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Abstract

We apply decision theoretic techniques to construct non-
player characters that are able to assist a human player in col-
laborative games. The method is based on solving Markov
decision processes, which can be difficult when the game
state is described by many variables. To scale to more com-
plex games, the method allows decomposition of a game task
into subtasks, each of which can be modelled by a Markov
decision process. Intention recognition is used to infer the
subtask that the human is currently performing, allowing the
helper to assist the human in performing the correct task. Ex-
periments show that the method can be effective, giving near-
human level performance in helping a human in a collabora-
tive game.

Introduction

Traditionally, the behaviour of Non-Player Characters
(NPCs) in games is hand-crafted by programmers using
techniques such as Hierarchical Finite State Machines (HF-
SMs) and Behavior Trees (Champandard 2007). These tech-
niques sometimes suffer from poor behavior in scenarios
that have not been anticipated by the programmer during
game construction. In contrast, techniques such as Hier-
archical Task Networks (HTNs) or Goal-Oriented Action
Planner (GOAP) (Orkin 2004) specify goals for the NPCs
and use planning techniques to search for appropriate ac-
tions, alleviating some of the difficulties of having to antici-
pate all possible scenarios.

In this paper, we study the problem of creating NPCs that
are able to help players play collaborative games. The main
difficulties in creating NPC helpers are to understand the in-
tention of the human player and to work out how to assist
the player. Given the successes of planning approaches to
simplifying game creation, we examine the application of
planning techniques to the collaborative NPC creation prob-
lem. In particular, we extend a decision-theoretic framework
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for assistance used in (Fern and Tadepalli 2010) to make it
appropriate for game construction.

The framework in (Fern and Tadepalli 2010) assumes that
the computer agent needs to help the human complete an un-
known task, where the task is modeled as a Markov decision
process (MDP) (Bellman 1957). The use of MDPs provide
several advantages such as the ability to model noisy human
actions and stochastic environments. Furthermore, it allows
the human player to be modelled as a noisy utility maximiza-
tion agent where the player is more likely to select actions
that has high utility for successfully completing the task. Fi-
nally, the formulation allows the use of Bayesian inference
for intention recognition and expected utility maximization
in order to select the best assistive action.

Unfortunately, direct application of this approach to
games is limited by the size of the MDP model, which grows
exponentially with the number of characters in a game. To
deal with this problem, we extend the framework to allow
decomposition of a task into subtasks, where each subtask
has manageable complexity. Instead of inferring the task
that the human is trying to achieve, we use intention recog-
nition to infer the current subtask and track the player’s in-
tention as the intended subtask changes through time.

For games that can be decomposed into sufficiently small
subtasks, the resulting system can be run very efficiently in
real time. We perform experiments on a simple collaborative
game and demonstrate that the technique gives competitive
performance compared to an expert human playing as the
assistant.

Scalable Decision Theoretic Framework

We will use the following simple game as a running exam-
ple, as well as for the experiments on the effectiveness of
the framework. In this game, called Collaborative Ghost-
buster, the assistant (illustrated as a dog) has to help the
human kill several ghosts in a maze-like environment. A
ghost will run away from the human or assistant when they
are within its vision limit, otherwise it will move randomly.
Since ghosts can only be shot by the human player, the dog’s



role is strictly to round them up. The game is shown in Fig-
ure 1. Note that collaboration is often truly required in this
game - without surrounding a ghost with both players in or-
der to cut off its escape paths, ghost capturing can be quite
difficult.

Figure 1: A typical level of Collaborative Ghostbuster. The
protagonists, Shepherd and Dog in the bottom right corner,
need to kill all three ghosts to pass the level.

Markov Decision Processes

We first describe a Markov decision process and illustrate
it with a Collaborative Ghostbuster game that has a single
ghost.
A Markov decision process is described by a tuple
(S,A,T,R) in which
e S is a finite set of game states. In single ghost Collabora-
tive Ghostbuster, the state consists of the positions of the
human player, the assistant and the ghost.

e A is a finite set of actions available to the players; each
action a € A could be a compound action of both players.
If each of the human player and the assistant has 4 moves
(north, south, east and west), A would consist of the 16
possible combination of both players’ moves.

o T,(s,s')=P(s;+1 =5|s; = s,a; = a) is the probability that
action a in state s at time ¢ will lead to state s at time
t+ 1. The human and assistant move deterministically in
Collaborative Ghostbuster but the ghost may move to a
random position if there are no agents near it.

e R,(s,s') is the immediate reward received after the state
transition from s to s’ triggered by action a. In Collabo-
rative Ghostbuster, a non-zero reward is given only if the
ghost is killed in that move.

The aim of solving an MDP is to obtain a pol-
icy m that maximizes the expected cumulative reward
Y20 Y Ra(s,)(s1,5041) where 0 < y < 1 is the discount fac-
tor.

Value Iteration. An MDP can be effectively solved us-
ing a simple algorithm proposed by Bellman in 1957 (Bell-
man 1957). The algorithm maintains a value function V (s),
where s is a state, and iteratively updates the value function
using the equation

Viri(s) = max (Z,Ta(S,s’)(Ra(&S') + W,(s/))> )
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This algorithm is guaranteed to converge to the optimal
value function V*(s), which gives the expected cumulative
reward of running the optimal policy from state s.

The optimal value function V* can be used to construct
the optimal actions by taking action a* in state s such that
a* = argmax, {Y¢ T,(s,s")V*(s')}. The optimal Q-function
is constructed from V* as follows:

Q' (s,a) = Z/‘,Ta(m’)(Ra(s,S’) +1V(s").

The function Q*(s,a) denotes the maximum expected long-
term reward of an action a when executed in state s instead
of just telling how valuable a state is, as does V*.

Intractability. One key issue that hinders MDPs from be-
ing widely used in real-life planning tasks is the large state
space size (usually exponential in the number of state vari-
ables) that is often required to model realistic problems.

Typically in game domains, a state needs to capture all es-
sential aspects of the current configuration and may contain
a large number of state variables. For instance, in a Col-
laborative Ghostbuster game with a maze of size m (number
of valid positions) consisting of a player, an assistant and
n ghosts, the set of states is of size 0(m"+2), which grows
exponentially with the number of ghosts.

Subtasks

To handle the exponentially large state space, we decompose
a task into smaller subtasks and use intention recognition to
track the current subtask that the player is trying to complete.

Figure 2: Task decomposition in Collaborative Ghostbuster.

In Collaborative Ghostbuster, each subtask is the task of
catching a single ghost, as shown in Figure 2. The MDP for
a subtask consists of only two players and a ghost and hence
has manageable complexity.



Human Model of Action Selection In order to assist ef-
fectively, the Al agent must know how the human is going to
act. Without this knowledge, it is almost impossible for the
Al to provide any help. We assume that the human is mostly
rational and use the Q-function to model the likely human
actions.

Specifically, we assume

P(ahumun |Wi7 Si) = o.My Q; (Six@human-aar)

ey
where « is the normalizing constant, w; represents subtask i
and s; is the state in subtask /. Note that we assume that the
human player knows the best response from the Al sidekick
and plays his part in choosing the action that matches the
most valued action pair. However, the human action selec-
tion can be noisy, as modelled by Equation (1).

Intention Recognition and Tracking

We use a probabilistic state machine to model the subtasks
for intention recognition and tracking. At each time in-
stance, the player is likely to continue on the subtask that
he or she is currently pursuing. However, there is a small
probability that the player may decide to switch subtasks.
This is illustrated in Figure 3, where we model a human
player who tends to stick to his chosen sub-goal, choosing
to solve the current subtask 80% of the times and switching
to other sub-tasks 20% of the times. The transition probabil-
ity distributions of the nodes need not be homogeneous, as
the human player could be more interested in solving some
specific subtask right after another subtask. For example, if
the ghosts need to be captured in a particular order, this con-
straint can be encoded in the state machine. The model also
allows the human to switch back and forth from one subtask
to another during the course of the game, modelling change
of mind.

Figure 3: A probabilistic state machine, modeling the tran-
sitions between subtasks.

Belief Representation and Update The belief at time ¢,
denoted B;(w;|6;), where 6; is the game history, is the con-
ditional probability of that the human is performing subtask
i. The belief update operator takes B;_j(w;|6,_1) as input
and carries out two updating steps.

First, we obtain the next subtask belief distribution, tak-
ing into account the probabilistic state machine model for
subtask transition T'(w; — w;)

B, (wi|6—1) = ZT(Wj — wi)Bi_1(wj|6-1)
J

@
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where T'(w; — w;) is the switching probability from subtask
J to subtask i.

Next, we compute the posterior belief distribution using
Bayesian update, after observing the human action a and
subtask state s;,; at time ¢, as follows:

B (wila; = a,s;,6;—1) = .B;(wi|6,_1).P(a; = a|w,s;;)
3)
where o is a normalizing constant. Absorbing current hu-
man action a and current state into 6,_; gives us the game
history 6; at time 7.

Complexity This component is run in real time, and thus
its complexity dictates how responsive our Al is. We are go-
ing to show that it is at most O(k?), with k being the number
of subtasks.

The first update step as depicted in Equation 2 is executed
for all subtasks, thus of complexity O(k?).

The second update step as of Equation 3 requires the com-
putation of P(a; = a|wj,s;) (Equation 1), which takes O(|A|)
with A being the set of compound actions. Since Equation 3
is applied for all subtasks, that sums up to O(k|A|) for this
second step.

In total, the complexity of our real-time Intention Recog-
nition component is O(k? +k|A|), which will be dominated
by the first term O(k?) if the action set is fixed.

Decision-theoretic Action Selection

Given a belief distribution on the players targeted subtasks
as well as knowledge to act collaboratively optimally on
each of the subtasks, the agent chooses the action that max-
imizes its expected reward.

a* = argmax, {ZBt (wi|9,)Qi(s§7a)}

CAPIR: Collaborative Action Planner with
Intention Recognition

We implement the scalable decision theoretic framework
as a toolkit for implementing collaborative games, called
Collaborative Action Planner with Intention Recognition
(CAPIR).

CAPIR’s Architecture

Each game level in CAPIR is represented by a GameWorld
object, which consists of two Players and multiple SubWorld
objects, each of which contains only the elements required
for a subtask (Figure 4). The game objective is typically to
interact with these NPCs in such a way that gives the play-
ers the most points in the shortest given time. The players
are given points in major events such as successfully killing
a monster-type NPC or saving a civilian-type NPC — these
typically form the subtasks.

Each character in the game, be it the NPC or the protago-
nist, is defined in a class of its own, capable of executing
multiple actions and possessing none or many properties.
Besides movable NPCs, immobile items, such as doors or
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Figure 4: GameWorld’s components.

shovels, are specified by the class SpecialLocation. Game-
World maintains and updates an internal game state that cap-
tures the properties of all objects.

At the planning stage, for each SubWorld, an MDP is gen-
erated and a collaboratively optimal action policy is accord-
ingly computed (Figure 5). These policies are used by the Al
assistant at runtime to determine the most appropriate action
to carry out, from a decision-theoretic viewpoint.

Experiment and Analysis

In order to evaluate the performance of our Al system, we
conducted a human experiment using Collaborative Ghost-
busters. We chose five levels (see Appendix) with roughly
increasing state space size and game play complexity to as-
sess how the technique can scale with respect to these di-
mensions.

The participants were requested to play five levels of the
game as Shepherd twice, each time with a helping Dog con-
trolled by either Al or a member of our team, the so-called
human expert in playing the game. The identity of the dog’s
controller was randomized and hidden from the participants.
After each level, the participants were asked to compare
the assistant’s performance between two trials in terms of
usefulness, without knowing who controlled the assistant at
which turn.

In this set of experiments, the player’s aim is to kill three
ghosts in a maze, with the help of the assistant dog. The
ghosts stochastically! run away from any protagonists if they
are 4 steps away. At any point of time, the protagonists could
move to an adjacent free grid square or shoot; however, the
ghosts only take damage from the ghost-buster if he is 3
steps away. This condition forces the players to collaborate
in order to win the game. In fact, when we try the game with
non-collaborative dog models such as random movement,
the result purely relies on chance and could go on until the
time limit (300 steps) runs out, as the human player hope-
lessly chases ghosts around obstacles while the dog is doing

I The ghosts run away 90% of the times and perform some ran-
dom actions in the remaining 10%.
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Figure 5: CAPIR’s action planning process. (a) Offline sub-
task Planning, (b) in-game action selection using Intention
Recognition.

some nonsense at a corner. Oftentimes the game ends when
ghosts walk themselves into dead-end corners.

The twenty participants are all graduate students at our
school, seven of whom rarely play games, ten once to twice
a week, and three more often.

When we match the answers back to respective con-
trollers, the comparison results take on one of three possible
values, being Al assistant performing “better”’, “worse” or
“indistinguishable” to the human counterpart. The Al assis-
tant is given a score of 1 for a “better”, O for an “indistin-
guishable” and -1 for a “worse” evaluation.

Qualitative evaluation For simpler levels 1, 2 and 3, our
Al was rated to be better or equally good more than 50%
the times. For level 4, our Al rarely got the rating of being
indistinguishable, though still managed to get a fairly com-
petitive performance. Subsequently, we realized that in this
particular level, the map layout is confusing for the dog to
infer the human’s intention; there is a trajectory along which
the human player’s movement could appear to aim at any
one of three ghosts. In that case, the dog’s initial subtask be-
lief plays a crucial role in determining which ghost it thinks
the human is targeting. Since the dog’s belief is always ini-
tialized to a uniform distribution, that causes the confusion.
If the human player decides to move on a different path, the
Al dog is able to efficiently assist him, thus getting good rat-
ings instead. In level 5, our Al gets good ratings only for
less than one third of the times, but if we count “indistin-
guishable” ratings as satisfactory, the overall percentage of



positive ratings exceeds 50%.
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Figure 6: Qualitative comparison between CAPIR’s Al as-
sistant and human expert. The y-axis denotes the number of
ratings.
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Figure 7: Average time, with standard error of the mean as
error bars, taken to finish each level when the partner is Al
or human. The y-axis denotes the number of game turns.

Quantitative evaluation Besides qualitative evaluation,
we also recorded the time taken for participants to finish
each level (Figure 7). Intuitively, a well-cooperative pair
of players should be able to complete Collaborative Ghost-
buster’s levels in shorter time.

Similar to our qualitative result, in levels 1, 2 and 3, the
Al controlled dog is able to perform at near-human levels in
terms of game completion time. Level 4, which takes the
Al dog and human player more time on average and with
higher fluctuation, is known to cause confusion to the Al
assistant’s initial inference of the human’s intention and it
takes a number of game turns before the Al realizes the true
target, whereas our human expert is quicker in closing down
on the intended ghost. Level 5, larger and with more escape
points for the ghosts but less ambiguous, takes the protago-
nist pair (Al, human) only 4.3% more on average completion
time.

Related Work

Since plan recognition was identified as a problem on its
own right in 1978 (Schmidt, Sridharan, and Goodson 1978),
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there have been various efforts to solve its variant in differ-
ent domains. In the context of modern game Al research,
Bayesian-based plan recognition has been inspected using
different techniques such as Input Output Hidden Markov
Models (Gold 2010), Plan Networks (Orkin and Roy 2007),
text pattern-matching (Mateas and Stern 2007), n-gram and
Bayesian networks (Mott, Lee, and Lester 2006) and dy-
namic Bayesian networks (Albrecht, Zukerman, and Nichol-
son 1998). As far as we know, our work is the first to use
a combination of precomputed MDP action policies and on-
line Bayesian belief update to solve the same problem in a
collaborative game setting.

Related to our work in the collaborative setting is the work
reported by Fern and Tadepalli (Fern and Tadepalli 2010)
who proposed a decision-theoretic framework of assistance.
There are however several fundamental differences between
their targeted problem and ours. Firstly, they assume the task
can be finished by the main subject without any help from
the Al assistant. This is not the case in our game, which
presents many scenarios in which the effort from one lone
player would amount to nothing and a good collaboration
is necessary to close down on the enemies. Secondly, they
assume a stationary human intention model, i.e. the human
only has one goal in mind from the start to the end of one
episode, and it is the assistant’s task to identify this sole in-
tention. In contrary, our engine allows for a more dynamic
human intention model and does not impose a restriction on
the freedom of the human player to change his mind mid
way through the game. This helps ensure our AI’s robust-
ness when inferring the human partner’s intention.

In a separate effort that also uses MDP as the game Al
backbone, Tan and Cheng (Tan and Cheng 2010) model the
game experience as an abstracted MDP - POMDP couple.
The MDP models the game world’s dynamics; its solution
establishes the optimal action policy that is used as the Al
agent’s base behaviors. The POMDP models the human play
style; its solution provides the best abstract action policy
given the human play style. The actions resulting from the
two components are then merged; reinforcement learning is
applied to choose an integrated action that has performed
best thus far. This approach attempts to adapt to different
human play styles to improve the Al agent’s performance. In
contrast, our work introduces the multi-subtask model with
intention recognition to directly tackle the intractability is-
sue of the game world’s dynamics.

Conclusions

We describe a scalable decision theoretic approach for con-
structing collaborative games, using MDPs as subtasks and
intention recognition to infer the subtask that the player is
targeting at any time. Experiments show that the method is
effective, giving near human-level performance.

In the future, we also plan to evaluate the system in more
familiar commercial settings, using state-of-the-art game
platforms such as UDK or Unity. These full-fledged sys-
tems offer development of more realistic games but at the
same time introduce game environments that are much more
complex to plan. While experimenting with Collaborative



Ghostbuster, we have observed that even though Value Iter- Appendix
ation is a simple naive approach, in most cases, it suffices, Game levels used for our experiments.
converging in reasonable time. The more serious issue is the
state space size, as tabular representation of the states, re-
ward and transition matrices takes much longer to construct.
We plan to tackle this limitation in future by using function
approximators in place of tabular representation.
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