
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013

Foresight and Reconsideration in Hierarchical Planning and Execution
Martin Levihn Leslie Pack Kaelbling Tomás Lozano-Pérez Mike Stilman

Abstract— We present a hierarchical planning and execution
architecture that maintains the computational efficiency of hierar-
chical decomposition while improving optimality. It provides mech-
anisms for monitoring the belief state during execution and per-
forming selective replanning to repair poor choices and take advan-
tage of new opportunities. It also provides mechanisms for looking
ahead into future plans to avoid making short-sighted choices. The
effectiveness of this architecture is shown through comparative
experiments in simulation and demonstrated on a real PR2 robot.

I. INTRODUCTION

Our goal is to enable robots to operate in complex environments
for long periods of time with substantial uncertainty in sensing and
action, and fundamental lack of information about the initial state.
A theoretically optimal strategy for such problems is to compute,
offline, a policy that maps histories of observations into actions. This
is computationally entirely intractable in large domains. A more
computationally feasible strategy is interleaved online planning
and execution, in which a partial plan is constructed online, using
an approximate model for efficiency, the first action is executed,
the belief state is updated, and a new plan is constructed. This has
been demonstrated to be an effective approach in medium-sized
discrete and continuous domains [1]. However, in very long-horizon
problems, even finding an approximate plan in terms of primitive
actions becomes computationally intractable.

Previous work [2, 3] introduced a hierarchical strategy for
interleaved online planning and execution, called HPN (Hierarchical
Planning in the Now), that improved computational efficiency
by using a temporal hierarchical decomposition of the planning
problem into many small planning problems.

In this paper we introduce two general concepts and mechanisms
that can be used to improve both efficiency and optimality for
integrated task and motion planning and execution in large domains:
Reconsideration and Foresight. We show that the hierarchical
decomposition introduced in HPN to improve efficiency provides
an opportunity to apply these broader concepts to improve
optimality as well, measured in the cost of actions taken by the
robot. Furthermore, our new techniques allow us to demonstrate
and empirically evaluate the trade-offs between efficiency and
optimality in simulation and on a real robot system.

This work was supported in part by the NSF under Grants IIS-1117325 and
IIS-1017076. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. We also gratefully acknowledge support from
ONR grant N00014-12-1-0143 and ONR MURI grant N00014-09-1-1051, from
AFOSR grant FA2386-10-1-4135 and from the Singapore Ministry of Education
under a grant to the Singapore-MIT International Design Center.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA {lpk,tlp}@csail.mit.edu;
Center for Robotics and Intelligent Machines at the Georgia Institute of Technology,
Atlanta, GA 30332, USA {levihn, mstilman}@gatech.edu.

Fig. 1. Solving a NAMO problem with a PR2. The robot discovers two unknown
obstacles (chairs) and moves them out of the doorway in order to get through.

Consider the following two concepts in the context of both
efficiency (total computational time for all planning subproblems)
and optimality (total execution cost of actions on the robot):
• Reconsideration: Deciding when to replan based on opportunity

for plan improvement and computational cost of replanning.
• Foresight: Leveraging knowledge of future subgoals and beliefs

about future observations to maintain correctness and improve
optimality.

These concepts provide a general framework for understanding
a wide variety of algorithmic strategies for improving efficiency,
including the methods from the original HPN as well as a set of new
methods for improving optimality that are introduced in this paper.

Reconsideration in the original HPN was used to trigger
re-planning and restrict it to a subtree of the hierarchical plan; it
only triggered when the execution system was not able to achieve
the preconditions of an action. This strategy led to computational
efficiency but also to considerably suboptimality due to extraneous
actions. We now observe that reconsideration can also be triggered
to re-plan when new opportunities present themselves that are likely
to improve the efficiency of the overall system.

Foresight in the original HPN applied only locally: within the
planning process for a particular subgoal at a particular level of
abstraction, the backward chaining algorithm computed conditions
characterizing correctness requirements for the later part of the plan,
which were used to constrain choices made during earlier parts
of a plan. This degree of foresight was critical to guarantee plan
correctness and improved computational efficiency by considerably
decreasing backtracking.

In this work, we show that foresight can also be applied more
globally, by taking into account the robot’s intentions for future
action, which are encoded in the hierarchical structure of subgoals
created by the HPN process. Our new system not only ensures that
early action choices do not prevent future success, but also tries
to miminimize the interference between separate subtasks of a plan.

1



This paper describes our new techniques based on the concepts of
reconsideration and foresight and identifies tradeoffs between effi-
ciency and optimality in the context of these categories of reasoning.

II. BHPN

In this section, we present an existing hierarchical planning and
execution architecture, which will provide the basis for new
foresight and reconsideration methods discussed in the next section.

A. Hierarchical planning and execution architecture

The BHPN (Belief HPN) architecture [3] is a hierarchical planning
and execution architecture designed to work in uncertain domains.
It assumes the existence of:
• A state-estimation module which maintains a belief state—a

probability distribution over the states of the world—reflecting
the history of observations and actions made by the robot.

• A set of operator descriptions characterizing the operations that
the robot can do in the world; each operator description has a
set of preconditions and a set of effects, described in terms of
logical predicates that characterize some aspect of the robot’s
belief about the state of the world. Abstracted versions of the
operators, obtained by postponing consideration of some of the
preconditions, are used to construct hierarchical plans.

• A planner that uses the process of pre-image backchaining. It
starts from the goal, which is a description of a set of desirable
states of the world, and works backward. On each step, it
computes the pre-image of the goal under the selected action;
the pre-image is the set of states such that, were the action to
be taken, then the resulting state would be in the goal set. The
pre-image is represented compactly as a logical formula. A call
to the planner, starting in belief state b with goal set γ results
in a list ((−,g0),(ω1,g1),...,(ωn,gn)) where the ωi are (possibly
abstract) operator instances, gn=γ, gi is the pre-image of gi+1

under ωi, and b∈g0. The conditions gi play a critical role in the
execution architecture: gi is the set of states in which the plan
ωi+1,...,ωn can be expected to achieve the goal.
Figure 2 shows the BHPN algorithm. It takes as inputs a current

belief state b, logical goal description γ, and a world (real robot
or simulation) in which actions can be executed. It manages a stack
of plans, which are stored in variable ps; it is initialized to have
a dummy plan, consisting of g0=True and g1=γ, indicating that
it can always be applied and that its overall goal is γ. The procedure
loops until the plan stack is empty, which can happen only when
γ has been achieved.

On each iteration of the algorithm, we examine the plan p that
is on top of the plan stack to see if it is applicable. In the following
sections we will consider a different definition of the applicable
method, but we will begin with a very simple definition of it and
the related method nextStep. In this case, p is applicable in belief
state b if the plan has not reached the end (p.i<p.n) and b is in
the preimage gp.i of the next step that will be executed, which is
step i+1. If p is not applicable, then it is popped off the stack. Note
that the initial plan is always applicable.

If p is applicable, then we determine the next operator ω and sub-
goal γ′ by calling the nextStep method of p. The simplest version
of nextStep ignores the current belief state b and simply returns
the sequentially next step in the plan. If the next operator is abstract
(None is always abstract), it means that its preconditions may not

BHPN(b,γ,world):
1 ps = STACK()
2 ps.push(PLANPlan([(None,True),(None,γ)]))
3 while not ps.empty():
4 p = ps.top()
5 if not p.applicable(b):
6 ps.pop()
7 else
8 (ω,γ′)=p.nextStep(b)
9 if ω.abstract():

10 ps.push(PLAN(γ′,b,p.α.incr(ω)))
11 else
12 obs = world .execute(ω)
13 b.update(ω,obs)
14 RECONSIDER(ps, b)

applicable(p,b):
1 return p.gp.i=γ or (p.i<p.n and b∈p.gp.i)

nextStep(p,b):
1 if not p.gp.i=γ: p.i += 1
2 return (p.ωp.i,p.gp.i)

Fig. 2. Pseudo-code for the BHPN algorithm with reconsideration. In the applicable
and nextStep methods we assume that the plan p has an instance variable i that
is initialized to 0 and used to keep track of the current step for execution of the plan.

yet have been met in full detail, and so we construct a plan to achieve
the subgoal γ′ at a more detailed level of abstraction (p.α.incr(ω))
and push it on the plan stack. Otherwise, ω is a primitive, which is
executed in the world, yielding an observation obs, and the belief
state is updated based on that observation. After every action, we can
(in principle) reconsider the plan; we discuss this in the next section.

It is important to see that a plan pmay be popped off the stack
for two very different reasons: (1) All plan steps have been executed
with their intended results; or (2) Some plan step, when executed,
did not have its intended result. In either case, it is appropriate to
return control to the higher level (the plan deeper in the stack). If
the plan executed successfully, then control will resume at the next
step of the plan at the higher level of abstraction; if it failed to have
the desired effect, then the parent operation will also fail, and so
on all the way to the bottom of the stack, where the initial plan is
expanded again. Later, we consider several extensions to make this
control structure more robust and flexible.

Figure 3 illustrates the nominal behavior of the BHPN algorithm,
as a planning and execution tree. The blue nodes represent goals
or subgoals; in this case, the overall goal, at the root node, is to have
two objects in the cupboard. Goals and subgoals are characterized
by conditions on belief states. The actual planning and execution
tree is considerably more complicated: this example is abstracted
to make it easier to explain its important aspects.

Each outlined box contains a plan. Within a single box, there
are blue and pink nodes. Pink nodes represent operators and blue
nodes subgoals. So, in Plan 1, using an abstract version of the
Place operation, it is determined that, as long as both objects A
and B are movable, a plan consisting of placing A, followed by
placing B will achieve the goal. Note the intermediate subgoal:
∃x.BIn(x,Cupboard)∧BMovable(B). That is the pre-image of



∃ x, y. BIn(x, Cupboard),
BIn(y, Cupboard)

Look(A)

BMovable(A)
BMovable(B)

∃x. BIn(x, Cupboard),
BMovable(B)

∃x, y. BIn(x, Cupboard),
BIn(y, Cupboard)

Place(A, Cupboard) Place(B, Cupboard)

BMovable(A)
BMovable(B)

BHolding(A, G)
BMovable(B)

∃x. BIn(x, Cupboard),
BMovable(B)

Pick(A, G) Place(A, Cupboard)

BMovable(A)
BMovable(B)

BVRelPose(A, Eps1)
BMovable(A)
BMovable(B)

BHolding(A, G)
BMovable(B)

Look(A) Pick(A, G)

BMovable(A)
BMovable(B)

BMovable(A)
BMovable(B)

BClr(MoveSwept)

BMovable(A)
BMovable(B)

RobotNr(PickConf)
BClr(PickSwept)

Clear(MoveSwept) Clear(PickSwept)

BMovable(A)
BMovable(B)

BClr(MoveSwept)
BClr(PickSwept)

BHolding(A, G)
BMovable(B)

Move(PickConf) Pick(A, G)Look(A)

BMovable(A)
BMovable(B)

RobotNr(PickConf)
BClr(PickSwept)

BVRelPose(A, Eps2)

Plan 1

Plan 4

Plan 3

Plan 2

Fig. 3. Illustration of BHPN approach

the goal under the operation of placingB in the cupboard: as long
as some other object is in there, and we additionally placeB, then
the goal will be achieved.

Plan 2 is a plan for achieving the first subgoal in Plan 1, which
consists of picking up object A with grasp G and placing it in
the cupboard. Plan 3 is a plan for coming to hold A in grasp G:
it consists of a primitive Look action (shown in green), which is
intended to achieve the condition BVRelPose(A,Eps1), which
says that we know the relative pose of the robot and object A to
within some tolerance Eps1 . This step ensures that the robot has
a moderately good estimate of the pose of objectA before trying
to plan in detail how to pick it up. Plan 4 provides yet more detail,
ensuring that the volumes of space (called “swept volumes”) that
the robot has to move through are clear, and that, before actually
picking up the object, its pose id known to a tighter tolerance, EPS2.

The tree, as shown, is a snapshot of the BHPN process. Using
the simplest nextStep definition, each plan would be executed
left to right, completely planning for and executing actions to
achieve one subgoal before going on to the next. This results in
a left-to-right depth-first traversal of the tree. If any operation,
primitive or abstract, has a result that is not the expected one, then
it will fail and control will return to the plan above it.
B. Flexible execution of existing plans

The execution architecture described so far is very rigid: if a plan
cannot be executed from left to right, then it is considered to be a
failure. But, in many cases, the plan can be salvaged, and replanning
is limited.

Consider Plan 4. If the move action doesn’t have the expected
result because the robot undershoots its target, for example, then
a reasonable course of action would be to re-execute the move
operation. The same would be true if, upon executing the look
action, it found that the variance on its pose estimate forA was not
sufficiently reduced to satisfy the preconditions for the pick action.

applicable(p,b):

1 return b∈
⋃n−1

i=0 p.gi and b 6∈p.gn

nextStep(p,b):
1 i∗=1+argmaxn−1i=0 b∈p.gi
2 return (p.ωi∗,p.gi∗)

Fig. 4. Pseudo-code for the applicable and nextStep methods that will re-try
the current step if its preconditions still hold.

We can generalize this idea further, to handle both
disappointments, when an action does not have its desired
effect and surprises, when an action actually results in more useful
results than expected. Figure 4 shows revised versions of applicable
and nextStep that re-use a plan as much as possible. We say that
a plan is applicable if any step of the plan is applicable. In other
words, the current belief state b is in the pre-image of one of the
operations, and the final goal has not yet been achieved. Thus, if an
action results in a belief for which there is some action in the plan
that is an appropriate next step, then the plan remains applicable
and is not popped off the plan stack. In the nextStep method, we
select the operation ωi for execution where gi−1 is the “rightmost”
pre-image that contains the current belief state.

In Plan 4, if the robot looks atA and finds that there is actually
a previously unknown object intruding into the swept volume for
the arm to pick the object, it could go back to the plan step that
achieves Clear(PickSwept) and continue execution from there.
If it were to find, though, upon attempting to pick upA that it was,
in fact, bolted to the table, the BMovable(A) condition would
become false. At that point, Plan 4 would be popped off the plan
stack because none of the pre-images contain the current belief
state. The same would be true for plans 3, 2, and 1 in succession.
Replanning would be initiated for the top-level goal, hopefully
finding a different object to place into the cupboard instead ofA.

Another way to be flexible about the use of an existing plan is
to re-order some of the steps, based on information available in
the current belief state. We adopt the peephole optimization method
of [4], which considers all of the plan steps with preconditions that
are currently satisfied and uses a heuristic to decide which order to
execute them in, or whether they are likely to interact very closely,
in which case it will consider them jointly. In Plan 1, the peephole
optimization may decide that it is preferable to put the larger object
into the cupboard first, because both abstract actions are enabled
in the initial belief state.

III. ENHANCING OPTIMALITY

The focus of the existing BHPN has been on correctness and
computational efficiency often at the expense of optimality. In
this section we introduce new mechanisms aimed at enhancing
optimality with limited impact on efficiency.
A. Reconsideration

As we have seen, after an action is executed and the belief state
is updated, it may be that the next step in an existing plan is not
a good choice: it might be impossible to execute, or there might
be better alternative courses of action. Replanning from scratch
after every primitive operation and belief update will ensure that
action choices are as up-to-date as possible. Yet, this would also be
very expensive. In this section, we consider a series of approaches



that are intermediate between attempting to execute an existing plan
as much as possible and replanning at every opportunity. These
methods fall into two categories: flexible execution of plans that
we have already made, and selective replanning. We have already
seen one form of flexible plan execution implemented in the current
BHPN; we now present some novel extensions.

1) Satisfaction of existing goals: We can also take advantage of
serendipity: even though the particular subgoal, γ, that we are trying
to achieve is not yet true, it might be that some subgoal in a more
abstract plan (deeper in the stack) has been satisfied as a result of an
unexpected action outcome or by nature. We can extend the idea of
executing the rightmost executable operation in the plan at the top
of the stack, and instead find the deepest (most abstract) plan in the
stack that has a goal currently being expanded that is different from
the rightmost goal (the final goal of the plan) at the next (more con-
crete) level of the stack. If there is such a plan, then we should begin
execution from the next applicable step in that plan, instead. Lines
1 through 4 in Figure 5 provide pseudocode for doing this, under
the assumption that we are using the definitions in Figure 4 as well.

Suppose that after carefully examining objectA in the last part
of Plan 4, the robot was to find that there are already two objects in
the cupboard, then it would notice that the overall goal has already
been achieved and return directly, rather than continuing to putA
and thenB in the cupboard. This is computationally inexpensive,
with running time on the order of the total number of steps in all
the plans on the plan stack, assuming that computing nextStep for
a given plan requires examining each of its pre-images.

2) Selective replanning: We might also wish to increase the
robot’s degree of responsiveness to change in its beliefs, while still
trying to avoid unnecessary re-computation. In Figure 5, lines 5
through 9, we potentially reconsider each plan in the stack.

We therefore allow plan instances to have an optional trigger
method: triggerReconsideration(p, b). This domain-dependent
function decides whether it might be advantageous to re-generate
a plan for the goal that p was intended to achieve. Such triggers
will be executed at every level after every action, and so care must
be taken to make them computationally light-weight. They are
intended to return true in belief states for which it is likely to be
worthwhile to change plans.

If replanning is triggered, then a new plan p′ is created, with the
same goal and abstraction levels as for plan p, but starting from
belief state b. If p′ is the same as p, or a substring of p (which is
a natural occurrence, since some operations from p will, in general,
have already been executed), then we go on to consider the next
level of the plan stack. However, if p′ is different from p, then the
rest of the plan stack is popped off, p′ is pushed onto it, and the
planning and execution process resumes.

We have experimented with two types of triggers. The first is
detection of major perceptual events, such as newly detected objects,
that overlap with parts of the environment that are relevant to p.
The second is re-evaluation of existing plans in the new belief state,
and detection of a substantial increase in cost. Although it takes
time exponential in the plan length, in general, to find a plan, it
is only linear time to recompute its cost starting in a new state. If
we cache the cost of the plan in the belief state for which it was
constructed, and find that it has become more expensive due to
unexpected changes in the belief, it might warrant replanning to

RECONSIDER(ps,b):
1 for i in 0..len(ps):
2 (ω′,γ′)=psi.nextStep(b)
3 if γ′ 6=psi+1.gpsi+1.n:
4 ps.pop(i..len(ps))
5 if p.triggerReconsideration(b):
6 p′=PLANPlan(p.gp.n,b,p.α)
7 if p′ 6⊆p:
8 ps.pop(i..len(ps))
9 ps.push(p′)

Fig. 5. Pseudo-code for handling reconsideration events. i=0 is the bottom (most
abstract) level of the goal stack.

see if there is a better alternative.
To avoid extraneous computation, we might create a cascade, in

which primitive perceptual events may trigger re-evaluation, which
may trigger replanning, which may trigger the abandonment of
the remaining planning hierarchy and adoption of a new plan. In
our example, in plan 4, the robot might find that in order to clear
the swept volume for picking object A, it would have to move
several additional (previously unseen) objects out of the way. That
information could cause the cost estimate for action of pickingA
in plan 2 and even for placing A in plan 1 to be higher than they
were initially, and trigger replanning that might result in the use of
a different grasp forA. In fact it could cause the planner to choose
an entirely different object to put into the cupboard instead ofA.

If we trigger replanning only when the cost of an existing plan
increases, the robot will not be able to be opportunistic, in the sense
of taking advantage of new opportunities that present themselves.
For instance, it may be that the use of an object, C, was initially dis-
counted because it was believed to be very difficult to pick and place,
because it was in a different part of the room, or highly occluded
by other objects. If, during the course of looking for objectA, the
robot were to notice that C was actually easily reachable, it might
be desirable to use C instead ofA in the plan. In general, detecting
that a plan involving C might be better requires as much time as
replanning so one can, instead, always replan after every action.

B. Foresight

We can both reduce the replanning cost and the operational cost of
taking extra actions by allowing our future intentions, as encoded in
the plan stack, and our future observations, as encoded in the belief
state, to inform choices we make in the present. We now discuss
two new strategies that we have incorporated into BHPN.

a) Constraints from Intentions: The planning problems solved
by PLAN occur in the space of probability distributions over states of
the robot’s world. In general, the world-state space is itself effectively
infinite (or, at least, unbounded finite) dimensionality, with mixed
continuous and discrete dimensions. There are many ways of
grasping an object or picking a specific geometric goal configuration
within a target region. The planner therefore requires methods of se-
lecting concrete variable bindings. We describe the use of generators
in BHPN in detail in [3]. The generators use information in the current
belief state and goal to select one or more reasonable values for
variables. However, this process can be myopic, potentially making
choices that make it more difficult to carry out future parts of the plan.
To make better choices, the planner should be aware of constraints



imposed by the future parts of the plans at every level of abstraction.
This is straightforward to accomplish, structurally. We can simply

pass the entire plan stack into the call to PLAN, replacing line 10
in Figure 2 with

ps.push(PLAN(γ′,b,p.α.incr(ω),ps)) .
For example, when clearing out the swept volume for picking up
A, it might be necessary to place some objects out of the way. The
intention to placeA and thenB into the cupboard could be taken
into account when deciding where to put these other objects, so
that they won’t interfere with the operations of the rest of the plan. 1

b) Predicted Observations: Another form of foresight is to
avoid reconsideration or replanning in the future by taking the robot’s
uncertainty into account when performing geometric planning. For
example, knowing that when the robot gets close to an object and
looks at it, the resulting pose estimate will be drawn from the current
uncertainty distribution, the planner should select paths that are
less likely to be obstructed when further information is gathered. 2

This strategy can improve both efficiency and optimality: efficiency
because replanning is reduced and optimality because the actions
are more likely, in expectation, to be appropriate for the situation.

The mechanisms of reconsideration and foresight described
in this section are applicable to most robot domains, but their
particular instantiation will depend on each domain. Similarly, their
effectiveness will vary among domains. In the following section,
we explore the instantion and effectiveness of our mechanisms in
a challenging domain.

IV. NAVIGATION AMONG UNCERTAIN MOVABLE OBSTACLES

The domain of navigation among movable obstacles (NAMO) [5]
is a simply stated but challenging problem. It requires the robot
to achieve a navigation goal that cannot be reached directly, but
can be reached by moving obstacles out of the way. Previously, we
took advantage of spatial decomposition and backward-chaining
to address these problems tractably [6] and presented the first
humanoid robot that performed a NAMO task [7]. More recently,
NAMO research has focused on unknown [8] and uncertain [9,
10] domains, where [10] used a novel integration of Hierarchical
MDPs and MCTS. While we achieved linear computation for
single-obstacle displacements the policy-based approach required
significant re-computation when initial object parameters proved
inaccurate [11]. We therefore consider the BHPN planning approach
as an alternative to policy generation.

The basic BHPN mechanisms that had previously been used in a
pick-and-place domain were relatively straightforward to apply in the
NAMO domain. We only had to make minor changes in the context
of moving very large objects such as adjusting the path planning and
object placement procedures to better model the arm and the object
being held. In this section, we describe the particular methods that
were used to implement foresight and reconsideration in NAMO.

1It is important to note that while this reasoning improves plan optimality, it is
not required for correctness. During the time BHPN is performing the operation of
placing A in the cupboard, it will, if necessary, move out any objects that are in
the way, whether or not they were placed in the earlier part of the execution.

2This can be achieved by utilizing the previously introduced ε-shadows [3]. The
ε-shadow of an object is defined to be the volume of space that with probability
greater than 1− ε contains all parts of the object. These ε-shadows can now be
treated as soft constraints for a geometric path planner. A heuristic cost penalty as
a function of ε can be applied for each initial intersection with a shadow, biasing
the planner to generate plans more likely to not intersect objects.

Fig. 6. Reconsideration example.

A. Implementation on PR2

We address NAMO as a mobile-manipulation domain in which
a real PR2 robot must manipulate chairs in order to clear its path to
reach a goal, as shown in Figure 1. The robot is given a basic map of
the walls and permanent physical features of the domain, including
some objects that it can use as landmarks for localization, but there
are obstructing chairs that it is unaware of when it begins acting.
It uses a simple object-recognition system operating on RGBD data
from a Kinect sensor to detect tables and chairs in the environment.

Because the robot is real, we must take uncertainty in actions
and observations seriously. We use an unscented Kalman filter to
estimate relative poses among the robot and other objects in the
world as well as a volumetric representation of the space that has
not yet been observed [3]. The planning system will ensure that
any region of space has been observed before the robot moves into
it, that an object is well localized with respect to the robot before it
attempts to pick it up, and that the robot is reasonably well localized
with respect to the map coordinate frame before it moves the base.

The simulation results included in this paper are for a realistic
simulation of the PR2, including simulated point-cloud perception
and control of all degrees of freedom of the robot. It includes grasp
planning, motion planning with an RRT, and view planning: the
same code controls both the robot and the simulator.
B. The value of reconsideration

Exploiting serendipity (Section III-A.1) is the conceptually
simplest optimization mechanism, and does not require any
domain-dependent specification. It occurs most frequently in the
NAMO domain when the robot performs a look action to determine
whether some region of space is clear. In so doing, it may discover
that other regions it has planned to observe in the future have
already been observed in the process.

The selective replanning mechanism (Section III-A.2) requires
domain dependent procedures. In the NAMO domain, we
constructed the basic reconsideration trigger as follows:
1) Trigger the first stage of reconsideration if any new objects were

detected that overlap any paths or placements currently being
considered.

2) For any path that is under reconsideration, plan a path from
the start to the goal, using new information about the domain
(including known obstacles and known free space); if the new
path costs less than the original path (by some fixed amount
to avoid needless switching) then trigger symbolic replanning.
Also, for any object placement that overlaps a new object,
trigger symbolic replanning.

We also experimented with conditions in which each of the
stages of reconsideration were triggered after every action: this is
more computationally costly, but offers the ability to detect new
opportunities that may have arisen to increase optimality.

Figure 6 shows a very simple example of reconsideration. The
robot’s goal is to move to the right end of the volume. As shown in
the first frame, it has not yet observed most of the environment, so



Fig. 7. Behavior with and without considering future goals when selecting
placements of obstacles.

it is shrouded in fog. It makes a plan to move straight through to the
end of the room. Then, as it looks to clear the fog, it finds an obstacle
in its path. The original path and obstacle are shown in gray and ma-
genta in the second frame. The appearance of a new object triggers
reconsideration of the plan. Re-evaluation of moving along the origi-
nal path reveals a much higher cost since the obstacle must be moved
out of the way. Hence, replanning is triggered, resulting in a new path,
shown in cyan, that avoids having to move the obstacle. In contrast,
the original BHPN algorithm would have proceeded by having the
robot move the obstacle out of the initially computed swept volume.

C. The value of foresight

We implemented two foresight mechanisms. The first is motivated
by the insight that, in the NAMO domain, the only decisions that
can make future action significantly more costly are decisions
about where to place objects. Those should be made with as much
information about future intentions as possible. So, the generator
procedures that make geometric choices about where to place objects
when moving them out of the way examine the entire plan stack,
and extract all instances of predicates that constrain some region of
space to be clear. The generator tries, if possible, to find placements
of objects that do not intersect any of these taboo placement regions.

Figure 7 illustrates a domain in which there are two obstacles,
and the robot must reach the end of the hallway. It decomposes
the problem into two parts: clearing the left side of the path to
the goal, and clearing the right side of the path to the goal. In the
first row, we see the behavior without foresight: the orange shapes
are approximate robot volumes indicating the swept region to be
cleared. It is determined that the green box must be moved out of
that volume, and so a pose just past that region is selected for the box,
as shown in the second image of the first row, and the robot places
the box there. While satisfying the current problem of clearing the
left side of the path, this placement is little helpful in achieving the
robots overall goal of reaching the end of the hallway. BHPN does
recover: when it is time to clear the right part of the swept volume,
both objects are successfully moved out and the goal is achieved.
However, such a recovery carries the cost of moving the green box
twice. In the second row, we see the same choice being made with
foresight: the entire swept volume of the robot is treated as a taboo
and, hence, the planner selects the closet at the bottom as a place
for the obstacle, thus avoiding any unnecessary object motions.

BHPN has an existing mechanism for maintaining free-space
connectivity that can also be seen as an example of this more general
form of foresight. It operates under the assumption that the robot
will always be required to move again, after the current sub-plan
is finished, and so attempts to keep it as free as possible to continue.
When selecting the placement of an object, the generator ensures that

Fig. 8. Maintaining connectivity of the free space during pick and place.

Fig. 9. Using possible future observations to inform the choice of plans.

the following paths exist: from the robot’s current configuration to
the configuration for picking the object, with the hand empty; from
the pick configuration to the place configuration, while carrying
the object; and from the place configuration back to the initial
configuration, with the hand empty, and with the object placed in
the target location. These three conditions ensure that the pick and
place operations can be planned in detail and that, after placing the
object, the robot will be in the same connected component of free
space as it was when it started. In the current implementation, this
constraint is always applied; however, there are situations in which
it is important to be able to violate it (e.g., when closing a door
behind you) and it will be a matter for future work to use foresight
mechanisms to determine whether or not to enforce connectivity.

Figure 8 demonstrates this reasoning: there is a relatively small
swept volume from the robot to its goal (shown in the second frame
of the top row), but there is an obstacle in the way. It is a simple
matter to move the object out of the swept volume by dragging
to the left, into the hallway. However, at that point, the robot would
still not be able to reach the goal. Thus, a placement for the object
is generated in the bottom left of the domain, ensuring that the
robot stays connected to its original pose, and is then easily able
to reach the goal. In the second row, the blue swept volume is from
the robot’s configuration to the pick configuration; the red volume
is from the place configuration back to the original configuration.

Figure 9 shows the robot using foresight to take potential
future observations into account. It does so by using the current
belief-state distribution on the poses of obstacles to construct
“probability contours,” which represent locations that might possibly
be obstacles, depending on which observations are perceived. The
robot needs to reach the right side of the domain, and can choose
one of two hallways. Each contains an obstacle, but the pose
uncertainty (shown as a lighter-colored “shadow” around the object)
with respect to the obstacle in the top hallway is larger. The robot



determines that it has a better chance of getting through without
having to move an obstacle if it goes through the lower hallway, even
though the geometric distance is longer, and plans the path shown
in the image on the right . Once it approaches and achieves a better
estimate of the object location, the robot finds that it can actually
take a shorter path; the bottom frame shows the original path in gray
and the new one in green. In order to do this last optimization, the
robot must be triggering full reconsideration after a new estimate of
object location, and not relying on an increase in the estimated cost
of the existing plan to trigger replanning. This type of optimization
has been used in previous work; we mention it here to illustrate
the ease of integrating such improvements in our framework.

V. EXPERIMENTS

We compared three different versions of BHPN on different
simulated domains, illustrated in Figure 10. The domains have
varying number of objects, object locations as well as start and goal
configurations. All the algorithms include the foresight mechanisms
described earlier; they differ in their approach to reconsideration.
• Original BHPN: does not do any reconsideration, only replanning

on failure.
• Aggressive replanning: replans after every action.
• Selective replanning: triggers replanning when new objects are

discovered and when a new path to the goal is shorter than the
existing plan by one meter.

For each algorithm in each domain, we measured the total simulated
execution time (including all planning, simulated perception, etc.).
The time column is the ratio relative to the baseline (original BHPN)
times: domain 1 = 1265s, domain 2 = 1020s, domain 3 = 850s,
average = 1045s. While these times also capture computations
necessary for primitive action executions such as RRT calls for
move actions, they do not include the time it takes to physically
execute these actions by the robot. Given that the physcial execution
time is typically highly system and parameter depended we instead
report the number of primitive action executions. For the NAMO
domain these actions are pick, place, move, and look. The results
are summarized in Table I.

The results show that aggressive replanning substantially
increases the runtime of our simulations compared to the original
BHPN. This is due to the fact that the current plan is discarded
after every action execution, independed of the outcome or obtained
observations. However, as aggressive replanning always generates
plans in the current belief state, it drastically reduces the number
of actions that have to be executed by the robot.

The selective replanning approach attempts to merge the benefits
of the original BHPN and aggressive replanning by avoiding intensive
replannings as well as action executions. And indeed we observe that
selective replanning improves execution optimality over the original
BHPN and efficiency over aggressive replanning. The computational
efficiency of selective replanning is also improved over the original
BPHN as less computation for primitive actions is necessary. These
results support the concepts introduced in this the paper.

To verify the applicability to very large domains we modeled our
office space in simulation (Figure 10). The domain covers 100m2

and contains 50 objects. The robot had to navigate from the top
left cubicle to the bottom right cubicle with prior knowledge of only
the permanent obstacles. The robot was successfully able to reach

its goal configuration while only requiring two object displacements.
The right most visualization in Figure 10 shows the robots final
belief state.

We also ran experiments on a real PR2, shown in Figure 1,
to demonstrate the feasibility of this approach on a real robot.
Again, the robot had no prior knowledge of the movable obstacles.
Additionally it had substantial motion and perception uncertainty.
The underlying BHPN mechanisms for robust planning and execution
under uncertainty integrate effectively with reconsideration. Fre-
quently using look actions at known landmarks to reduce positional
uncertainty, the robot was successfully able to reach a goal configura-
tion outside its current free-space region by manipulating two objects.
Videos of all reported experiments as well as additional runs can
be found at http://lis.csail.mit.edu/bhpnNAMO.

VI. RELATED WORK

There are three major threads of work related to foresight and
reconsideration: one in the robotic planning literature and one in
the philosophical literature of practical reasoning and the artificial
intelligence literature of symbolic planning. There is a great deal
of work related to integrated task and motion planning, planning
under uncertainty and hierarchical planning, but we do not attempt
to cover that here, see [3] for a review.

One class of algorithms specifically addresses mobile robot
navigation with perfect sensing and actuation, but with fundamental
initial uncertainty about the poses of obstacles in its workspace.
These algorithms operate in a discretized state and action space,
and employ methods based onA∗ search. They assume that space
is free unless it is known to be blocked, and replan when the
current plan is made infeasible by newly discovered obstacles. Early
versions [12] used a relatively straightforward planning strategy;
more modern versions employ important algorithmic techniques to
ensure computational efficiency and limit the frequency and scope
of replanning. [13–15]. Likhachev et al. [16] integrate these methods
with anytime algorithms, providing a replanning architecture that can
deliver a feasible but sub-optimal plan quickly, but that converges to
the optimal solution given more running time. In all of these methods,
replanning is either triggered when the current plan is infeasible, or
carried out as an ongoing computational process, at the highest rate
possible, in response to new information gathered in real time. A
successful urban autonomous vehicle [17] integrates dynamic replan-
ning, which is triggered by plan invalidation due to a variety of envi-
ronmental conditions. The work mentioned so far has concentrated
on basic navigation, which is a relatively low-dimensional problem.
Wu et al. [8] apply the ideas of cost-based reconsideration to the
NAMO problem, which has dimensionality related to the number of
obstacles in the domain. The PPCP method [18], like the methods
described here, attempts to improve both efficiency and optimality
by taking uncertainty into account when making initial plans.

Early work in symbolic planning for robots addressed issues
of execution monitoring, replanning on failure, and exploiting
serendipity on the Shakey [19] and Hilaire [20] robots. Recent
related work in general symbolic planning solves problems with
deterministic actions, but partial initial knowledge and partial
sensing, by solving a sequence of classical planning problems [21,
22], with replanning triggered when the current plan becomes invalid.
Similar methods can be applied in stochastic domains, through

http://lis.csail.mit.edu/bhpnNAMO


Fig. 10. Domains: The first three are used in the experiments; the robot start and goal are in orange and red, respectively. The fourth domain was used to test scalability.
In all cases the robot has no initial knowledge of the objects in the environment; the gray areas in the last domain show areas that were never explored. The motion and
perception uncertainty were chosen to be very low for all simulated domains.

Original BHPN Aggressive Replanning Selective Replanning
Domain picks/places looks moves time picks/places looks moves time picks/places looks moves time

1 4.75 4.25 12 1 2.1 3.2 7.8 1.01 2 3 6.8 0.57
2 3 5 11.8 1 2 6.3 11.1 1.66 2 6.3 10.7 1.06
3 3 6 10.3 1 1 5.8 8 1.40 1 5 7 0.89

Avg 3.6 5.0 11.4 1 1.7 5.1 9 1.33 1.7 4.8 8.1 0.81

TABLE I
RESULTS BASED ON 137 RUNS (WE PERFORMED MULTIPLE RUNS FOR EACH DOMAIN AND ALGORITHM). BEST RESULTS IN BOLD.

determinization [23]. An alternative approach is to delay decision-
making until information is gathered, rather than attempting to create
conditional or conformant plans in advance [24]. Fritz and McIl-
raith [25] consider symbolic planning in dynamic domains, including
the ability to respond to changes that happen during planning.

Bratman [26] formulated a theory of rational action, which
emphasizes the role of commitment to plans as a way of
decreasing the burden of reasoning, and that addresses the problem
reconsideration and the trade-offs it presents between efficiency
and optimality. This theory was expanded into a computational
architecture, IRMA [27–29] with the same high-level motivations
as our work; our system can be seen as an instance of that general
architecture in the domain of robotics.

Little or none of the previous work on replanning addresses many
important aspects of robot planning and execution addressed here, in-
cluding manipulation in high-dimensional continuous configuration
spaces, control of sensing, and uncertainty in sensing action.

VII. CONCLUSION

In this paper we presented a hierarchical planning and execution
architecture that incorporates concepts frequently used by humans:
Reconsideration and Foresight. We showed that these concepts can
be used to improve both efficiency and optimality for integrated
task and motion planning and execution in large and challenging
domains. The architecture enabled a real PR2 robot to solve NAMO
domains with state, action and sensing uncertainty.

REFERENCES

[1] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space planning
assuming maximum likelihood observations,” in RSS, 2010.

[2] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning
in the now,” in ICRA, 2011.

[3] ——, “Integrated task and motion planning in belief space,” International
Journal of Robotics Research, 2013.

[4] D. Hadfield-Menell, L. P. Kaelbling, and T. Lozano-Perez, “Optimization in the
now: Dynamic peephole optimization for hierarchical planning,” in ICRA, 2013.

[5] M. Stilman and J. Kuffner, “Navigation among movable obstacles: Real-time
reasoning in complex environments,” in Humanoids, 2004.

[6] ——, “Planning among movable obstacles with artificial constraints,” in
Workshop on the Algorithmic Foundations of Robotics (WAFR), July 2006.

[7] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning and executing
navigation among movable obstacles,” in IROS, 2006.

[8] H.-N. Wu, M. Levihn, and M. Stilman, “Navigation among movable obstacles
in unknown environments,” in IROS, 2010.

[9] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba, “Working with
movable obstacles using on-line environment perception reconstruction using
active sensing and color range sensor,” in IROS, 2010.

[10] M. Levihn, J. Scholz, and M. Stilman, “Hierarchical decision theoretic
planning for navigation among movable obstacles,” in WAFR, June 2012.

[11] ——, “Planning with movable obstacles in continuous environments with
uncertain dynamics,” in ICRA, 2013.

[12] A. Zelinsky, “A mobile robot exploration algorithm,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 6, 1992.

[13] A. Stentz, “The d∗ algorithm for real-time planning of optimal traverses.”
DTIC Document, Tech. Rep., 1994.

[14] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, 2005.

[15] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search
in AI,” AI Magazine, vol. 25, no. 2, p. 99, 2004.

[16] M. Lihachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime
search in dynamic graphs,” Artificial Inteliigence, vol. 172, no. 14, 2008.

[17] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous driving in urban
environments: Boss and the urban challenge,” Journal of Field Robotics,
vol. 25, no. 8, pp. 425–466, 2008.

[18] M. Likhachev and A. Stentz, “Probabilistic planning with clear preferences on
missing information,” Artificial Intelligence, vol. 173, no. 5, pp. 696–721, 2009.

[19] R. E. Fikes, P. E. Hart, and N. J. Nilsson, “Learning and executing generalized
robot plans,” Artificial Intelligence, vol. 3, 1972.

[20] R. P. Sobek and R. G. Chatila, “Integrated planning and execution control
for an autonomous mobile robot,” Artificial Intelligence in Engineering, vol. 3,
no. 2, 1988.

[21] B. Bonet and H. Geffner, “Planning under partial observability by classical
replanning: Theory and experiments,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2011.

[22] R. I. Brafman and G. Shani, “Replanning in domains with partial information
and sensing actions,” Journal of Artificial Intelligence Research, vol. 45, 2012.

[23] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for probabilistic
planning,” in ICAPS, 2007.

[24] M. Eppe and D. Dietrich, “Interleaving planning and plan execution with
incomplete knowledge in the event calculus,” in STAIRS, 2012.

[25] C. Fritz and S. A. McIlraith, “Generating optimal plans in highly-dynamic
domains,” in UAI, 2009.

[26] M. Bratman, Intention, Plans, and Practical Reason, ser. The David Hume
series. CSLI Publications, 1987.

[27] M. E. Bratman, D. J. Israel, and M. E. Pollack, “Plans and resource-bounded
practical reasoning,” Computational Intelligence, vol. 4, pp. 349–355, 1988.

[28] M. E. Pollack and M. Ringuette, “Introducing the tileworld: Experimentally
evaluating agent architectures,” in AAAI, 1990, pp. 183–189.

[29] J. F. Horty and M. E. Pollack, “Evaluating new options in the context of
existing plans,” Artificial Intelligence, vol. 127, 2001.


	Introduction
	bhpn
	Hierarchical planning and execution architecture
	Flexible execution of existing plans

	Enhancing optimality
	Reconsideration
	Satisfaction of existing goals
	Selective replanning

	Foresight

	Navigation among uncertain movable obstacles
	Implementation on PR2
	The value of reconsideration
	The value of foresight

	Experiments
	Related work
	Conclusion
	References

