientation
measurements in(OX , OY ), and so the entire posterior
p(q|t, X, Y,OX , OY ) is Bingham (provided as before that
the priorp(q|t) is Bingham).

B. The Alignment Algorithm

To incorporate our Bayesian model into an iterative ICP-
like alignment algorithm, one could solve for themaximum
a posteriori (MAP) position and orientation by maximizing
p(q, t|X,Y, . . .) with respect toq and t. However, for
probabilistic completeness, it is often more desirable to draw
samples from this posterior distribution.

The joint posterior distributionp(q, t|Z)—whereZ con-
tains all the measurements (X,Y,OX , OY , . . .)—can be bro-
ken up intop(q|t, Z)p(t|Z). Unfortunately, writing down a
closed-form distribution forp(t|Z) is difficult. But sampling
from the joint distribution is easy with an importance sam-
pler, by first samplingt from a proposal distribution—for
example, a Gaussian centered on the optimal least-squares
translation (that aligns the centroids ofX and Y )—then
samplingq from p(q|t, Z), and then weighting the samples
by the ratio of the true posterior (from equation 2) and the
proposal distribution (e.g., Gaussian times Bingham).

We call this sampling algorithm Bingham Procrustean
Alignment (BPA). It takes as input a set of (possibly ori-
ented) features in one-to-one correspondence, and returns
samples from the distribution over possible alignments. In
section V, we will show how BPA can be incorporated into
an iterative alignment algorithm that re-computes feature
correspondences at each step and uses BPA to propose a
new alignment given the correspondences.

III. B UILDING NOISE-AWARE 3-D OBJECTMODELS

Our first step in building a system to detect known, rigid
objects—such as the ones in figure 4—is to build complete
3-D models of each object. However, the end goal of model
building is not just to estimate an object’s geometry correctly.



Fig. 4: The 18 objects in our newClutter data set.

Rather, we seek to predict what an RGB-D sensor would see,
from every possible viewing angle of the object. To generate
such a predictive model, we will estimate both the most
likely observations from each viewing angle, and also the
degree of noise predicted in those measurements. That way,
our detection system will realize that depth measurements
near object boundaries, on reflective surfaces, or on surfaces
at a high oblique angle with respect to the camera, are
less reliable than front-on measurements of non-reflective,
interior surface points.

In our model-building system, we place each object on
a servo-controlled turntable in 2-3 resting positions and
collect RGB-D images from a stationary Kinect sensor at10◦

turntable increments, for a total of 60-90 views. We then find
the turntable plane in the depth images (using RANSAC),
and separate object point clouds (on top of the turntable)
from the background. Next we align each set of 30 scans
(taken of the object in a single resting position) by optimizing
for the 2-D position of the turntable’s center of rotation, with
respect to an alignment cost function that measures the sum-
of-squared nearest-neighbor distances from each object scan
to every other scan. We then use another optimization to
solve for the 6-dof translation + rotation that aligns the 2-3
sets of scans together into one, global frame of reference.

After the object scans are aligned, we compute their sur-
face normals, principal curvatures, and FPFH features [10],
and we use the the ratio of principal curvatures to estimate
the (Bingham) uncertainty on the quaternion orientation
defined by normals and principal curvature directions at each
point5. We then use ray-tracing to build a 3-D occupancy
grid model, where in addition to the typical probability
of occupancy, we also store each 3-D grid cell’s mean
position and normal, and variance on the normals in that
cell6. We then threshold the occupancy grid at an occupancy
probability of 0.5, and remove interior cells (which cannot
be seen from any viewing angle) to obtain a full model
point cloud, with associated normals and normal variance
estimates. We also compute a distance transform of this
model point cloud, by computing the distance from the center

5The idea is to capture the orientation uncertainty on the principal
curvature direction by measuring the “flatness” of the observed surface
patch; see the appendix for details.

6In fact, we store two “view-buckets” per cell, each containing an
occupancy probability, a position, a normal, and a normal variance, since
on thin objects like cups and bowls, there may be points on two different
surfaces which fall in the same grid cell.
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Fig. 5: Our noise models predict range and normal errors (standard
deviations) as functions of surface angle and edge distance (both
with respect to the viewpoint).

of each cell in the occupancy grid to the nearest model point
(or zero if the cell contains a model point).

Next, for a fixed set of 66 viewing angles across the
view-sphere, we estimate range edges—points on the model
where there is a depth discontinuity in the predicted range
image seen from that view angle. We also store the minimum
distance from each model point to a range edge for each
of the 66 viewing angles. Using these view-dependent edge
distances, along with the angles between surface normals and
viewpoints, we fit sigmoid models across the whole data set
to estimate the expected noise on range measurements and
normal estimates as functions of (1) edge distance, and (2)
surface angle, as shown in figure 5.

IV. L EARNING DISCRIMINATIVE FEATURE MODELS FOR

DETECTION

Similarly to other recent object detection systems, our
system computes a set of feature model placement score
functions, in order to evaluate how well a given model place-
ment hypothesis fits the scene according to different features,
such as depth measurements, surface normals, edge locations,
etc. In our early experiments with object detection using the
generative object models in the previous section, the system
was prone to make mis-classification errors, because some
objects scored consistently higher on certain feature scores
(presumably due to training set bias). Because of this prob-
lem, we trained discriminative, logistic regression models
on each of the score components using the turntable scans
with true model placements as positive training examples
and a combination of correct object / wrong pose and wrong
object / aligned pose as negative examples. Alignments of
wrong objects were found by running the full object detection
system (from the next section) with the wrong object on the
turntable scans. By adding an (independent) discriminative
layer to each of the feature score types, we were able to
boost the classification accuracy of our system considerably.

V. DETECTING SINGLE OBJECTS INCLUTTER

The first stages of our object detection pipeline are very
similar to many other state-of-the-art systems for 3-D object
detection, with the exception that we rely more heavily
on edge information. We are given as input an RGB-D
image, such as from a Kinect. If environmental information
is available, the image may be pre-processed by another
routine to crop the image to an area of interest, and to label
background pixels (e.g., belonging to a supporting surface).
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Fig. 6: Single object detection pipeline.

As illustrated in figure 6, our algorithm starts by esti-
mating a dense set of surface normals on the 3-D point
cloud derived from the RGB-D image. From these surface
normals, it estimates principal curvatures and FPFH features.
In addition, it finds and labels three types of edges: range
edges, image edges, and curvature edges—points in the
RGB-D image where there is a depth discontinuity, an image
intensity discontinuity7, or high negative curvature. This edge
information is converted into an edge image, which is formed
from a spatially-blurred, weighted average of the three edge
pixel masks. Intuitively, this edge image is intended to
capture the relative likelihood that each point in the imageis
part of an object boundary. Then, the algorithm uses k-means
to over-segment the point cloud based on positions, normals,
and spatially-blurred colors (in CIELAB space) into a set of
3-D super-pixels.

Fig. 7: Examples of objects correctly aligned by BPA with only
two correspondences.

Next, the algorithm samples possible oriented feature
correspondences from the scene to the model8. Then, for
each correspondence, a candidate object pose is sampled
using BPA. Given a set of sampled model poses from single
correspondences, we then reject samples for which more
than20% of a subset of500 randomly-selected model points
project into free space—places where the difference between
observed range image depth and predicted model depth is
above5cm. Next, we run a pose clustering stage, where we
group correspondences together whose sampled object poses
are within 2.5cm and π/16 radians of one another. After
pose clustering, we reject any sample with less than two
correspondences, then re-sample object poses with BPA.

At this stage, we have a set of possible model placement
hypotheses, with at least two features correspondences each.
Because BPA uses additional orientation information, two

7We use the Canny edge detector to find image edges.
8We currently use only FPFH correspondences in the first stageof

detection as we did not find the addition of other feature types, such as
SIFT [9] or SHOT [12], to make any difference in our detection rates.

correspondences is often all it takes to lock down a very pre-
cise estimate of an object’s pose when the correspondences
are correct (Figure 7).

We proceed with a second round of model placement
validation and rejection, this time using a scoring function
that includes (1) range and normal differences, which are
computed by projecting a new subset of500 randomly-
selected model points into the observed range image, (2)
visibility—the ratio of model points in the subset that are
unoccluded, (3) edge likelihoods, computed by projecting
the model’s edge points from the closest stored viewpoint
into the observed edge image, and (4) edge visibility—
the ratio of edge points that are unoccluded. Each of the
feature score components is computed as a truncated (so
as not to over-penalize outliers), average log-likelihoodof
observed features given model feature distributions. For score
components (1) and (3), we weight the average log-likelihood
by visibility probabilities, which are equal to 1 if predicted
depth< observed depth, andN(∆depth; 0, σvis)/N(0; 0, 1)
otherwise9.

After rejecting low-scoring samples in round 2, we then
refine alignments by repeating the following three steps:

1) Assign observed super-pixel segments to the model.
2) Align model to the segments with BPA.
3) Accept the new alignment if the round 2 model place-

ment score has improved.

In step (1), we sample a set of assigned segments according
to the probability that each segment belongs to the model,
which we compute as the ratio of segment points (sampled
uniformly from the segment) that are within1cm in position
and π/16 radians in normal orientation from the closest
model point. In step (2), we randomly extract a subset
of 10 segment points from the set of assigned segments,
find nearest neighbor correspondences from the keypoints
to the model using the model distance transform, and then
use BPA to align the model to the 10 segment points.
Segment points are of two types—surface points and edge
points. We only assign segment edge points to model edge
points (as predicted from the given viewpoint), and surface
points to surface points. Figures 1 and 8 show examples
of object alignments found after segment alignment, where
red points (with red normal vectors and orange principal
curvature vectors sticking out of them) indicate surface point

9We useσvis = 1cm in all of our experiments.



correspondences, and magenta points (with no orientations)
are the edge point correspondences10.

After round 2 alignments, the system removes redundant
samples (with the same or similar poses), and then rejects
low scoring samples using the scores found at the end of
the segment alignment process. Then, it performs a final,
gradient-based alignment, which optimizes the model poses
with a local hill-climbing search to directly maximize model
placement scores. Since this alignment step is by far the
slowest, it is critical that the system has performed as much
alignment with BPA and has rejected as many low-scoring
samples as possible, to reduce the computational burden.

Finally, the system performs a third round of model
placement evaluation, then sorts the pose samples by score
and returns them. This third round of scoring includes several
additional feature score components:

• Random walk score—starting from an observed point
corresponding to the model, take a random walk in the
edge image (to stay within predicted object boundaries),
then measure the distance from the new observed point
to the closest model point.

• Occlusion edge score—evaluate how well model oc-
clusion edges (where the model surface changes from
visible to occluded) fits the observed edge image.

• FPFH score—computes how well observed and model
FPFH features match.

• Segment score—computes distances from segment
points to nearest model points.

• Segment affinity score—measures how consistent the
set of assigned segments is with respect to predicted
object boundaries (as measured by the observed edge
image, and by differences in segment positions and
normals).

VI. D ETECTING MULTIPLE OBJECTS INCLUTTER

To detect multiple objects in a scene, we run the individual
object detector from the previous section to obtain the 50 best
model placements for each model, along with their individual
scores. Then, following Aldoma et. al [1], we use simulated
annealing to optimize the subset of model placements (out of
50×N for N models) according to a multi-object-placement
score, which we compute as a weighted sum of the following
score components: (1) the average of single object scores,
weighted by the number of observed points each object
explains, (2) the ratio of explained / total observed points,
and (3) a small penalty for the total number of detected
objects. We also keep track of the top100 multi-object-
placement samples found during optimization, so we can
return a set of possible scene interpretations to the user
(in the spirit of interpretation tree methods [7]). This is
particularly useful for robot vision systems because they can
use tracking, prior knowledge, or other sensory input (like
touch) to provide additional validation of model placements,
and we don’t want detections from a single RGB-D image
to filter out possible model placements prematurely.

10In future work, we plan to incorporate edge orientations as well.

Fig. 9: TheClutter testing data set.

VII. E XPERIMENTAL RESULTS

We tested our object detection system on two Kinect-
based data sets—theKinect data set from Aldoma et. al [1]
containing 35 models and 50 scenes, and a new, more
difficult data set with many more occlusions and object pose
variations that we collected for this paper which we will
refer to asClutter, which contains 18 models and 30 scenes
(Figure 9). We used the same parameters (score component
weights, number of samples, etc.) on both data sets. In
table I, we compare the precision and recall of the top
scene interpretations (multi-object-placement samples)of our
method against Aldoma et. al on both data sets11.

this paper (BPA) this paper (ICP) Aldoma et. al [1]
precision recall precision recall precision recall

Kinect 89.4 86.4 71.8 71.0 90.9 79.5
Clutter 83.8 73.3 73.8 63.3 82.9 64.2

TABLE I: A comparison of precision and recall.

# samples 1 2 3 5 10 20
recall 73.3 77.5 80.0 80.8 83.3 84.2

TABLE II: Recall on theClutter data set as a function of the number
of scene interpretation samples.

Our algorithm (with BPA) achieves state-of-the art recall
performance on both data sets. When multiple scene inter-
pretations are considered, we achieve even higher recall rates
(Table II). Our precisions are similar to the baseline method
(slightly higher onClutter, slightly lower on Kinect). We
were unable to train discriminative feature models on the
Kinect data set, because the original training scans were not
provided. Training on scenes that are more similar to the
cluttered test scenes is also likely to improve precision on
the Clutter data set, since each training scan contained only
one, fully-visible object.

For our experiments, we implemented our algorithm in
C++ and ran them on a single 64-bit, 2.4 GHz Intel Xeon
processor. On a single CPU, each scene took 1-2 minutes to
process, compared to 10.4 seconds per scene for Aldoma’s
system, which ran in parallel on multiple CPUs [1]. We are
now in the process of porting our code to the GPU—our

11Since neither ours nor the baseline method uses colors in their object
models, we considered a model placement “correct” for theClutter data set
if it was within a threshold of the correct pose (2.5cm, pi/16 radians) with
respect to the model’s symmetry group. For example, we don’t penalize
flipping boxes front-to-back or top-to-bottom, since the resulting difference
in object appearance is purely non-geometric. For theKinect data set, we
used the same correctness measure as the baseline method (RMSE between
model in true pose and estimated pose), with a threshold of1cm.



Fig. 8: Object detections found with our system, along with the feature correspondences that BPA used to align the model. Surface features
are indicated by red points, with lines sticking out of them to indicate orientations(red for normals, orange for principal curvatures). Edge
features (which are orientation-less) are shown by magenta points.

current prototype system can detect single objects in about
1 second on an NDIVIA GeForce GTX 580 with 512 cores.

A. BPA vs. ICP

We evaluated the benefits of our new alignment method,
BPA, in two ways. First, we compared it to ICP by replacing
the BPA alignment step in round 2 with an ICP alignment
step12. This resulted in a drop of10% in both precision and
recall on theClutter data.

For a second test of BPA, we initialized 50 model place-
ments by adding random Gaussian noise to the ground truth
poses for each object in each scene of theClutter data
set. Then, we ran BPA and ICP for 20 iterations on each
of the model placements13. We then computed the average
of the minimum pose errors in each alignment trial, where
the minimum at timet in a given trial is computed as the
minimum pose error from step1 to stept. (The justification
for this measure is that this is approximately what the “accept
if score improves” step of round 2 is doing.) As shown in
figure 10, the pose errors decrease much faster in BPA.
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Fig. 10: Comparing BPA with ICP. (Left) The average of the
minimum position errors in each alignment trial. (Right) The
average of the minimum orientation errors in each alignment trial.

VIII. R ELATED WORK

Since the release of the Kinect in 2010, much progress
has been made on 3-D object detection in cluttered RGB-

12Both ICP and BPA used the same point correspondences; the only
difference was that BPA incorporated point feature orientations, while ICP
used only their positions.

13In other words, we repeated the alignment step of round 2 twenty times,
regardless of whether the total score improved.

D scenes. The two most succesful systems to date are
Aldoma et. al [1] and Tang et. al [11]. Aldoma’s system is
purely geometric, and uses SHOT features [12] for model-
scene correspondences. It relies heavily on pose clustering of
feature correspondences to suggest model placements14. The
main contribution of Aldoma’s system is that they jointly
optimize multiple model placements for consistency, which
inspired our own multiple object detection system.

Tang’s detection system uses both geometry and image
features, and placed first in the ICRA 2011 Solutions in Per-
ception instance recognition challenge. Their system relies
heavily on being able to segment objects in the scene from
one another, and most of the effort is spent on combining
geometry and image features for classification of scene
segments. It is unclear how well the system would perform
if such segmentations are not easy to obtain, as is the case
in our newClutter data set.

The Bingham distribution was first used for 3-D cluttered
object detection in Glover et. al [6]. However, that system
was incomplete in that it lacked any alignment step, and
differs greatly from this work because it did not use feature
correspondences.

IX. CONCLUSION AND FUTURE WORK

We have presented a system for 3-D cluttered object
detection which uses a new alignment method called Bing-
ham Procrustean Alignment (BPA) to improve detections in
highly cluttered scenes, along with a new RGB-D data set
which contains much more clutter and pose variability than
existing data sets. Our system relies heavily on geometry,
and will clearly benefit from image and color models, such
as in Tang et. al [11]. OurClutter data set, while challenging,
contains zero ambiguity, in that a human could easily detect
all of the objects in their correct poses, given enough time
to study the models. An important direction of future work
is to handle ambiguous scenes, where the parts of objects

14This is essentially a sparse version of the Hough transform [3], which
is limited by the number of visible features on an object, and iswhy their
recall rates tend to be lower than in our system for objects that are heavily
occluded.



that are visible are insufficient to perform unique alignments,
and instead one ought to return distributions over possible
model poses. In early experiments we have performed on
this problem, the Bingham distribution has been a useful
tool for representing orientation ambiguity. To follow up
on our preliminary results, we are also in the process of
performing a more extensive comparison of BPA to different
ICP variants. If BPA is indeed better than ICP, then it is likely
to have an impact in a variety of applications beyond object
detection—such as SLAM, tracking, and modeling.

APPENDIX

The Bingham Distribution. The Bingham distribution is
commonly used to represent uncertainty on 3-D rotations
(in unit quaternion form) [2], [5], [6]. For quaternions, its
density function (PDF) is given by

p(q; Λ, V ) =
1

F
exp

{

3
∑

i=1

λi(vi
Tq)2

}

(9)

whereF is a normalizing constant so that the distribution
integrates to one over the surface of the unit hypersphere
S
3, theλ’s are non-positive (≤ 0) concentration parameters,

and thevi’s are orthogonal direction vectors.
Product of Bingham PDFs.The product of two Bingham

PDFs is given by adding their exponents:

f(q;Λ1, V1)f(q; Λ2, V2)

=
1

F1F2

exp
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qT (
3
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λ1iv1iv1i
T + λ2iv2iv2i

T )q

}

=
1

F1F2

exp
{

qT (C1 + C2)q
}

(10)

After computing the sumC = C1 + C2 in the exponent of
equation 10, we compute the eigenvectors and eigenvalues
of C, and then subtract off the lowest magnitude eigenvalue
from each spectral component, so that only the eigenvectors
corresponding to the largest3 eigenvalues (in magnitude)
are kept, andλi ≤ 0 ∀i (as in equation 9). We use the
open-source Bingham Statistics Library15 to look up the
normalization constant.

Estimating the Uncertainty on Feature Orientations.
When we extract surface features from depth images, we
estimate their 3-D orientations from their normals and prin-
cipal curvature directions by computing the rotation matrix
R = [n p p′], where n is the normal vector,p is the
principal curvature vector, andp′ is the cross product ofn
andp. We take the quaternion associated with this rotation
matrix to be the feature’s estimated orientation.

These orientation estimates may be incredibly noisy, not
only due to typical sensing noise, but because on a flat
surface patch the principal curvature direction is undefined
and will be chosen completely at random. Therefore it is
extremely useful to have an estimate of the uncertainty on
each feature orientation that allows for the uncertainty onthe

15http://code.google.com/p/bingham

normal direction to differ from the uncertainty on the prin-
cipal curvature direction. Luckily, the Bingham distribution
is well suited for this task.

To form such a Bingham distribution, we take the quater-
nion associated withR to be the mode of the distribution,
which is orthogonal to all thevi vectors. Then, we setv3

to be the quaternion associated withR′ = [n − p − p′],
which has the same normal as the mode, but reversed
principal curvature direction. In quaternion form, reversing
the principal curvature is equivalent to the mapping:

(q1, q2, q3, q4) → (−q2, q1, q4,−q3) .

We then takev1 andv2 to be unit vectors orthogonal to the
mode andv3 (and each other). Given thesevi’s, the con-
centration parametersλ1 and λ2 penalize deviations in the
normal vector, whileλ3 penalizes deviations in the principal
curvature direction. Therefore, we setλ1 = λ2 = κ (we
useκ = −100 in all our experiments in this paper), and we
use the heuristicλ3 = max{10(1− c1/c2), κ}, wherec1/c2
is the ratio of the principal curvature eigenvalues16. When
the surface is completely flat,c1 = c2 and λ3 = 0, so the
resulting Bingham distribution will be completely uniformin
the principal curvature direction. When the surface is highly
curved, c1 ≫ c2, so λ3 will equal κ, and deviations in
the principal curvature will be penalized just as much as
deviations in the normal.
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