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Abstract We present an algorithm which learns an online trajectory generator that
can generalize over varying and uncertain dynamics. When the dynamics is certain,
the algorithm generalizes across model parameters. When the dynamics is partially
observable, the algorithm generalizes across different observations. To do this, we
employ recent advances in supervised imitation learning to learn a trajectory gen-
erator from a set of example trajectories computed by a trajectory optimizer. In
experiments in two simulated domains, it finds solutions that are nearly as good
as, and sometimes better than, those obtained by calling the trajectory optimizer on
line. The online execution time is dramatically decreased, and the off-line training
time is reasonable.

1 Introduction

Given a known deterministic model of the dynamics of a system, a start and goal
state, and a cost function to be minimized, trajectory optimization methods [27] can
be used to generate a trajectory that connects the start and goal states, respects the
constraints imposed by the dynamics, and (locally) minimizes the cost subject to
those constraints. A significant limitation to the application of these methods is the
computational time required to solve the difficult non-linear program for generating
a near-optimal trajectory. In addition, standard techniques [27] require the transition
dynamics to be known with certainty.

We are interested in solving problems online in domains that are not completely
understood in advance and that require fast action selection. In such domains we
will not know, offline, the exact dynamics of the system we want to control. Online,
we will receive information that results in a posterior distribution over the domain
dynamics. We seek to design an overall method that combines offline trajectory
optimization and inductive learning methods to construct an online execution system
that efficiently generates actions based on observations of the domain.

For example, we might wish a robot to move objects along a surface, potentially
picking them up or pushing them, and making choices of grasps and contacts. The
best way to achieve this depends on properties of the object, such as the coefficient
of friction of the robot’s contacts with the object and the object’s center of mass
(COM), which determine the system’s dynamics. If we knew the friction and center
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of mass, it would be relatively straightforward to find an appropriate trajectory using
trajectory optimization, but solving a non-linear optimization with large number of
decision variables and constraints generally takes a significant amount of time.

This work builds on recent advances in supervised imitation learning [10, 11]
to design a new learning-based online trajectory generation algorithm called TOIL
(Trajectory Optimization as Inductive Learning). We present two general problem
settings. In the completely observable setting, we assume that at execution time the
world dynamics will be fully observed; in the manipulation domain, this would cor-
respond to observing the friction and COM of the object. In the partially observable
setting, we assume that properties of the domain that govern its dynamics are only
partially observed; for example, observing the height and shape of an object would
allow us to make a “guess” in the form of a posterior distribution over these pa-
rameters to the dynamics, conditioned on the online observations. In both cases, we
desire the online action-selection to run much more quickly than would be possible
if it were necessary to run a traditional trajectory optimization algorithm online.

More concretely, we aim to build a trajectory generator that, for a given initial
state and goal, maps the values of the dynamics parameters to a trajectory in the
observable setting, or maps from an observation to a trajectory in the partially ob-
servable setting. We do this by training a regression function that maps both the
dynamics parameters and the current system state to an appropriate control action.
The trajectories used for off-line training are generated by using an existing trajec-
tory optimizer that solves non-linear programs. To minimize the number of training
trajectories required, we take an active-learning approach based on MMD-IL [11],
which uses an anomaly-detection strategy to determine which parts of the state space
require additional training data.

The idea of reducing trajectory generation to supervised learning has been sug-
gested before, but it is quite difficult to learn a single regressor that generalizes over
a large number of trajectories. Our approach, instead, is to learn a number of lo-
cal controllers (regressors) based on individual trajectories, for a given value of the
dynamic parameter or observation. During training TOIL decides when additional
controllers are needed based on a measure of distance between the states reached
during execution and the existing set of controllers. During execution, TOIL uses
the same distance criterion to select which controller among the learned controllers
to use at each time step.

We evaluate TOIL in two domains: aircraft path-finding and robot manipulation.
The aircraft domain is a path-planning task in which a sequence of control inputs
that drive the aircraft to the goal must be found. For the observable case of this task,
we show that TOIL is able to generate a trajectory whose performance is on par with
the traditional trajectory optimizer while reducing the generation time by a factor of
44. In the partially observable case, we show TOIL’s success rate is better than that
of the trajectory optimizer, while the generation time is reduced by a factor of 52.

In the manipulation domain, a robotic hand needs to move a cylindrical object
from an initial position to a target position. This involves high dimensional state
and control input. We show that in this domain, for both the observable and partially
observable settings, TOIL is able to reduce the trajectory generation time by a factor
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of thousands. Moreover, we show that TOIL can generalize over different shapes
of the cylinder, and generate trajectories whose success rate is almost as same as
traditional trajectory optimization.1

2 Related Work

The idea of combining multiple trajectories to obtain a control policy has a long his-
tory, for example [1, 20, 2]. Recently, there has been a surge of interest in learning-
based methods for constructing control policies from a set of trajectories obtained
from trajectory optimization [3, 4, 9]. These methods generalize a set of relatively
expensive trajectory optimizations to produce a policy represented in a form that
can be efficiently executed on-line.

Our goal is similar, except that we are trying to generalize over dynamic param-
eters. Our training examples are trajectories labeled either directly with dynamics
parameters or with observations that give a distribution over dynamic parameters.

Our approach is based on the paradigm of imitation learning [21, 25]. This learn-
ing paradigm has had many successes in robotics, notably helicopter maneuvering,
UAV reactive control, and robot surgery [22, 23, 24]. In imitation learning, the goal
is to replicate (or improve upon) trajectories acquired from an “oracle,” usually an
expert human. The work in this paper can be seen as replacing the oracle in imitation
learning with a trajectory optimizer.

DAgger [10] is an influential algorithm that addresses a fundamental problem in
standard supervised approaches to imitation learning. Direct application of super-
vised learning suffers from the fact that the state distribution induced by the learned
policy differs from that of the oracle. DAgger adopts intuition from online learning,
a branch of theoretical machine learning, to address this problem by iteratively ex-
ecuting the learned policy, collecting data from the oracle, and then learning a new
policy from the aggregated data. An important drawback of Dagger is that it queries
the oracle at each time step, which would require solving a non-linear optimization
program every time step during training in our case.

Our work extends Maximum Mean Discrepancy Imitation Learning (MMD-
IL) [11], a recently proposed imitation learning method designed to be efficient in
its access to the oracle. MMD-IL learns a set of trajectories to represent a policy and
uses the Maximum Mean Discrepancy criterion [17] as a metric to decide when to
query the oracle for a new trajectory. In this paper, we also take this approach with
a modification that makes it parameter free.

1 the video of this can be found at: https://www.youtube.com/watch?v=
r9o0pUIXV6w

https://www.youtube.com/watch?v=r9o0pUIXV6w
https://www.youtube.com/watch?v=r9o0pUIXV6w
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3 Completely observable dynamics

For clarity of exposition, we begin by defining the learning problem and the oper-
ation of TOIL in the completely observable case; in section 4 we extend it to the
more realistic partially observable case.

We assume a fixed initial state x0, goal state xg (or goal criterion) and cost func-
tional J . We also assume that the transition dynamics are drawn from a known
class, with a particular instance determined by the parameter α drawn from set A :
ẋ = fα(x,u). Our overall aim is to learn to map values of α to trajectories τ that
go from x0 to xg while respecting the transition dynamics and optimizing the cost
functional.

Rather than invent a direct parameterization of trajectories, we will represent a
trajectory implicitly as a policy π that maps a state x to a control output u. Thus,
we can think of the problem as learning a mapping Π : A → (X →U), which can
be rewritten to a more traditional form: Π : A ×X →U . Given a set of example
training trajectories of length H for a set of N different α values

(α j,τ j) = (α j,{(x( j)
t ,u( j)

t )}H
t=1), j = 1, ...,N

we can use traditional supervised learning methods to find parameters θ for a family
of regression functions, by constructing the training set {((α j,x

( j)
t ),u( j)

t )}, and using
it as input to a regression method.

Because the training data represent trajectories rather than identically and inde-
pendently distributed samples from a distribution, we find that it is more effective
to use a specialized form of supervised learning algorithm and an active strategy for
collecting training data. The remaining parts of this section describe these methods
and the way in which the final learned regressor is used to generate action in the
on-line setting.

3.1 Representation and learning

The key idea in TOIL is to construct a set of local trajectory generators πk and to
appropriately select among them based on a two-sample test metric, MMD [17].
These trajectory generators are local in the sense that each of them specializes in a
particular region of the space X×A and can be expected to generalize well to query
points that are likely to have been drawn from that same distribution of points. The
final policy is a regressor that has the form π(α,x) = πk(α,x), where the particular
πk is chosen based on the distance between the query point (α,x) and the data
that were used to train πk. We then iterate between executing the current policy
and updating it with the new data. This is to mitigate the problems associated with
executing a learned policy without updating it, which has been shown to accumulate
error and cause cause the trajectory to be highly erroneous [10]. Pseudo-code for the
top level of TOIL is shown in algorithm 1. It takes an initial state x0, a goal state xg
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and a sample set A = {α1, . . . ,αN} of dynamics parameters, and outputs a trajectory
generator, Π , which is a mapping from the state at time t and the uncertain dynamics
parameter α to the control to be applied at time t.

TOIL comprises three procedures: LearnLocalTrajGenerator, SelectLocalTraj-
Generator and Optimize. The procedure LearnLocalTrajGenerator(τi,αi) is simply
a call to any supervised regression algorithm on the training set

{((αi,xt),ut)} for (xt ,ut) ∈ τi

We explain the remaining procedures as we describe algorithm 1 below.
The algorithm begins by generating a set of training trajectories using the pro-

cedure Optimize. This procedure is responsible for getting a training trajectory, by
optimizing a nonlinear program for trajectory optimization. This nonlinear program
is discussed in detail in section 3.3. From each of these training trajectories, it builds
a local trajectory generator and adds it to the set Π .

Once the initial training trajectories have been used to train local controllers,
we begin an iterative process of ensuring coverage of the input space that will be
reached by control actions generated by Π . For every value of αi, we try to execute
the trajectory that would be generated by Π starting from x0. At each step of ex-
ecution we find the local controller π that applies to xt and α using the procedure
SelectLocalTrajGenerator. This procedure, given in Algorithm 2, is responsible for
selecting the most appropriate local trajectory generator based on the similarity met-
ric, called MMD, between the current state and training data π.D associated with
each of the local controllers. This metric is described in detail in section 3.2. If there
is one, we use fα to simulate its execution and get a new state xt+1. If there is no
local controller that covers the pair xt ,α , then we call the Optimize procedure to
get a training trajectory from xt to xg with dynamics fαi and use it to train a new
local controller, π , which we add to Π . This process is repeated until it is possible
to execute trajectories for all the training αi to reach the goal, without encountering
any anomalous states. If the αi have been chosen so that they cover the space of
system dynamics that are likely to be encountered during real execution, then Π can
be relied upon to generate effective trajectories.

3.2 Maximum mean discrepancy

The process of applying trajectory generator Π to generate an actual trajectory from
an initial (x0,α), as well as the process of actively collecting training trajectories,
depends crucially on identifying when a local trajectory generator is applicable to
an observed system state. This decision is based on anomaly detection using the
MMD criterion [17, 12], which is a non-parametric anomaly detection method that
is straightforward to implement. Other anomaly-detection methods might also be
suitable in this context, as surveyed in [30].
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Algorithm 1 TOIL(x0, f ,xg,A)

Π = { }
for i = 1 to N do

τi = Optimize(x0, f ,xg,αi)
Π = Π ∪LearnLocalTrajGenerator(τi,αi)

end for
farPtsExists = True
while farPtsExists do

farPtsExists = False
for i = 1 to N do

for t = 0 to H do
πt = SelectLocalTrajGenerator(Π ,xt ,αi)
if isempty(πt ) then

farPtsExists = True
τ = Optimize(xt , fαi ,xg)
π = LearnLocalTrajGenerator(τ,αi)
Π = Π ∪π

end if
Generate xt+1 using fαi (xt ,π(xt ,αi))

end for
end for

end while
return Π

Algorithm 2 selectLocalTrajGenerator(Π ,xt ,α)
candidates = /0
for πi ∈Π do

if MMD(πi.D,(xt ,α))< maxMMD(πi.D) then
candidates = candidates∪πi

end if
end for
if size(candidates) == 0 then

return /0
else

return argminπ̂∈candidates MMD(π̂,(xt ,α))
end if

Given two sets of data, X = {x1, ...,xm} and Y = {y1, ...,yn} drawn i.i.d. from
distributions p and q respectively, the maximum mean discrepancy (MMD) criterion
determines whether p = q or p 6= q, based on an embedding of the distributions in a
reproducing kernel Hilbert space (RKHS).

Definition 1 (from [17]): Let F be a class of functions f : X → R and let
p,q,X ,Y be defined as above. Then MMD and its empirical estimate are defined as:

MMD(F , p,q) = sup f∈F (Ex∼p[ f (x)]−Ey∼q[ f (y)])

MMD(F ,X ,Y ) = sup f∈F (
1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi))
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(a) Initial position of the air-
craft (black), obstacles (blue),
and the goal region (red).

(b) Training trajectory from a
trajectory optimizer (TrajOpt,
black), and executed trajectory
of TOIL. Magenta indicates
the states that are detected as
anomalies during the execution,
while blue indicates those that
were not detected.

(c) Training traj (navy) for an
observation, and a traj found
by TOIL for that observation
(non-navy). Colors indicate the
local trajectory generators se-
lected by TOIL. Notice that
none of the states on TOIL’s tra-
jectory is navy.

Fig. 1: Airplane control

MMD comes with an important theorem which we restate here.
Theorem (from [17]): Let F be a unit ball in a reproducing kernel Hilbert

space H , defined on compact metric space X , with associated kernel k(·, ·). Then
MMD(F , p,q) = 0 if and only if p = q.

Intuitively, we can expect MMD[F ,X ,Y ] to be small if p = q, and the quantity
to be large if distributions are far apart. This criterion can also be used as a metric
for anomaly detection, as described in [12]. Given a training dataset D and a query
point x, we can compute the following:

MMD(F ,x,D) = sup f∈F

(
f (x)− 1

n ∑
x′∈Di

f (x′))
)

=
(

k(x,x)− 2
n ∑

x′∈Di

k(x,x′)+
1
n2 ∑

x′,x′′∈Di

k(x′,x′′)
) 1

2
(1)

and define maxMMD(D) = maxx∈D MMD(F ,x,D). As illustrated in [12], we re-
port x as an anomaly for dataset D if MMD(x,D)> maxMMD(D).

Figure 1b shows the result of anomaly detection using the MMD criterion in one
of our domains, in which the robot needs to steer to the goal from a given initial
position and a forward velocity for the robot.



8 Kim, Kim, Dai, Kaelbling, Lozano-Perez

Algorithm 3 TOILEx(x0,Π ,α)
for t = 0 to H do

π = SelectLocalTrajGenerator(Π ,xt ,α)
execute π(xt ,α)
xt+1 = ObserveState

end for

3.3 Trajectory Optimization

In trajectory optimization, the goal is to produce a locally optimal open-loop trajec-
tory that minimizes a cost function along this trajectory, for a given initial condition
x0. The problem of finding an optimal trajectory can be formulated generically as:

u∗(·) = argmin
u(·)

J(x0;α) = argmin
u(·)

∫ T

t=0
g(xt ,ut) dt

s.t. ẋt = fα(xt ,ut) ∀ t and xT = xg

(2)

where, xt and ut respectively represent the state and the control input of the system
at time t, g(xt ,ut) is the cost function, ẋt = fα(xt ,ut) governs the dynamics of the
system, x0 is the initial state and xg is the goal state.

There are multiple way of solving nonlinear programs of this form [13], any of
which would be appropriate for use with TOIL.

3.4 Online execution

Algorithm 3 illustrates the use of a learned Π in an on-line control situation. We
assume that, at execution time, the parameter α is observable. At each time point,
we find the local controller that is appropriate for the current state and α , execute
the u that it generates, and then observe the next state. Assuming we have K local
controllers, each of which is trained with H data points, the worst-case time com-
plexity for computing a control for a given state and model is then O(HK). This can
be achieved by storing the Gram matrix of the dataset (i.e. the third part of Eqn. 1)
in a database, in which case the computation of the second part of Eqn 1 becomes
the dominant term.

4 Partially observable dynamics

In more realistic situations, the exact value of α will not be observable online. In-
stead, we will be able to make observations o, which allow computation of a pos-
terior distribution Pr(α | o). The TOIL approach can be generalized directly to this
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setting, but rather than selecting the ut to minimize J(x0,α) we minimize it in expec-
tation, hoping to obtain a trajectory that “hedges its bets” and performs reasonably
well in expectation over system dynamics fα where α ∼ Pr(α | o).

In practice, we use a sampled approximation of the expected value; in partic-
ular, we assume that we have N αs drawn from P(α | o), and we formulate the
constrained optimization problem as

u∗(·) = argmin
u(·)

Eα∼P(α|o)
[
J(x0;α)

]
≈ argmin

u(·)

1
N

N

∑
i=1

∫ T

t=0
g(xi

t ,ut) dt

s.t. ẋi
t = fαi(x

i
t ,ut) ∀ t, i and xi

T = xg ∀ i

(3)

Note that there are different state variables xi
t for each possible dynamics αi, al-

lowing the trajectories to be different, but that there is a single sequence of control
variables ut .

The only additional change to the TOIL algorithm is that, instead of condition-
ing on α in the supervised learning and selection of local trajectory generators, we
condition on the observation o.

5 Experiments

We evaluate our framework on two domains: aircraft path finding and robot ma-
nipulation. In all of our experiments, we use random forests [16] as our supervised
learner. Specifically, we use the TreeBagger class implemented in MATLAB for the
aircraft task, and RandomForestRegressor class implemented in scikit-learn [18] for
the manipulation task. We used a Gaussian kernel for the MMD metric in both tasks.

To evaluate TOIL, we compute three different measures: success rate, trajectory
generation time, and training time. The success rate is the percentage of the time
the trajectory generated by TOIL satisfied the constraints of the environment and
reached the goal. Trajectory generation time shows how much TOIL decreases the
online computation burden and training time measures the off-line computation time
required to learn Π for a new domain.

We compared TOIL to three different benchmarks: (1) calling a standard trajec-
tory optimization procedure (solving equation 2 using snopt[28]) online in each new
task instance, (2) using the initial training trajectories as input to a random forest su-
pervised learning algorithm; and (3) DAgger, which calls trajectory optimization at
every time step.

5.1 Airplane Control

This task is to cause an airplane traveling at a constant speed in the plane to avoid
obstacles and reach a goal location by controlling its angular acceleration. Figure 1a
shows an instance of this task. System states st and controls ut are defined to be:
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(b) Partially Observable Model

Fig. 2: Success Rates for Airplane Domain

st =
[
xt ,yt ,θt , θ̇t

]T
, ut = θ̈t

where (x,y) is the location of the airplane in the 2D plane, θ is the heading angle,
and θ̇ and θ̈ are the angular velocity and acceleration, respectively. The dynamics
of the system is given by:

f (xt ,ut) =
[
ẋt , ẏt , θ̇t , θ̈t

]T
=
[
−v · sin(θt),v · cos(θt), θ̈t ,ut

]T
where v denotes the constant speed of the airplane. The objective function is inte-
grated cost g(st ,ut) = u2

t −distToNearestObstacle(st).
We consider a trajectory to be a “success” if it does not collide with any obstacles,

and arrives at the goal.
Observable Case The aspect of the dynamics that is variable, corresponding to

α in the algorithms, is the speed of the aircraft, v; it is correctly observed by the
system at the execution time. For training, we sampled 30 different α values from
P(α) = Uniform(5,30), and then generated training trajectories by solving Eqn 2.
For testing, we sampled 50 different α values from P(α).

Figure 2a shows the success rates of the different algorithms. Trajectory opti-
mization always returns a trajectory that is able to arrive at the goal without a col-
lision. DAgger frequently failed to find feasible trajectories, mainly because it has
not sampled training trajectories in the relevant parts of the state space. Simple su-
pervised learning was even less successful due to its inability to sample any extra
trajectories at training time. TOIL, in comparison, is able to generate trajectories
whose performance is almost on par with the trajectory optimizer.

Table 1 shows the online trajectory computation time required by each algorithm
for 21 knot points. All of the learning-based methods significantly reduce the on-
line computation time compared to the online trajectory optimization. In terms of
training time, we can see that DAgger makes a very large number of calls to the
trajectory optimizer, collecting training data at inappropriate regions of state space.
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Algorithm Trajectory Generation Time Training Time Number of Traj Opt Calls
TOIL 2.73 secs 64.53 mins 32

DAgger 2.10 secs 375.01 mins 186
Supervised 1.57 secs 60.50 mins 30

Traj Opt 121.31 secs 0 mins 0

Table 1: Observable airplane domain trajectory generation and training times

In contrast, TOIL is able to ask only when necessary, achieving much faster train-
ing time. Overall, then, TOIL produces very good trajectories with reasonable time
requirements for both training and testing.

Partially Observable Case For the partially observable case, the observation o
is the mass of the aircraft, m. We assume a Gaussian distribution, P(α | o = m) =
N ( 1

m ,1), where m is the mass of the aircraft. During training we pick 30 different m
values, and for each m we sample 5 different α values from P(α | o = m) and solve
Eqn 3 to produce 30 training trajectories, each of which is intended to be robust to
varying α values.

For testing, we sampled 50 different new m values, and for each, sampled 5 α

values from P(α | o = m). In this phase, the robot only sees m, but not α or P(α|o).
For online trajectory optimization, we computed a trajectory using those 5 α sam-
ples by solving Eqn 3. Then, for all learning algorithms, we report the result of
evaluating the trajectory they produce on one of the five sampled α values.

Figure 2b shows the success rate of different techniques in these problems. In
contrast to the observable case, the robust trajectory optimization cannot always
find trajectories that succeed. This is because the non-linear optimizer needs to find
a trajectory that is feasible for all 5 sampled α values, which makes the optimization
problem much more difficult.

TOIL performs much better than trajectory optimization, which sometimes gets
stuck in terrible local optima, such as one that collides with obstacles. TOIL is
more robust because the MMD criterion is able to pick appropriate local trajectory
generators depending on the initial state. In this task, most of the training trajectories
have heading angles facing forward and travel through the middle of the field due to
the placement of obstacles. Therefore, it is unlikely for a local trajectory generator
whose training data includes traveling towards obstacles to be selected, because x0
is located at the middle of field, facing forward. This is well illustrated in Figure 1c.
Here, we can see that the local trajectory generator trained with data that collides
with obstacles by traveling to right is never selected during execution.

Now we consider the trajectory generation time and training time, as shown in
table 2. As the generation times show, the learning methods reduce the online com-
putation time significantly compared to online optimization. TOIL’s training time
was again significantly smaller than DAgger’s, and comparable with that of super-
vised learning.
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Algorithm Trajectory Generation Time Training Time Number of Traj Opt Calls
TOIL 8.40 secs 273 mins 37

DAgger 7.84 secs 1720.30 mins 233
Supervised 1.75 secs 221.50 mins 30

Traj Opt 443.12 secs 0 mins 0

Table 2: Partially observable airplane trajectory generation and training times

Fig. 3: Examples of the cylinders used in testing. The robotic hand is at its initial
position, and the red dot indicates the goal location for the center of the cylinder

5.2 Manipulation Control

In this domain, the task is to move a cylindrical object with a multi-fingered robot
hand from an initial position to a goal position. A state of the robot is an element
of an 84 dimensional space which consists of: position and orientation of the palm
and the cylinder, as well as poses of the other 8 links relative to palm, q; associated
velocities, q̇, and accelerations q̈. We make use of an augmented position controller
whose inputs are desired poses and an amount of time that should be taken to achieve
them: ut = (qt+1,dtt+1). The aspect of the dynamics that varies is α = (Cx,Cy,Cz),
the center of mass of the cylinder, and in the partially observable case, the obser-
vation o = (r, l) is the radius and length of the cylinder. We declare a trajectory to
be successful if it does not violate the dynamics constraints and moves the cylinder
to a desired goal pose. Figure 3 shows some example cylinders used in the testing
phase.

The nonlinear program for trajectory optimization has the following components:
decision variables

{
qt , q̇t , q̈t ,F

(1)
t ,F(2)

t ,F(3)
t
}T

t=0 where F(i) is the force exerted by

ith finger at a contact point; objective function g(xt ,ut) = α q̇2
t +β q̈2

t + γ ∑
3
i=1 F(i)

t
2

where α,β ,γ ∈ R. are weights on each component; constraints between xt , ut and
xt+1 that enforce the physics of the world; constraints on final and initial states;
finger-tip contact constraints that require the robot to contact the object with its
finger tips only; friction cone constraints between robot and cylinder, and cylinder
and the surface; complementarity constraints of the form F( f ) ·d(qt) = 0, ∀ f ,qt ,
where, F( f ) denotes the force being exerted by finger f , qt denotes the location of the
hand at time t, and d(qt) denotes the distance from the object to the finger f at time t.
Our implementation of the physics constraints embodies several approximations to
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Fig. 4: Trajectories for the observable (left) and partially observable case (right). For
the observable case, the robot simply pushes the object to the goal. For the partially
observable case, the robot lifts the object to to the goal, as to minimize the risk of
tipping the cylinder over.

real world physics. However, this still represents a challenging test for the learning
methods.

Intuitively, given the objective function and the constraints, the optimal behavior
is to simply push the object to the goal, because pushing requires the robot to exert
less total force and move along a shorter trajectory than lifting the object. However,
when there is uncertainty about the center of mass, pushing the object may be risky:
if the height at which it pushes is too far above or below the COM, the cylinder may
tip over, and so picking the object up may be preferable, in expectation. We find
that when the system dynamics are observable, TOIL selects appropriate pushing
trajectories, but when they are only partially observable, TOIL makes more robust
choices; an example is illustrated in Figure 4 and a few more examples are shown
in the video2

Observable Case In the observable case, we directly observe α . For training,
we sample 40 different α’s from P(α = (Cx,Cy,Cz)), which is defined as a joint
uniform distribution with its range defined by the length and radius of the cylinder.
For testing, we sample 50 different models from the same distribution.

Figure 5a shows the success rate of the same set of algorithms as for the airplane
domain. As the figure shows, even trajectory optimization sometimes fails to satisfy
the constraints within the given time limit for optimization, because the problem
is quite large. While TOIL again performed just slightly worse than trajectory op-
timization, DAgger and supervised learning performed relatively poorly. Table 3
shows the training and trajectory computation times. The learning approaches are

2 https://www.youtube.com/watch?v=r9o0pUIXV6w

https://www.youtube.com/watch?v=r9o0pUIXV6w
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(b) Partially Observable Model

Fig. 5: Success Rates for Manipulation Domain

Algorithm Trajectory Generation Time Training Time Number of Traj Opt Calls
TOIL 1.10 secs 1012 mins 44

DAgger 1.04 secs 1320 mins 60
Supervised 0.45 secs 880 mins 40

Traj Opt 1302 secs 0 mins 0

Table 3: Trajectory computation times and training times for various algorithms

much more efficient at generating trajectories online than the optimizer is; Again,
DAgger makes extra calls to the trajectory optimizer, while the supervised learner
makes too few.

Partially Observable Case In a more realistic scenario, the robot only gets to
observe length and radius of the cylinder, but not the exact center of mass. For
training, we sampled 40 different observations, and sampled two different α’s from
the conditional distribution P(α = [Cx,Cy,Cz]|o = [r, l]), which is defined as a joint
normal distribution centered at the center of the cylinder (i.e. µα = (rx,ry, l/2)) and
variance defined as half of radius for (x,y) direction, and length in z direction. For
testing, we sampled 50 different observations and tested the algorithms on one of
the α’s sampled from the same distribution. The robot gets to see only o, but not the
conditional distribution or α .

Figure 5b shows the success rate of the different algorithms. The pattern of per-
formance is similar to the observable case. All the algorithms performed somewhat
better than in the observable case, presumably because the trajectories found are
less sensitive to variations in the dynamics. Table 4 shows the training and trajec-
tory generation times. For this case, the learning algorithms are even more efficient
relative to trajectory optimization, because the optimization problem is so difficult.
As before, DAgger gathered much more data, while TOIL collected just enough to
perform almost as well as the trajectory optimizer.



Generalizing over Uncertain Dynamics for Online Trajectory Generation 15

Algorithm Trajectory Generation Time Training Time Number of Traj Opt Calls
TOIL 1.16 secs 1978 mins 46

DAgger 1.04 secs 2580 mins 60
Supervised 0.45 secs 1720 mins 40

Traj Opt 2628 secs 0 mins 0

Table 4: Trajectory computation times and training times of various algorithms

6 Conclusion

We proposed TOIL, an algorithm that learns an online trajectory generator that can
generalize over varying and uncertain dynamics. When the dynamics is certain, our
generator is able to generalize across various model parameters. If it is partially ob-
servable, then it is able to generalize across different observations. It is shown, in
two simulated domains, to find solutions that are nearly as good as, and sometimes
better than, those obtained by calling the trajectory optimizer on line. The online ex-
ecution time is dramatically decreased, and the off-line training time is reasonable.

A significant concern about TOIL, as well as other supervised learning based
algorithms for trajectory generation [3, 4, 9], is that the resulting controller has no
guarantee of stability. In contrast, controllers synthesized from a set of local stabi-
lizing controllers, such as LQRs, can guarantee that the controller would stabilize to
the goal state [2]. Investigating the stability guarantees of supervised learning based
trajectory generators would be an interesting research avenue for the future.
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