
Autonomous Skill Acquisition on a Mobile Manipulator

George Konidaris1,3

MIT CSAIL1

gdk@csail.mit.edu

Scott Kuindersma2,3 Roderic Grupen2

Laboratory for Perceptual Robotics2
University of Massachusetts Amherst
{scottk,grupen}@cs.umass.edu

Andrew Barto3

Autonomous Learning Laboratory3

University of Massachusetts Amherst
barto@cs.umass.edu

Abstract

We describe a robot system that autonomously acquires
skills through interaction with its environment. The
robot learns to sequence the execution of a set of innate
controllers to solve a task, extracts and retains compo-
nents of that solution as portable skills, and then trans-
fers those skills to reduce the time required to learn to
solve a second task.

Introduction
Hierarchical reinforcement learning (Barto and Mahadevan
2003) offers a family of methods for learning and planning
using high-level macro-actions (or skills) rather than (or in
addition to) low-level primitive actions. These approaches
are appealing to robotics researchers who hope to design
robots that can learn and plan at a high-level while ultimately
having to perform control using low-level actuators.

A core research goal in hierarchical RL is the develop-
ment of skill discovery methods whereby agents can acquire
their own high-level skills through interaction with the envi-
ronment in the context of solving larger problems. Although
most skill acquisition research has focused on small dis-
crete problems, some recent work has aimed at making these
methods feasible in high-dimensional, continuous domains
(Mugan and Kuipers 2009; Konidaris and Barto 2009a;
2009b). In particular, an algorithm called CST (Konidaris
et al. 2010) has recently been shown to be capable of ac-
quiring skills from demonstration trajectories on a mobile
robot. CST segments trajectories into chains of skills, allo-
cating each its own abstraction (out of a library of available
abstractions), and merges chains from multiple trajectories
into a skill tree.

We describe a robot system that learns to sequence the ex-
ecution of a set of innate controllers to solve a task and then
uses the resulting solution trajectories as input to CST. The
system thereby autonomously acquires new skills through
interaction with its environment. We show that the robot is
able to reduce the time required to solve a second task by
transferring the acquired skills.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
Hierarchical RL and the Options Framework
The options framework (Sutton, Precup, and Singh 1999)
adds methods for hierarchical planning and learning using
temporally-extended actions to the standard RL framework.
Rather than restricting the agent to selecting single time-
step actions, it models higher-level decision-making using
options: actions that have their own policies and which may
require multiple time steps to complete. An option, o, con-
sists of three components: an option policy, πo, giving the
probability of executing each action in each state in which
the option is defined; an initiation set indicator function, Io,
which is 1 for states where the option can be executed and 0
elsewhere; and a termination condition, βo, giving the prob-
ability of option execution terminating in states where the
option is defined. Options can be added to an agent’s ac-
tion repertoire alongside its primitive actions, and the agent
chooses when to execute them in the same way it chooses
when to execute primitive actions. An option can be consid-
ered a particular model of the general notion of a skill, and
from here we use the terms interchangeably.

We may wish to define an option’s policy in a smaller
state space than the full task state space. This is known as
an abstraction; here we define an abstraction M to be a pair
of functions (σM , τM), where σM : S → SM is a state
abstraction mapping the overall state space S to a smaller
state space SM , and τM : A → AM is a motor abstraction
mapping the full action space A to a smaller action space
AM . When using an abstraction, the agent’s sensor input is
filtered through σM and its policy π maps from SM to AM .

Skill acquisition thus involves creating an option, defin-
ing its termination condition and initiation set, optionally
determining the appropriate abstraction, and learning its
policy. Creation and termination are typically performed
by the identification of a terminating goal. The initiation
set is then the set of states from which the goal can be
reached. Option abstractions are typically either learned
from data (Jonsson and Barto 2001), selected from a li-
brary (Konidaris and Barto 2009a), or inferred from the
structure of a factored MDP (Mugan and Kuipers 2009;
Vigorito and Barto 2010). Finally, given an option reward
function, policy learning becomes just another RL problem
and can be achieved using standard RL methods.

CST
CST (Konidaris et al. 2010) is a recently developed skill
discovery method capable of acquiring skills from human-
provided demonstration trajectories. It segments each tra-
jectory into a chain of skills—allocating each skill its own
abstraction—and merges chains from multiple trajectories
into a single skill tree; this is accomplished incrementally
and online. CST uses a library of abstractions, and segments
each trajectory by automatically detecting when either the
most relevant abstraction changes, or when a segment be-
comes too complex to represent using a single linear value
function approximator. This is depicted in Figure 1.

R
et
ur
n

Fe
at
ur
es Door Key Lock

Figure 1: An illustration of a trajectory segmented into skills
by CST. A robot executes a trajectory where it goes through
a door, approaches and picks up a key, and then takes it to
a lock (bottom). The robot is equipped with three possible
abstractions: features describing its distance to the doorway,
the key, and the lock. The value of these features change
during trajectory execution (middle) as the distance to each
object changes while it is in the robot’s field of view. The
robot also obtains an estimate of return for each point along
the trajectory by summing the (discounted) rewards obtained
from that point on (top). CST splits the trajectory into seg-
ments by finding an MAP segmentation such that the return
estimate is best represented by a piecewise linear value func-
tion where each segment uses a single abstraction. Segment
boundaries are shown with dashed vertical lines.

Each option’s initiation set is obtained using a classifier:
states in its segment are positive examples and all other
states are negative examples. Each option’s termination con-
dition is the initiation set of the skill that succeeds it (or the
target of the trajectory, in the case of the final skill), result-
ing in a chain of options that can be executed sequentially
to take the robot from its starting position to the goal. Given

multiple trajectories leading to the same goal, CST merges
them by considering the likelihood of each segment being
represented by the same value function.

CST is suitable for skill acquisition in mobile robots be-
cause it is online, and given an abstraction library it seg-
ments demonstration trajectories into sequences of skills
that are each represented using a small state space. This
use of skill-specific abstractions is a key advantage of hi-
erarchical RL because it allows problems that are high-
dimensional when considered monolithically to be adap-
tively broken into subtasks that may themselves be low-
dimensional (Konidaris and Barto 2009a). Additionally, a
change in abstraction is a useful measure of subtask bound-
aries, and the use of agent-centric abstractions facilitates
skill transfer (Konidaris and Barto 2007). For more details
on CST, see Konidaris et al. (2010).

Autonomous Skill Acquisition on a Mobile
Manipulator

Previous work with CST has acquired skills from demon-
stration trajectories obtained from a human. This section de-
scribes a robot that learns to solve a task itself, and thereby
generates its own sample trajectories. We used a pair of tasks
to demonstrate the feasibility of autonomous robot skill ac-
quisition and the effect of acquired skills. In the first, the
robot learned to sequence the execution of a set of innate
controllers to solve a mobile manipulation task and then
extracted skills from the resulting solution. We compared
the performance of the robot with and without the acquired
skills in a second, similar, task.1

The uBot-5
The uBot-5, shown in Figure 2, is a dynamically balanc-
ing, 13 degree of freedom mobile manipulator (Deegan, Thi-
bodeau, and Grupen 2006). Balancing is achieved using an
LQR that keeps the robot upright and compensates for forces
exerted upon it during navigation and manipulation. The
uBot-5 has two arms, each terminated by a small ball that
can be used for basic manipulation tasks.2

The uBot’s control system was implemented primarily
in Microsoft Robotics Developer Studio (Johns and Tay-
lor 2008) and allowed differential control of its wheels
and position control of each of its hands (though we only
used the right hand in this work). The uBot was equipped
with two cameras mounted on a pan/tilt unit. Images were
extracted and transmitted wirelessly to an off-board com-
puter that processed them using the ARToolkit system (Kato
and Billinghurst 1999) to identify augmented reality tags
(ARTags) present in the robot’s visual field. The uBot was
able to identify the location and orientation of visible tags
with an update rate of approximately 8Hz. Multiple ARTags
were placed in known configurations around important ob-
jects, allowing the robot to localize each object even when
only a single ARTag was visible.

1Videos of the robot solving each task are available at:
http://people.csail.mit.edu/gdk/arsa.html

2A grasping hand prototype is expected to be working shortly.

Figure 2: The uBot-5.

The robot had access to innate navigation and manipula-
tion controllers. Given a target object, the navigation con-
troller first aligned the robot with the wall normal at the ob-
ject’s location, then turned the robot to face the object and
approach it. This guaranteed that the robot reliably arrived
in a good position to manipulate the target object. The uBot
also had controllers that moved its hand to one of seven po-
sitions: withdrawn, extended, and then extended and moved
to the left, right, upwards, downwards, or outwards. Each
of these controlled the position of the hand relative to the
centroid of the target object.

Before starting a navigation, the robot performed a visual
scan of the room to determine the locations of visible ob-
jects. It then executed an orientation controller which turned
it away from the location it was facing and toward its target.
This controller was crucial in safely avoiding walls and was
therefore not learned or included in segmentation. Through-
out the experiment, the robot actively tracked the ARTags
surrounding target objects using its pan/tilt head.

The uBot was given a library of abstractions. Each ab-
straction paired one of the uBot’s motor modalities (body
or hand) with a task object. Abstractions pertaining to the
robot’s hand contained state variables expressing the differ-
ence between its position and centroid of an object. Abstrac-
tions using the robot’s body and a target object contained
state variables expressing the distance from the body to the
object, the distance from the body to the nearest point on
the wall upon which the object was attached, and the angle
between the body and the wall normal vector.

To solve each task, the uBot learned a discrete model
of the task as an MDP. This model allowed the uBot to
plan online using dynamic programming with learning rate
α = 0.1. The value function was initialized optimistically
to zero for unknown state-action pairs, except for when the
robot used acquired skills, when the state-action pairs corre-
sponding to basic manipulation actions were initialized to a
time cost of three hours. This resulted in a robot that always
preferred to use higher-level acquired skills when possible,
but could also make use of lower-level innate controllers
when all other options had been exhausted. The robot re-
ceived a reward of −1 for each second that passed.

A new closed-loop controller was synthesized for each ac-

quired skill by fitting a spline to the solution trajectory to
identify a sequence of relative waypoints. This allowed ro-
bust replay while retaining the ability to learn to improve
each controller using a policy search algorithm if necessary.

The Red Room Tasks
The Red Room Domain consisted of two tasks. We used the
first task as a training task: the uBot learned to solve it by
sequencing its innate controllers and then extracted skills
from the resulting solution trajectories. We then compared
the time the uBot took to initially solve the second task us-
ing its innate controllers against the time required when us-
ing acquired skills.

The First Task The first task consisted of a small room
containing a button and a handle. When the handle was
pulled after the button had been pressed a door in the side
of the room opened, allowing the uBot access to a compart-
ment containing a switch. The goal of the task was to press
the switch. Sensing and control for the objects in the room
was performed using touch sensors, with state tracked and
communicated to the uBot via an MIT Handy Board (Martin
1998). Figure 3 shows a schematic drawing and photographs
of the first task.

Button

Handle

Switch
Door

245 cm

355 cm

Start

Figure 3: The first task in the Red Room Domain.

The state of the first task at time i was described as a tu-
ple si = (ri, pi, hi), where ri was the state of the room, pi

was the position of the robot, and hi was the position of its
hand. The state of the room at time i consists of four state
bits, indicating the state of the button (pressing the button
flipped this bit), the state of the handle (this bit was only
flipped once per episode, and only when the button bit was
set), whether or not the door was open, and whether or not
the switch had been pressed (this bit was also only flipped
once per episode since the episode ended when it was set).
The uBot could find itself at one of five positions: its start po-
sition, in front of the button, in front of the handle, through
the door, and in front of the switch. Each of these positions
was marked in the room using ARTags—a combination of
small and large tags were used to ensure that each position
was visible in the robot’s cameras from all of the relevant

locations in the room. The robot had a navigate action avail-
able to move it to any position visible when it performed
a visual sweep with its head. Thus, the robot could always
move between the button and the switch, but could only
move through the door entrance once the door was open;
only then could it see the switch and move towards it. Fi-
nally, the robot’s hand could be in one of seven positions:
withdrawn (allowing it to execute a navigation action), ex-
tended, and then extended and moved to the left, right, up-
wards, downwards, or outwards. The robot had to be facing
an object to interact with it. In order to actuate the button and
the switch the robot had to extend its hand and then move it
outwards; in order to actuate the handle it had to extend its
hand and then move it downwards.

The Second Task The second Red Room task was similar
to the first: the robot was placed in a room with a group of
manipulable objects and a door. In this case, the robot had
to first push the switch, and then push the button to open the
door. Opening the door hid a button in the second part of the
room. The robot had to navigate to the second part of the
room and pull a lever to close the door again. This revealed
the second button, which it had to press to complete the task.

First Button

Handle

Switch

Door

245 cm

400 cm

Second Button

Start

Figure 4: The second task in the Red Room Domain.

The state of the second task at time i similarly consisted
of five state bits, indicating the state of the switch, the first
button, the handle, the second button and the door. Here, the
uBot may find itself in one of six locations: its start position,
in front of the switch, in front of the first button, through
the door, in front of the handle, and in front of the second
button. Note that this room contained the same object types
as the first task, and so the robot was able to apply its ac-
quired skills to manipulate them. In general object classifi-
cation would require visual pattern matching, but for sim-
plicity we provided object labels.

Results
The uBot’s first task was to sequence its innate controllers
to solve the first Red Room. Since the robot started with no
knowledge of the underlying MDP, it had to learn both how
to interact with each object and in which order interaction

should take place. Figure 5 shows the uBot’s learning curve.
The robot was able to find the optimal controller sequence
after 5 episodes, reducing the time taken to solve the task
from approximately 13 minutes to around 3. This did not in-
clude the time required by hardwired controllers not subject
to learning (e.g., the controller that safely oriented the uBot
from one object to another).

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

Episodes

S
ec

on
ds

Figure 5: The uBot’s learning curve in the first task.

The resulting optimal sequence of controllers were then
used to generate 5 demonstration trajectories for use in CST
(using a 1st order Fourier basis, and CST parameters ex-
pected skill length k = 150, min and max changepoint par-
ticles M = 60 and N = 120, and expected noise variance
parameters σv = 602 and βv = 10−6). The algorithm seg-
mented those trajectories into the same sequence of 10 skills,
and merged all chains into a single chain (using a 5th or-
der Fourier Basis, σv = 5002). An example segmentation is
shown in Figure 6; a description of each skill along with its
relevant abstraction is given in Figure 7.

Figure 6: A trajectory from the learned solution to the first
task, segmented into skills.

CST extracted skills that corresponded to manipulating
objects in the environment, and navigating towards them.
In the navigation case, each controller execution was split
into two separate skills. These skills corresponded exactly
to the two phases of the navigation controller: first, aligning
the robot with the normal of a feature, and second, moving

Abstraction Description
A body-button Align with the button.
B body-button Turn and approach the button.
C hand-button Push the button.
D body-handle Align with the handle.
E body-handle Turn and approach the handle.
F hand-handle Pull the handle.
G body-entrance Align with the entrance.
H body-entrance Turn and drive through the entrance.
I body-switch Approach the switch.
J hand-switch Press the switch.

Figure 7: A brief description of each of the skills extracted
from the trajectory in Figure 6, with selected abstractions.

the robot toward that feature. We do not consider the result-
ing navigation skills further since they are room-specific and
cannot be used in the second task. In the object-manipulation
case, sequences of two controllers were collapsed into a sin-
gle skill: for example, extending the hand and then reducing
the distance between its hand and the button to zero was
collapsed into a single skill which we might label push the
button. We fitted the resulting policies for replay using a sin-
gle demonstrated trajectory, and obtained reliable replay for
all manipulation skills.

Innate Controllers Acquired Skills

300

400

500

600

700

800

900

T
im

e

Figure 8: The time required for the uBot-5 to first complete
the second task, given innate controllers or acquired skills.

Figure 8 shows the time required for the uBot’s first
episode in the second task, given either its original innate
controllers or, additionally, the manipulation skills acquired
in the first Red Room task (again, this does not include
controllers not subject to learning). We performed 8 runs
of each condition. The presence of acquired skills nearly
halved the mean time to completion (from 786.39 seconds
to 409.32 seconds), and this difference is significant (Welch
two-sample t-test, t(13.785) = 8.22, p < 0.001); moreover,
the sampled times for the two conditions do not overlap.3

3Note that one of the runs using skill acquisition is marked as

Related and Future Work
The use of hierarchical learning and control in robots pre-
dates such work in the reinforcement learning community
(Maes and Brooks 1990), and includes research on ap-
proaches to building hierarchies via scheduled learning of
individual skills (Huber, MacDonald, and Grupen 1996;
Huber 2000). However, existing research where the agents
autonomously identify skills to acquire in the process of
solving a larger task has primarily been performed in
small discrete domains. Some research within the field of
learning from demonstration focuses on extracting skills
from demonstration trajectories —for example, Jenkins and
Matarić (2004) segment demonstrated data into motion
primitives and thereby build a motion primitive library. For
a thorough review of the field see Argall et al. (2009).

A promising recent direction involves acquiring skills out-
side of the context of any particular task, by developing
agents that are intrinsically motivated to acquire skills that
may become useful in the future, as opposed to extrinsically
motivated by a particular task (Singh, Barto, and Chentanez
2005; Oudeyer and Kaplan 2007; Hart and Grupen 2011).
This area has focused mainly on the development of heuris-
tics that are able to identify potentially useful skills in ad-
vance, and the design of artificial reward functions that en-
courage the agent to explore efficiently (Singh, Barto, and
Chentanez 2005) or to choose to practice new skills (Stout
and Barto 2010). Though most of the skill acquisition meth-
ods in this area have only been demonstrated on small artifi-
cial domains, some research has focused on skill acquisition
in robots. Soni and Singh (2006) focused on learning and us-
ing macro-actions with pre-designated salient events as sub-
goals on a Sony Aibo robot. More recently, Hart and Grupen
(2011) described a humanoid robot progressing through a
developmental schedule whereby it learned to sequence and
retain a set of controllers to achieve goals designated by an
intrinsic reward mechanism.

An important assumption made here is the availability of
a pre-existing abstraction library. Future work may develop
techniques for feasibly building skill-specific abstractions
from scratch in real-time; alternatively, it may aim to build
an abstraction library from sensorimotor data over a much
longer timescale than that afforded to a single skill.

It is widely recognized that too many skills may make a
problem harder rather than easier. Therefore, another impor-
tant direction for further research is skill management, which
could develop methods for building compact libraries of ac-
quired skills, or for using the contexts in which a skill has
been previously used successfully to restrict the contexts in
which it is likely to be considered in the future.

Finally, future research may address methods for using
acquired skill hierarchies to facilitate planning. The use of
high-level skills is particularly promising here because it
may avoid the need for a low-level model of the robot.

an outlier (with a cross) in Figure 8. During this run, the robot ex-
plored virtually all transitions available in the MDP before finally
finding the solution. This corresponds to near worst-case behavior
using acquired skills; it still requires less time (by about 30 sec-
onds) than the fastest observed run using only innate controllers.

Summary and Conclusions
We have described a mobile robot system that can acquire
skills by learning to solve one problem, and then apply
the resulting skills to improve performance in another. It
is worth considering the implications of these results. Al-
though the uBot started off with the capacity to learn to, for
example, push the button, this was accomplished through
a laborious process of trial-and-error exploration through
many combinations of manipulation actions within a par-
ticular task. However, since this sequence of manipulation
actions happened to be useful in solving a problem, it was
extracted as a single action that can be deployed as a unit—
requiring only a single action selection decision—when the
robot encounters a new problem. Had the uBot attempted
transfer its entire policy from the first task to the second, it
would have performed very poorly. Instead, transfer was af-
fected via the isolation and retention of skills—effectively
policy components—that are suitable for reuse in later tasks.

While some elements of intelligence in robots can be di-
rectly designed, other aspects involve knowledge that can
only be gained by the agent itself or that may change in un-
predictable ways over its lifetime. Although the results pre-
sented in this paper are necessarily limited, they represent a
step toward creating robot systems that display a hallmark of
human intelligence: the ability to use their own experience
to autonomously and incrementally build knowledge struc-
tures that improve their problem-solving abilities over time.

Acknowledgments
We would like to thank the members of the LPR for their
technical assistance. AGB and GDK were supported in part
by the AFOSR under grant FA9550-08-1-0418. GDK was
also supported in part by the AFOSR under grant AOARD-
104135 and the Singapore Ministry of Education under a
grant to the Singapore-MIT International Design Center.
SRK is supported by a NASA GSRP fellowship from John-
son Space Center. RAG was supported by the Office of
Naval Research under MURI award N00014-07-1-0749.

References
Argall, B.; Chernova, S.; Veloso, M.; and Browning, B. 2009. A
survey of robot learning from demonstration. Robotics and Au-
tonomous Systems 57:469–483.
Barto, A., and Mahadevan, S. 2003. Recent advances in hierar-
chical reinforcement learning. Discrete Event Dynamic Systems
13:41–77.
Deegan, P.; Thibodeau, B.; and Grupen, R. 2006. Designing a self-
stabilizing robot for dynamic mobile manipulation. In Proceedings
of the Robotics: Science and Systems Workshop on Manipulation
for Human Environments.
Hart, S., and Grupen, R. 2011. Learning generalizable control pro-
grams. IEEE Transactions on Autonomous Mental Development
3(1). In press.
Huber, M.; MacDonald, W.; and Grupen, R. 1996. A control basis
for multilegged walking. In Proceedings of the 1996 IEEE Confer-
ence on Robotics and Automation, 2988–2993.
Huber, M. 2000. A Hybrid Architecture for Adaptive Robot Con-
trol. Ph.D. Dissertation, Department of Computer Science, Univer-
sity of Massachusetts Amherst.

Jenkins, O., and Matarić, M. 2004. Performance-derived behavior
vocabularies: data-driven acquisition of skills from motion. Inter-
national Journal of Humanoid Robotics 1(2):237–288.
Johns, K., and Taylor, T. 2008. Professional Microsoft Robotics
Developer Studio. Hoboken, New Jersey: Wrox Press.
Jonsson, A., and Barto, A. 2001. Automated state abstraction for
options using the U-Tree algorithm. In Advances in Neural Infor-
mation Processing Systems 13, 1054–1060.
Kato, H., and Billinghurst, M. 1999. Marker tracking and HMD
calibration for a video-based augmented reality conferencing sys-
tem. In Proceedings of the 2nd IEEE and ACM International Work-
shop on Augmented Reality.
Konidaris, G., and Barto, A. 2007. Building portable options: Skill
transfer in reinforcement learning. In Veloso, M., ed., Proceed-
ings of the Twentieth International Joint Conference on Artificial
Intelligence, 895–900.
Konidaris, G., and Barto, A. 2009a. Efficient skill learning us-
ing abstraction selection. In Boutilier, C., ed., Proceedings of the
Twenty First International Joint Conference on Artificial Intelli-
gence, 1107–1112.
Konidaris, G., and Barto, A. 2009b. Skill discovery in continu-
ous reinforcement learning domains using skill chaining. In Ben-
gio, Y.; Schuurmans, D.; Lafferty, J.; Williams, C.; and Culotta,
A., eds., Advances in Neural Information Processing Systems 22,
1015–1023.
Konidaris, G.; Kuindersma, S.; Barto, A.; and Grupen, R. 2010.
Constructing skill trees for reinforcement learning agents from
demonstration trajectories. In Lafferty, J.; Williams, C.; Shawe-
Taylor, J.; Zemel, R.; and Culotta, A., eds., Advances in Neural
Information Processing Systems 23, 1162–1170.
Maes, P., and Brooks, R. 1990. Learning to coordinate behav-
iors. In Proceedings of the American Association of Artificial In-
telligence, 796–802.
Martin, F. 1998. The Handy Board Technical Reference. Cam-
bridge MA: MIT Media Lab.
Mugan, J., and Kuipers, B. 2009. Autonomously learning an ac-
tion hierarchy using a learned qualitative state representation. In
Proceedings of the Twenty First International Joint Conference on
Artificial Intelligence.
Oudeyer, P.-Y., and Kaplan, F. 2007. What is intrinsic motivation?
a typology of computational approaches. Frontiers in Neurobotics
1(6):1–14.
Singh, S.; Barto, A.; and Chentanez, N. 2005. Intrinsically moti-
vated reinforcement learning. In Saul, L.; Weiss, Y.; and Bottou,
L., eds., Advances in Neural Information Processing Systems 17,
1281–1288.
Soni, V., and Singh, S. 2006. Reinforcement learning of hierar-
chical skills on the Sony Aibo robot. In Proceedings of the Fifth
International Conference on Development and Learning.
Stout, A., and Barto, A. 2010. Competence progress intrinsic moti-
vation. In Proceedings of the Ninth IEEE International Conference
on Development and Learning, 257–262.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112(1-2):181–211.
Vigorito, C., and Barto, A. 2010. Intrinsically motivated hierarchi-
cal skill learning in structured environments. IEEE Transactions
on Autonomous Mental Development 2(2).

