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Abstract This paper presents a decision-theoretic approach Vision and range sensors can estimate the pose of an ob-
to problems that require accurate placement of a robot reject, but there is still residual uncertainty, especiallyen
ative to an object of known shape, such as grasping for asmportant features of the object are partially occludea-Ta
sembly or tool use. The decision process is applied to a robdite sensing, combined with proprioception, can give hyghl
hand with tactile sensors, to localize the object on a tatde a reliable information about object position. However, ieis
ultimately achieve a target placement by selecting among pensive to map out an entire object with tactile sensing, so
parameterized set of grasping and information-gatheraigt we want to use the information requirements of the task to
jectories. The process is demonstrated in simulation and adrive the sensing.
areal robot. This work has been previously presented in [19, Decision theory frames problems of action selection when
20,17]. the true world state is unknown, providing a principled way
to trade off the cost of performing information-gatheriieg a
tions against the costs of performing inappropriate astion
in the world. A decision-theoretic controller is constreatt
from two components: state estimation and action selection
Thestate estimatomaintains aelief statewhich is a prob-
1 Introduction ability distribution over the underlying, but not directhp-
servable, states of the world. Each time an observatiom(suc
Our goal is to develop a general-purpose strategy for taskas a contact sensor reading) is made, the belief state is up-
driven manipulation of objects when there is uncertaintyab dated to incorporate the new information; each time an ac-
the relative pose of the robot and the objects. This strategtjon is taken, the belief state is updated to reflect possible
applies torelative placemenproblems, which require the changes in the world state due to the action. @&bgon se-
robot to achieve accurate placement with respect to a targksictioncomponent considers the current belief state and de-
object whose position is not accurately known. Placementides whether the state has been estimated sufficiently accu
problems include grasping (placing the robot relative to arfately to execute a final goal-achieving action and terneinat
object to be grasped), insertions (placing an object thetrob or whether additional observations should be made. If addi-
is holding relative to another object), and other fine-motio tional observations are to be made it chooses an action based
tasks. In this paper, we focus on grasping at a specified pose its potential for increasing the likelihood of success.

Keywords grasping- planning under uncertainty
POMDPs- manipulation robustness

on a known object. In the general case, optimal action selection is computa-
tionally intractable. In some cases, sensing actions can be
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of the primitive action space. Such a fine-grained discaetiz 2 Related work
tion of the space presents two problems: first, there is & larg
branching factor in the choice of actions; second, the horiOur work fits within the general paradigm of motion plan-
zon (number of “steps” that must be made before the goaling under both sensing and control uncertainty. This prob-
is reached) is quite long, requiring significant lookahead i lem has been addressed in non-probabilistic formulations
planning to select an appropriate action. (for example, [25,32,23]) and in probabilistic formulat®
Our strategy will be to generate, off-line, a relatively (for example, [24]). Several previous approaches have used
small set ofworld-relative trajectorie§WRTs). AWRT isa  probabilistic state estimation to represent uncertaimg a
parameterized trajectory: it consists of a sequence okCartintegrate observational information in manipulation prob
sian poses for the robot's end-effector, expressed relatiems [29,14]. Hsiao et al. [18] frame the decision-making
to an estimated pose of the object to be grasped. Also offeroblem as a partially observable Markov decision process
line, we characterize each WRT's effectiveness in terms ofnd solve it near-optimally, but can only address small prob
achieving the goal and gaining information. Then, duringlems. Cameron et al. [7] take a hypothesis-testing approach
the on-line execution phase, we will use this informationapplied to simple probes of a two-dimensional object.
together with the continually updated belief state, to&ele Using tactile sensing to recognize and/or locate objects
and execute appropriate trajectories. One way to think ofias a long history [27,3,12,1], yet tactile sensing is used
these trajectories is as temporally extended “macro ation less often in robot manipulation than vision or range sens-
This approach has a relatively small branching factor, anihg. One possible reason is efficiency. Most work on tac-
results in effective goal-directed action even with onlyeon tile sensing has focused on recognizing/localizing oljact
step lookahead. a task-independent manner and can be unnecessarily slow.
We consider several approximate decision procedure§ur goal is to integrate tactile sensing with the manipula-
based on WRTSs. In the simplest case, we have a single WRTion task, both in that the sensing arises from task-oréénte
which would succeed as a terminal action if it were paramemotions and that the goal is to sense just enough to enable
terized with the correct object pose. On every step, we exesuccess on the task.
cute that WRT, parameterized by the object pose that is most There are two paradigms for tactile recognition/localmat
likely in the current belief state. The procedure is terrteda  One obtains dense data, for example by surface scanning [2,
when the estimated likelihood of success is high enougl8]; the other uses sparse data directly via “contact pfdhés
and the WRT is executed one last time (if the goal condi-31]. Within the probe paradigm, there has been substantial
tion is not already satisfied). A single WRT is not alwayswork on “active” probing, choosing motions that best dis-
enough to guarantee that the uncertainty will be reduced suambiguate among possible objects or poses [11,31]. How-
ficiently, so we augment the set of WRTs with trajectoriesever, these probing motions have not typically been inte-
designed expressly with the goal of gathering informatiorgrated into the goals of an overall manipulation task. Is thi
and/or re-orienting the object so it will be easier to intera paper, we use task-directed motions as primary probes, re-
with. Finally, we consider an extension to lookahead searclsorting to explicit information-gathering motions only &rh
allowing the selection of an initial WRT because of its abil-necessary.
ity to gain information that will enable a subsequent WRT  Our work is related to the idea of “active localization”
to be more effective, even though the initial WRT does nobf Erickson et al. [13]. Their goal is a plan to localize a
substantially reduce uncertainty in the dimensions that arrobot in a known map from the expected contacts that re-
relevant to actual achievement of the goal. We show thagult from “move-until-contact” commands. They maintain a
these procedures are expected to terminate with a corregélief state and use entropy as a heuristic for picking among
answer, under assumptions about the informativeness of olctions. One key difference is that we employ world-retativ
servations and the degree to which actions affect the state gajectories and on-line belief updates to adjust to os-lin
the world. outcomes, rather than planning off-line for a fixed action se
The use of WRT's in these decision procedures allowguence.
us to limit the set of actions that need to be considered to a A related class of problems is one where there is uncer-
small set. However, during lookahead search, we also neeginty in the outcomes of actions, but the uncertainty is im-
to consider all possible observations that result from eachediately resolved through observations. Alterovitz g4l
action. To keep the computational burden manageable, wsonstruct and solve such an MDP model for guiding non-
developed a method for clustering observations into a verfiolonomic needles. There has been a great deal of recent
small, but useful, set. work on generalizations of the motion planning problem that
We demonstrate the effectiveness of the resulting detake positional uncertainty and the potential for reduding
cision procedures both in simulation and in a real roboticvia observations into account and plan trajectories thnoug
grasping application. the space that will maximize the probability of success or
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but for simplicity, we use a multinomial distribution over a
uniform discretization of¥. This is our belief statd; b(s)
is the probability of state in distributionb.

The robot is a Barrett Arm and Hand, and the space of
possible actions is enormous, if viewed as a space of tra-
jectories or velocity commands. Thus, we use actiar)s (
drawn from a small set of WRTSs, as introduced above and
described below. The pre-determined set of WRTs will, in
general, include a trajectory that is intended to carry out
the target grasp, as well as additional trajectories that ar
designed to be useful for gaining information and for re-
positioning the object.

When the robot has executed a WRT from the starting
pose through termination, an observatioyi¢ composed of:
the path the robot took through joint-angle space, estithate
position and normal of the contact for each finger, obtained
from 6-axis force-torque sensors on each of the three finger
Fig. 1 Goal grasps for all experimental objects except the powitr dr tips, and readings from binary contact sensors on the palm
and hand.

related other objectives (e.g., [30, 16, 8,26]). Burns €fiGdl
have a different model, in which the system selectively n=.;ake3 2 Stat timai
observations to reduce uncertainty during planning, bait th™" ate estimation

resulting plan is executed open-loop. After taking a new actiow in belief stateh, with underlying

statess, and making observatian the new belief stat& =

3 Action Selection SE(b, a, 0) with underlying states’ is defined by
Pr(o|s’, Pr(s'|s, a)b
We will start by framing the problem of placement underSE(b, a,0)(s") = r(ols a)P%;brS |5, )b(s) . (1)

uncertainty decision-theoretically, describe stratefie se-
lecting sensing actions and for terminating the sensing@ha The first factor in the numerator of Eq. 1 is an element of
and then characterize some theoretical properties of thegkee observation modeF (o|s’, a), that specifies the proba-
strategies. bility of making an observation after arriving in states’

For concreteness, the rest of the paper discusses the prdiy- using actiona, and the second factor is an element of
lem of grasping an object using a pre-specified grasp (athe state transition modeR(s'|s, a), that specifies a proba-
shown in Figure 1), when there is uncertainty about the posility distribution over the resulting staté, given an initial
tion of the object with respect to the robot, but itis impotta states and actioru. The denominator is determined by the
to keep in mind that the basic formulation is more broadlyconstraint that the elements @fmust sum to 1.
applicable.

3.3 World-relative trajectories
3.1 Problem formulation

A world-relative trajectory(WRT) is a function that maps
A grasp specification(s, consists of a set of relative poses a world configurationv € WV into a sequence of Cartesian
for the hand and object, any of which is a successful grasgposes for the robot’s end effector. In the simple case inwhic
The object is modeled as a 3D polygonal mesh; it is asw is the pose of an object, a world-relative trajectory cah jus
sumed to be positioned on a horizontal table with knowrbe a sequence of end-effector poses in the object’s frame.
z coordinate, resting on a known stable face. There are thrégiven a WRT+ and a world configuration, the sequence
degrees of pose uncertainty; y, 6. We call this space of of hand poses(w) can be converted via inverse kinematics
object poses$V. (including redundancy resolution) into a sequence of via-

A non-contact system (such as vision) generates an inpoints for the arm in joint-angle space. So, if we knew

tial probability distribution ovefV; the sensing and estima- exactly and had a valid (collision-free and reachable) WRT
tion process will refine this distribution over time. The-dis for it, we could move the robot through the hand poses in
tribution will, in general, be multi-modal; it could be repr  7(w) and reach the desired end-point configuration of the
sented with various non-parametric or mixture distribugio  arm with respect to the object for that WRT. The first point
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on every trajectory will be the same “home” pose, in a fixedStep 2. Obtain observation;,; and update the belief state.
robot-relative frame, and the robot will begin each trajegt
execution by moving back to the home pasge

In general, we won’'t knowv exactly, but we will have
to choose a single to use in calculating-(w). Let @(b)
be the world statev for which b(w) is maximized; it is
the most likely state. We can execut@i (b)), and have the
highest probability of reaching the desired terminal config
uration according to our current belief state. We comman
the robot to follow the trajectory by executiggarded move
commands to egch waypoint in the sequence, term.inatin ting 7 (w), written p(r* (w), b), is an expectation of the
early if a contact is sensed. An early contact (or reachiag th . AR
end of the trajectory with no contact) results in an observal—OSS taken with respect to belief distribution

We should select the) that minimizesp(7*(w), b) to

tion that can be used to update the belief state. In additionarametrize the final grasp; that is the action that is optima
to the collision point, we obtain further contact obsermwas b grasp;

) X ) in the expected-loss sense. In practice, it can be expensive
by carefully closing each finger until contact when any col- .
lision is sensed to evaluatey over the whole spacé’, so we commit to exe-

cuting actionr* (w(b)). Our termination condition is that the
risk of this action be less than some risk thresholth sec-
tion 3.5, we describe conditions under which this process
requires a finite number of samples, in expectation, to ter-

A . o . - minate. It must be the case that each new grasping attempt
n optimal behavior in this problem is a decision procedure _ ) . .
ields information that ultimately decreases the risk.

that specifies which action to take in reaction to every posy
sible belief state. We can assign a cost to taking actiortk, an
then seek a decision procedure that minimizes the expecte4.2 Multiple WRTs
cost of the robot’s behavior, taking into account both th& co
of executing actions for the purpose of gaining informationit may be that repeatedly executing will not give suffi-
and the cost of grasping the object incorrectly (includingcient information to achieve the goal criterion. If the gizal
failing to grasp it at all). This problem is a POMDP [21], and to pick up a long object in the middle, repeated grasping will
can be computationally very difficult to solve in the generalnot give information about the object’s displacement along
case. It requires time and space exponential in the numbés long axis. Thus, it is necessary to touch additional sur-
of actions and observations which, even if discretized, aréaces with the explicit purpose of gaining information. It
enormous. may also be that the goal WRT is not executable: the ob-
We present two approximate, but efficient approachefect’s handle, for example, may be out of reach of the robot,
to this problem. The resulting behaviors are sub-optimalin which case the robot must first grasp the object using a
in general. However, we seek to understand conditions thalifferent grasp and re-orient it. Therefore, we will getigra
guarantee finite convergence to a desired grasp with highave available a set of WRTSs.

Step 3.Terminate when a criterion ohis met, grasp the
object usingr* (w (b)) (if the hand is not already grasping at
the neww (b)), and pick it up.

The termination criterion depends on the expected loss
of attempting to grasp based on the current belief state. Our
(!joss function for executing a final grasp(w) and attempt-
ing to pick up the object is 0 if*(w) results in a goal

rasp and 1 otherwise. The expected loss;igk;, of exe-

3.4 Decision procedures

probability. Given a set of possible WRTs;, each of which has ex-
ecution cost;, the decision procedure udaste-lookahead
3.4.1 Single WRT searchin an attempt to minimize the total cost of informa-

tion gathering actions required to achieve the goal cdteri
The simplest decision procedure assumes that we have a sin-

gle WRT, 7", which, when executed with respect to the truestep 1.Construct a search tree whose layers alternate be-
object posev”, results in a grasp i, the set of goal grasps. tween action choices of the robot and stochastic outcome
Letting b; be thebelief stateat time ¢, that is, Pr(W = “choices” of the environment. The root node is the current
wloy ...0¢,a1 ... ar), the distribution over possible object pelief state,b. It branches on the choice of action and
poses given the history of observations and actions, the dghen on the possible observationsThe node reached from
cision procedure is to: b via actiona and observatiow is a new belief staté’ =
SE(b, a,0). This process can be carried out to any depth;
Step 1.Find the maximuna posterioriprobability (MAP)  Figure 2 shows parts of a depth-2 tree.
posew(b) = arg max,, b(w) and execute*(w(b)). Thatis, For computational simplicity, the only actions consid-
to execute the grasping trajectory as if the object weresat itered in belief staté are 7;(w(b)), for eachr; € 7. We
most likely location. consider each possible WRT only with respect to the world
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Q Step 4. Terminate whemy (b) < ¢ after having grasped the
‘k object usingr*, and pick it up. Otherwise, go to step 1.
In most situations, when re-positioning the object is not

af ap a3 necessary, it is sufficient tq sgt search ddpthz 1, that
11 2 2 is, to select the WRT that W_|II, in _expectatlon, lead to_a be-
< expectation > lief state that has the least risk with respect to executieg t
o2 o2 nominal grasp trajectory. However, as we illustrate experi
mentally in section 5, looking deeper can improve the rate
“.‘.“b at which the termination criterion is reached. It is sometm
the case that an initial action, although it does not itseif r
duce the risk significantly (because it reduces uncertainty

in a dimension that is not important for the ultimate grasp),
+ * * makes it possible to execute a subsequent action in a way
exectatlon exectatlon exectatlon . g . . X .
that significantly improves its information-gatheringesff
tiveness. Ag goes to infinity, this process will choose opti-
mal actions [9]. However, we find experimentally that in our

Pe Po Po Po Po Po Po Po Po application, increasing beyond 2 yields no advantage.
In many information-gathering domains, the objective
Fig. 2 Parts of a depth-2 search tree and associated value coipputat functionissubmodulain the set of observations. This means
that subsequent observations do not offer as much incremen-
tal value as early observations. Krause and Guestrin [22]
state that is the most ||ke|y i The observation space is ac- have shown that when this property hOldS, a greedy obser-
tually ContinUOUS; section 4.4.1 discusses the disciaiza vation Strategy, which 0n|y looks ahead one step in p|Ck|ng
process. observations, is within a constant factor of optimal. How-
We are interested i’ (b), which is the expected cost ever, our domain does not have that property: it can happen
of executing actions, starting in belief stdteuntil reach-  that, even though the risk is nearly independent of uncer-
ing a belief state for whiclp,(b), the probability of having  tainty in thez dimension, that first localizing an objectin
a wrong grasp (one not within the desired goal region) inmakes it much more efficient to localizejnthus, the initial
belief stateb, is less thar). We use the tree to compute a observation may have less risk-reduction than a subsequent
finite-horizon approximation of (b) at a givenb, based on  pbservation.
backward induction. The value at the leaves is approximated
as the risk of terminating and using the goal grasp in that be-
lief State:‘/o(b) = po (b) Then, we Compute 3.5 Termination and correctness

We would like to understand how these decision procedures
V,(b) = min [Z Pr(o | b, 7;(b))Uy(SE(b, 75,0), )| are likely to perform, depending on properties of the domain
J to which we apply them. There are two important questions:
Will the procedure terminate in finite time? When it termi-

where nates, what is the likelihood that it will have selected alfina
: . action that meets the goal criterion? The answer depends on
Uy, (b, ) {pO(b) if 7= T andpo(b) < 4, the informativeness of the observations and on the degree to
Vn-1(b) + ¢ otherwise which the actions change the pose of the target object.

The functionU captures the fact that if the belief state meets3 5.1 Single WRT with object fixed

the termination criteria, then the procedure terminates an

there is no remaining action cost. If it does not, then thene begin by assuming that the object’s pose does not change
expected cost is as defined Byfor the belief resulting from  during the sensing process, that the loss is zero if and bnly i
the action taken, plus the cost of the additional action. the goal WRT is executed with respect to the true underlying
state, and that we have only a single WRT.

In the standard statistics problem of hypothesis testing
with two hypotheses and a single observation action, the se-
quential decision process depends on the ratio of the prob-
abilities of the two hypotheses in the posterior distribnti
Step 3.0btain observation;, 1, and update the belief state. When the probability ratio goes outside of a fixed interval,

Step 2.Select the WRT; that minimizes the expected value
of V at the next step and execute it with respeab{d).
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then the sampling procedure is terminated and a hypothesiequencer = ao,...,an Wheren;(a) of the trials ina

is selected. This procedure was shown by Wald [33] to terare of actiont*(w;), the probability that the decision pro-
minate with a guaranteed risk after a finite number of trialscedure will not have terminated is a constant factor times
as long as the observation distribution is almost surelyh(wi (p_'k mle) (p;k @ will be sufficient to focus
probability one) different, conditioned on the hypothesis ! "

) ! _ . on the number of trialspy(a), of 7% (wy) (which we will
This result is extended to the case of multiple discrete bbreviate as actio).

h);]por:hesels in the M-?ry(j?qtjent!al F;mbf?b”;.ty{ar'o thF_'I%, By a similar argument to the termination of the MSPRT,
WI ¢ hls aiso %Eara{: ee t(') egT”t”%et?‘ ernni ely ma:ny we can argue that any action other than actionill be ex-
als whenever the observation distributions are aimostsure ponentially unlikely to continue to be selected during an ex

different for each hypothesis [5]. These results hold wheth ecution. So, very quickly, action will predominate. The

the obs.er.vation space is -discrete or continuous, quev.eart’rgument is as follows: any hypothegighat is currently
?huart(:i(iaf?(lasrg:t E‘)(;gglcfr?r]ngi\t/;?taersefl;%ngt]h:hgﬂszzflr—\ Se(z[cl;lr? gs’t;nmore likely than hypothesig will be selected, but because
because each time the belief state is updated, the MAP wor %"“ < 1, itwill drive down the likelihood ofj with respect

' k exponentially quickly, and therefore eventually not be

state is likely to change, and so the WRT is executed with re- o o
selected. This will happen for each hypothegig k, un-
spect to a different hypothesis about the object’s pose. PP ypothesis

til hypothesisk is selected. In case the likelihood of soghe
Define the observation probability distribution for action yp "

. h | lied to hvpothesized Idrises up abové, then actionj will be selected, and it will
a = 7"(w) (the goal grasp app 1ed to hypothesized World yyive the likelihood ofj back down exponentially quickly.
statew;) when the true world state is; to be

The statistics literature provides arguments that proba-

fi0) =Pr(O =0 | W = wy, A = 7"(w)) bility ratio tests can be configured (by choosing termimatio
criteria appropriately) to minimize total risk (when a cisst

and theexpected informativenes$ an actionr™(w;) tothe  assessed for each sensing action). In our case, it is guaran-

distinction between statgsandk to be: teed that the risk of the final action is less than the maximum

tolerable riskf whenever the procedure terminates.

fHo)
Il =Eq ’ = [ /fHo)r/ fL(0) d
ik B\ fio) /o fy0)y filo) do 3.5.2 Goal sets

A Clearly sufficient condition for termination is tha.t, for The goa| sety may be such that executin-g(w) has 0 risk
all pairs of world statesv;, wy, for all wy, Ij, # 1;that  in a whole set of world states, not just the true state; for
is, that no matter how we parametrize our WRT, the obselexample, we may be indifferent about the orientation of a
vation distribution that it generates will be different@ss  yound can when it is grasped. In such a case, the require-
each pair of possible world stateg, wy. This satisfies the  ments from formula 2 can be weakened. L&t be the
conditions for termination of the MSPRT. Of course, thisset ofw € T such that the grasp resulting from executing
won't be true in general. i, is a pose that is spatially not- 7+ () is in G. Then, it is sufficient for termination that for
overlapping with bothw; andw;, then no matter whether g ; ¢ W\W¢ and for allk € W pjk < landl¥, < 1;

. . . . ' J !

w; Or w; is true, the probability of observimp contacis 1 that is, that the actions are discriminative between godl an
(or high) when the robot attempts to grasp the object as if ihon-goals, but need not be discriminative within those sets.
were atuw.

If wy is the true state of the world, we can plausibly 3 5 3 opservations can move the object
assume that, for all world statgs# k:

Ijk <1 and Ifk <1 ) It is more generally the case that the ok.)servation.actiams. ca
change the state of the world, by moving the object as it is

What this means is that grasping as if the object were abeing sensed. If the information gained by each observation

pose; provides information that differentiateisfrom the  update compensates sufficiently for any additional entropy

true hypothesig; and that grasping as if the object were atin the belief state introduced by the transition updatehsuc

the true posé provides information that differentiates pose thatPr(w;)/ Pr(ws) does not increase, in expectation, then

k from all other possible poses. This is, of course, not truéhe decision procedure will have a finite expected duration

for many objects; if it is not, then the single-WRT processdespite the object movement.

will not terminate and we need to use multiple WRTSs.

It is important to see that taking uninformative actions3.5.4 Multiple WRTs

is never destructive to the estimation process: it is sinaply

no-op. So, when the information ratios in (2) are less thaWe must increase the set of WRTs when the requirements

1, we can apply the MSPRT theorem as follows: In anyfrom (2) are not satisfied for*. Given a set of WRTY, it
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must be that, for any pair of world statgse W\W; and  trajectories become candidate WRTSs, which were then eval-
k € Wg, there exists some € 7 such thatIﬁT < land uated on the basis of their kinematic robustness, theinpote
some (not necessarily the same or differentg 7 such tial to gain information, and their tendency to fail by hiti
that[j’?,j < 1, where we have extended the definitionfddb  the object with a sensorless part of the hand.

depend orr in the obvious way. We also added an additional information-gathering WRT
We need to perform lookahead search when the execinat simply sweeps horizontally across the workspace,fwhic

tion of any single WRT is insufficient to yield an immediate js yseful for initially locating the object when there is hig
decrease in risk. We can treat lengtsequences of the orig- yncertainty. The implicit goal in creating a set of WRTSs is to
inal actions as a new set of “macro” actions. If these macr@ayisfy the termination requirements of the sequentiai-dec
actions, in combination, satisfy the requirements on infor gg, procedure by ensuring that, for any two possible poses
mativeness, then the procedure will terminate and generagg the object, there is a WRT (or a short sequence of them)
correct answers with high probability. whose observation distribution distinguishes betweemthe

In the case where the workspace is expected to be cluttered,

we might wish, in addition, to generate multiple WRTSs for
4 Implementation gaining the same information, which would allow the pro-

cess to succeed even when some WRTSs are infeasible due to
We implemented this method with a 7-DOF Barrett Arm andpossible collisions.

Hand, both in simulation (using ODE to simulate the physics : .
Wi I te t t that try to ch th
of the world) and on an actual robot. The hand has ATI © can aiso execuiie frajeciories that fry fo cnange the

. ) . %ctual state of the world, rather than merely trying to reduc
Nanol7 6-axis force/torque sensors at the fingertips, an L : .
uncertainty in the belief state. If all of our goal-achiayin

zlth]spildee;) 'Snuargccezn;?f;g:gseig\/:r:jn?h;heallrr]:'de (and Somfarajectories are kinematically infeasibledrib), for instance,
i 9 paim. _we may wish to reorient the object so that at least one of
To apply the described framework, we needed to f'”‘ﬁem becomes feasible. To do so, we add a WRT that at-

an appropriate set of WRTSs, and to define observation ant%mpts to grasp the object (using a grasp that does not neces-

transmqn models. In add_mon, because of the size of the s§ rily satisfy the goal conditions) and then rotates thectbj
of possible raw observations and the fact that the Iookahea{,}g{:i[i

hb h I ible ob i devel C{er successfully running to completion. In our implemen-
search branches on all possible Observations, We developgg ion, all reorientation WRTs simply grasp the object from
a method for clustering observations into a very small, bu{

he top, about the object center, and rotate by the desired
useful, set. angle

4.1 WRTs

We used WRTs of three different types, for each target: _ _
4.2 Belief state representation and update
— the goal WRT*, that grasps the object correctly if ex-

ecuted with respect to the correct world state, We represent the belief state as a multinomial distribution

— information WRTSs, that attempt to contact non-goal SUr-gver a three-dimensional grid of cells, with they, and

faces of the object and that sweep through the space {9, dinates discretized into 31, 31, and 25 cells, respec-
make an initial contact when uncertainty is high, and ey A cell w comprises a set of actual poses. To handle
— re-orientation WRTS that use a grasp from above {0 rog,is correctly in the transition and observation models, we

tate th(_a objec_t about |ts_center of mass to make the go%hould integrate over poses within which is computation-
WRT kinematically feasible. ally difficult. We instead treat celb as if it were the pose in

The goal WRTSs were generated through demonstration (b{€ center, which we call theanonical pos@nd write asu.
moving the robot and recording object-relative waypoints)  The belief-state update operation is, in the worst case,
Some of the information WRTs were also generated thiguadratic in the size of the state space; but in our case the
way; others were constructed automatically. transition distribution is very sparse, so there are a bednd

Automatic generation of WRTs was done by finding hanchumber of states’ such thafr(s’|s, a) is non-zero, which
positions that place the fingers on nearly parallel pairs ofmakes the complexity ultimately linear in the size of the
object surfaces, using the OpenRAVE motion planning sysstate space instead. Furthermore, we are assuming that the
tem [10] to find a collision-free trajectory from a starting belief state is also quite sparse (due to initial sensorminfo
pose to that hand position, and then expressing the trajemation), so the complexity is further reduced considerably
tory in object-relative Cartesian coordinates. The ré@sglt making this operation straightforward to compute online.
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4.3 Observations The scale of this value will be considerably different from
the actual probability, but it can be normalized in the Helie
In general, a WRT is executed in two phases: the arm ispdate.
moved through the specified trajectory until a contactis fel ~ No contact: When the robot observes no contact with
anywhere on the hand or until the trajectory completes; thethe object, we assume that there was, in fact, no contact; so
the three fingers are closed, each one terminating when e consider only trajectorieg* in which no contact would
feels a contact or when it is fully closed. Each of these foubccur. The value ofy* that is most likely, then, is the non-
motions (arm and three fingers) is treated as generating alliding trajectory that is as close to the observeas pos-
observation tuple{¢, ¢, ), where¢ is the observed pose sible.
of the robot at termination of the WRT based on the robot’s  Letting d* (), w) be the depth of the deepest point of
proprioceptive sensors, is a vector of readings from the collision between) and the object at pose, assuming that
contact sensors, angis a representation of the 'swept path’, the nearest collision-free trajectory is at distadtéy, w)
that is, the volume of space through which the robot thinkgrom «, and assuming that the likelihood of an observed tra-
it moved (based on proprioception) during the course of exjectory is described by a Gaussian on its distance from the
ecuting the WRT. actual trajectory, we have

Pr(¢, None, v | w, 1) = G(d" (¢, w); 0,07) = Py(,w)

whereg is the Gaussian density function anﬁ is a vari-
For the purpose of belief-state update, we must specify aance parameter. Although this approximation is efficient to

4.3.1 Observation model

observation model, which is a probability distribution compute, it can be inaccurate: there are situations in which
the collision depth is small, but the distance between the

Pr(O = (¢,c, ) | W =w, A =Ti(w;)) . sensed trajectory and the nearest non-colliding trajgdsor
quite large.

The size and complexity of the underlying state and ob-" contact: The observation probability, in the case of an
servation spaces makes the modeling quite difficult. Fetatsilopserved contact, is the probability that as the robot exe-
ity we make several assumptions: cutes commanded trajectory, that it will sense no contact

— There are no actual contacts that are not noticed or faldP Until¢, and then that it will sense the contactse ap-
triggering of the contact sensors. proximate the maximum of a product as a product of the

— The information gained from each part of the robot (arm Maxima.

fingers) is independent given the world state and actionpr((b’ e, | w, ) & max Pr(¢* | w, 7e) Pr(¢, ¢ | *, w, 7.)
— The swept path information is independent from the po- L

sition and contact information. ~ Pr([], w) max Pr(¢,c| ¢*,w)
— The contact information at different contact points is in-

dependent. where|v | is the swept path, minus a short segment at the

end, andy* is the final pose of)*.
In order to connect the observations to an underlying world  The fingertips have 6-axis force/torque sensors that are
state, it is necessary to reason about the (unobserved) truged to estimate the position and orientation of contaots, s
trajectory,)* that the robot took. Letting, stand for the each contact can be written as the pgio, c), n; (¢, c), rep-
commanded trajectory, we can write the observation probaesenting the location and normal of contacfo do a care-
bilities Pr(¢, ¢, | w, 7.) as ful job of estimating the probability of the contact, we waul
have to consider each pogé, or possibly each face of the
/ Pr(v* | w, ) Pr(é, ¢ | 4%, w,7) Pr(s | 4% w, 7o, d) . objegt, tq find the most likely contact. Instead_, as a fast ap-
. proximation, we assume that the sensor reading was caused
(3) by contact with the closest object fagg,, to/;(¢), assum-
ing the object is at pose. This choice maximizes the prob-
The robot is driven by a servo control loop that cauges ability of the location, but not necessarily the normal. The
the observed trajectory, to traek, the commanded trajec- final model is
tory, quite closely, so we can assume that, in the last ter " 9
¥ i 7(1 (or, a prezx thereof, terminated @} and that it has "Pr(6,c,0 | w,me) = Pr(|0) w)G(d1i(8), £);0,07) -
probability 1. This integral is too difficult to evaluate,chso G(dn(ni(¢), f*):0,07)
we approximate it by the maximum: whered; (p, f) is the Euclidean distance from pojnto face
f andd,(n, f) is the angle between the vectorand the

Pr(¢,c,¢ |w,7c) = max Pr(¢” [w, 7e) Pr(¢, ¢ | ¥7, w,7e) - normal to facef, ando? ando? are variance parameters.
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We model the fingertip position error with a standard  Figure 3 shows th&. (w, e) function for a WRT7 and
deviation of 0.5 cm, and the fingertip normals with a stan-a space of 3 world configurations, and how it is determined.
dard deviation of 30 degrees. Each contact pad on the reBach row corresponds to a different true pasey, ¢) of the
of the hand is a thin rectangle, approximately 2-3 cm orobject in the world {), which is drawn in blue. Each col-

a side, consisting of two raised metal plates separated hymn corresponds to a different estimated pose of the object
small patches of very light foam (placed in notches cut in(e), which is drawn in red. On the diagonals, the true and
the raised metal plates), that sense when the metal platestimated poses are the same, so the figures lie on top of one
touch. While they are very sensitive to light contacts, theyanother. The estimated posdetermines the trajectorye)
do not provide an estimate of contact location on the padhat the robot will follow (in this case, our robot is a point
Thus, we model the location of a pad contact as the centeobot inz, y). The trajectories are shown in black. Each one
of the contact pad, with a standard deviation of 1 cm, andtarts from the same home pose, shown in green, and then
we model the normal as the pad’s surface normal, with anoves to a sequence of waypoints that are defined relative
standard deviation of 90 degrees. to the estimated pose of the object. Yellow circles indicate
situations in which the robot will make contact with the ob-
ject. It happens on each of the diagonal elements, because
4.4 Computing the observation model the nominal trajectory makes contact with the object. In the
) ) ) o elements in the bottom-left part of the figure, there is a con-
Computing the observation model requires predicting the, .+ hetween the robot and the actual object during the exe-
sensory conditions (e.g., finger contacts) that can resuttf ¢, ,4ion of the trajectory, before it would have been expected
executing a given WRT in a given state. In an off-line pro-i he estimated pose had been the true one. In the elements
cess, for.each WRT, we construc.t a repre_s.entatlon of the the upper right part of the figure, the trajectory termésat
observation function{2, (w, e), which specified the nom- iuh ng contact. In all cases, the observation gives inferma

inal observation tuple, ¢, «) described earlier. Observa- (i, anout the object's true location, which is used to updat
tion functions are indexed by an actual world configurationy,» estimated pose.

w and an estimated world configuratienspecifying what

would happen if(e) were executed in world; that is, if Computing an entry of these matrices requires simulat-

the robot acted as if the world were in configuratiogmwhen N9 a_trajgctory forward from a start!ng ropot pose, and cal-
culating if and when it contacts objects in the world, and,

in fact it was in configuratiom. In the case of a single ob- it d what the nominal sensory readings will be in that
ject with a canonical support surface on a table, the space 0es, what Ihé nominal sensory readings € a

of w ande is characterized by thér, y, #) coordinates of S'r:l:i?t'lon'f:—:r'f 'Sriigsic:]m?;“c c::innputatl?nnt]ha:‘t carr; pe done
the object (although the approach can also be applied mof@ rey Of-ling, relieving the on-liin€ system ot periang
simulations. Having computed the nominal observations in
generally). . e .
advance means that the observation probabilities required
for the on-line belief-state update can be calculated vitith |

Estimated Object Pose tle additional work.

This computation may seem prohibitive, since fat, g, 0
grid of just 31x31x25 = 24,025 points, having to simulate all
combinations ofv ande in pairs would requir@4, 0252 =
207,792, 225 simulations. However, the crucial insight here
is that if trajectoryr(e) is kinematically feasible and there
are no other objects nearby, then the observation depends
only on the relative transformation betweemnde, as shown
in Figure 4. For two sets ab ande with the same relative
transformation, as with the examples in the figureand
7(e) may differ, butf2, (w, e), which is expressed relative
to e, is the same. Thus, when calculating the fQll(w, ¢)
matrix for a WRT7, we can pick a single (for instance, the
— initial w* (b)), computer(e), and simulate just that sequence
of robot poses while varying.. The number of simulations
required to comput&. (w, e) is therefore merely the num-
ber of points in the belief grid that have nontrivial proba-
bility, and running them takes just a few seconds. Once the
simulations are completed, the results can be stored for fas
g.3 The (2 (w, e) matrix for a WRT. re-use when selecting actions on-line.

Actual Object Pose

Fi
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—— We consider three different levels of uncertainty: the ini-
tial diffuse Gaussian, an intermediate one in which the-stan
dard deviations are reduced by5 in each dimension, and
a focused one in which the deviations are quite small. We
prune any observation clusters that have less than 0.0% prob
ability of occurring under any of the three distributionkig
reduces the observation cluster space in our examples to on
Fig. 4 Predicted observations depend only on the relative tramsio (€ order of 50 elements.
tion between the actual and estimated object pose. Belief-dependent clustering In the context of a par-
ticular search step, we have a current belief statnd an
action(w(b)). We can cluster observations based on their
4.4.1 Reduced observation space effect in this particular belief state. We do a further agglo
erative clustering, grouping observations that lead teebel

The observation distributions are all Gaussians centered tates that have similar variances in each dimension (on the
nominal observations, made assuming that the object is §nonical observations of the clusters from the previows tw
one of the canonical pos@sfor w € W. We can take this St€PS), where the distance metric is

discrete set of nominal observations (which in our imple- | B . 1 . 9
mentation has about 24000 elements) as our set of posﬁ£C ,¢%) = dp(SE(b, T(w(b)), (¢, 7)), SE(b, 7(10(b)), (¢, c)))

Actual object pose |
Estimated object pose [

ble observations. However, if we are to do lookahead searchh : . . .
. ere SE is the belief-state update process,&nd a dis-
that branches on observations, then we must group and su\(\)’

: o tance metric on belief states, defined as
sample the observation space so that it is much smaller.
In this section, we describe a very aggressive process faf, (b1, b2) = |H (b1)— H (b2)|+ Z [Vi(b1)— Vi (b2)]
finding a small set of canonical observations to branch on re{z,y,0}

during search. We always use the full observation, with the

model described above, when doing belief-state estimatiotyhere 7 is entropy, andv;, V,, andVj are variances in
during execution. the specified dimensions. In the currentimplementatids, th

rocess is only done for the initial belief state, wherevegi
e greatest leverage and cuts the number of clusters in half
Belief-dependent sub-samplingFinally, for any branch

)

The purpose of the lookahead search is to select actiorf
that are most useful for gaining information. Reducing un-

certainty in the orientation of the object, for example istj . .
vy . J, ) examp eus of the search tree, we sort all possible observation clsister
as useful, no matter what the object’s position is. Theesfor

we can ianore the arm position at contact. For efficienc by their probability in this belief state, and consider only
AN 19 € am p S ythek most likely observations, whose summed probability
but with a potential significant loss of effectiveness, weoal

. . . ) is greater than 0.5. This is very aggressive, but it resalts i
ignore the information gained frog, the swept-volume as- .
: ) a manageable branching factor of between 1 and around 7;
pect of the observation. So, we focus on reducing the space . . : )
. : In our experiments, increasing the number of considered ob-
of possible contact observations

servations did not noticeably change the performance.
Clustering: We start by clustering directly contact ob-

servation vectors, that are close enough in terms of both Eu-

clidean distance between the contact locations and the ang} 5 Tyansition Model

between the contact normals; these distances are assumed to

be infinite if one of the contact measurementd@ie Each  Tne transition model specifi®r(W 1 = w; | W; =

of the resulting clusters of observations is representatsby wi, Ay = 7.). We treat two cases separately: information

most likely observation. and goal WRTs, which are not intended to change the ob-
Sub-sampling Next, we prune observation clusters thatject’s pose (but which might do so inadvertently), and re-

are unlikely to occur throughout the state estimation proerientation WRTs, which explicitly attempt to move the ob-

cess. In the early parts of the estimation process, we expejetct.

our belief distributions to be quite diffuse. Later in thei-es Before we incorporate information from the observation,

mation process, we expect the belief distributions to be corthe transition distribution is fairly diffuse: there is aztte

centrated around particular values:of but, of course, we the robot will miss the object entirely (and therefore legve

don’t know whichw. We do, however, know that later in inthe same pose), that the robot will graze it with one finger

the processyp will be near the truev, so many observations (and cause it to rotate), or that the robot will give it a solid

will be unlikely because they result from actions that dre il shove. We compute a transition distribution that is already

matched to the true hypothesis. conditioned on some aspects of the observation, because by
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looking at all of the contact information jointly, we can es-
timate the force and torques that were applied to the objet
and use that information to modulate the transition probs
bilities. This approach risks over-weighting the obsedorat
information, but seems to work well.

When no contacts are observed, we assume that the ¢
ject was not contacted by the robot, and therefore was n
moved. When contacts are observed, the transition distrib
tion is a mixture of two Gaussians, one centered at the o
ject’s initial pose and one centered at a pose to which tt
object may have been “bumped” by the contacts:

Most likely robot- Where it actually is Initial belief state  Summed over theta
relative position

1? -

Tried to move down;
finger hit corner

Observation probabilities Updated belief state

Pr(w) | wi, ) o< (1= py)G(dp (i, w;); 0,02)
+puG (dp, (bump (i, ¢, ¢),15;); 0, 02)

wherepy, is the probability that the object will be bumped],

is a distance metric on poses that weightsm of distance
in position the same ds1 radians in rotation, anbdumpis a
function that computes the most likely bump outcome fron
the old pose and the observation.

The bumppose is determined as follows. For each ob
served contaat;(¢), we compute a unit force vector ap-
plied atl;(¢), in the direction—n;(¢). We determine the
center of mass of the object (assuming uniform density
compute the summed force and torque, and assume the
ject will translate a fixed distance per unit force in the di
rection of the net force, and rotate a fixed rotation per unifig. 5 Execution of WRT andz, y, 0) belief state update.
torque.

Because re-orientation has a moderately high probabil-
ity of failure, we use a modified transition model, which the belief state summed ovérfor easier visualization, as
is a mixture of three possible outcomes: the re-orientatiof the fourth image in the first row. In action 1 (row 2), the
fails entirely and the object stays in its initial pose, tke r hand executes a guarded move toward the next waypoint in
orientation succeeds exactly, and the re-orientationeleav the trajectory, and is terminated by a fingertip contact en th
the object somewhere in between the start and goal posexrner of the box, as shown in the first figure in the second
Each of the modes has a larger standard deviation than tfi@w. The middle figure in the second row shows the proba-

corresponding standard deviation for other WRTSs. bility of observing that fingertip contact in each world con-
figuration. Combining this information with the initial be-

lief state, we obtain the updated belief state shown in the
third figure in the second row. It is clear that the informatio
obtained by the finger contact has considerably refined our

Having outlined all the components, we will now show a€stimate of the object’s position.

simple example: Figure 5 shows the operation of the sys- The third and fourth rows of figures show a similar pro-
tem while grasping a rectangular box, using a single goaleess. The same WRT is executed a second time, now with
achieving WRT. The robot attempts to execute a graspingespect to the most likely state in the updated belief state.
trajectory, relative to the most likely element of that béli This time, the hand is able to move all the way down, and
state. The first image in the top row shows where the robahe fingers close on the box, with the resulting belief state
thinks the most likely state of the box is relative to its hand shown in the final figure. Now, given a goal condition such
The second image shows the location of the robot at the firgts having the box centered between the fingers within 1.5 cm
waypointin that trajectory: we can see that the objectig-act and oriented within 10 degrees of being straight, but not be-
ally notin its most likely position (if it were, the robot'shd  ing concerned where along the box the fingers are grasping
would be centered above it). The third image in the first ron(shown by the oval in the updated belief state), we can eval-

Try again with new belief Grasp

I

Goal:
variance x < 1.5 cm

y<20cm

theta < 10 deg

80% success threshold

Observation probabilities Updated belief Declare success!

4.6 Single WRT example

shows the initial belief state, with probabilities depatiga
the radius of the balls shown at grid points on they, 0)

uate the probability that it holds in the current belief stat
In this case, it holds with probability .8, so if§ were .2,

state space of the box. Subsequent belief state images shawe would terminate.



et al.

% r' i 100 u - = =
) 90 " E
£ y 80 } %
" B 70
" . g 60 HRRG-Info
- S0 ERRG-Goal
Powerdrill target grasp Info-grasp 1 Info-grasp 2 Info-grasp 3 40
30 @ Open-loop
. . . . 2
Fig. 6 Goal and information grasps for the power drill. 18
O L1 L1 L1 L1 L1 L

Percent grasped correctly

.. e N R & & K 2>
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where the hand should be along the length of the box (fo o Qqﬁ‘“ <

instance, if the box is heavy and might tip within the hand,

or If.the placement Iocatlor.] requires the hand to gr‘fis_p at %g. 7 Simulation results for all objects at low uncertainty.
particular location), then this result would not have $iib

the goal condition, we would have no real way to improve 4 - - -

the situation through further execution of our goal-segkin 2> 90
. o
WRT, and the control loop would run forever. In this case, g & WRRG-no
we would need to add an information-gathering WRT thai 8 0
. . . g 60 ERRG-Goal
can gather information about the location of the end of the & 5o
bOX. g 40 @ Open-loop
£ 30
8 20
. g 10
5 Experiments 0
¢ SRS K@D
Our experiments used 10 different objects, shown with thei ¢ & °6®<\° T T& o@b
goal grasps in Figures 1 and 6. The goal region for eac & & N

object was hand-chosen to guarantee that being within the

goal region ensures a stable grasp of the object. These reig. 8 Simulation results for all objects at high uncertainty.

gions are much larger for some objects than for others (for

example, the goal region for the can is large, since the hand o ) )

only has to envelop it), and the goal regions for the rotationith standard deviations of 1 cm iy 1 cm iny, and 3 de-

ally symmetric objects ignore the object orientation. Ih al 9"€€s ind, and lookahead-search depth= 2. The chart
experiments, the maximum number of actions allowed waShOWs the percentage of grasps that were executed success-

10: after thed*® action, if the goal criterion was not reached, fully (with 90% confidence bounds), for each object placed
the goal WRT was executed. at random positions drawn from the initial belief distribu-

tion, for the three algorithms. The risk threshold was chose

to correspond to a target success rate of 90%. Even at this
5.1 Simulation low level of uncertainty, executing the goal WRT open-loop

fails frequently for many of the objects. Using RRG-Goal
In our simulation experiments, we compare three differengllows us to succeed nearly all of the time, and using RRG-
strategies: Info brings the success rate above 97% for all objects except

o | h IWRT q ) _the tea box, for which the decision procedure only selects
— Open-loop execute the goa once and terminate; goal WRT, because it recognizes that it will still reach

- RRG—_GoaI: execute the goal WRT rept_aatedly on th_ethetarget success rate.
most likely state, terminating when the risk threshold is . . . .
Figure 8 shows the simulation results for higher levels

met; and - . o .
_ RRG-Info: choose among goal, re-orientation, and in-.Of initial uncertainty (standard deviations of 5 crmin5 cm

formation WRTSs, with a deptlk lookahead-search de- in y, and 30 degrees ), agan with dgpthc = 2. Atthis
- - ) . level of uncertainty;-14% of object positions are more than
cision procedure, terminating when the risk threshold is L . o
met 10 cm away from the initial estimated position, and execut-
' ing the goal WRT open-loop seldom succeeds. Using just
Each simulation experiments was carried out with at leasRRG-Goal is sufficient for all of the objects except the box
100 trials. (which is the object used in the example discussed earlier,
Figure 7 shows the results for experiments carried ouéxcept with a stringent goal in both andy, thus requir-

in simulation with initial belief state a discretized Gaiass ing an information-gathering WRT), and the power drill, for
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which the goal WRT grasps a nearly-cylindrical handle tha 100

gives it little information about the orientation for press 90 AL%____,_‘H

the trigger. Using RRG-Info brings our success rate abov 5 80 ﬁ —%"' e ARG

95% for all objects except the cup and tea box. The lowe § 70 : Depth=3

performance with these two objects is due to the relativel § 60 * H T ey

coarse state-space grid in our implementation, whichis o g 50 } % /{-‘—'%' —+ -RRG-Info

the same order of size (1 cm) as the goal set for these re @ 40 [}/ 'ﬁ" Deptn=1
. . . . o = 30 5 RRG-Info

atively small objects. With a grid of such coarseness, it ig og’ 20 / Entropy

sometimes the case that the grid point with the highest ok 10 { -= -RRG-Goal

servation probability is farther from the true object pdsart 0

a nearby, lower-probability grid point. This is not an isgue 2 4 6 8 10

the goal region is relatively large, but does become an is Number of actions taken

sue when the goal region is small. We expect that using an

adaptive grid size would improve the performance. Fig. 9 Varying termination criterion trades off between grasprecir
Figure 9 shows the percentage of successful grasps (witkess and number of actions required; shown for power drill.

90% confidence bounds based on an assumption of binomial

distributions) for the power drill in simulation at the high

level of uncertainty (5 cm/30 degree), where the target estifrom an average of 7 actions to an average of 4 actions,

mated level of success before termination was varied (frorwhich is a dramatic speedup. However, for most objects, us-

10% to 90%) to generate data that shows the trade-off béng a depth of 1 works as well as using a depth of 2. This is

tween the number of actions executed and the actual succesignificant since increasing the lookahead-search depth in

rate. Note that in the left part of the graph we are using &reases the action-selection time exponentially. In oan{n

low target level of success, which accounts for the low peroptimized Python) implementation, selecting the firstacti

centage of actual success. The five strategies used here &tgm among the 5 available power drill WRTs takes 3 sec-

RRG-Goal, RRG-Info with lookahead-search depths of 3pnds for a depth of 1; using a depth of 2 takes 10 times

2, and 1, and RRG-Info-Entropy, which is like RRG-Info longer, and using a depth of 3 takes 60 times longer.

with lookahead-search of 1, but using entropy of the belief

state at the leaves of the search tree (as in [19]) instead of

risk. Each point on the graph represents the average number

of actions taken before termination and the percent succe$s2 Real robot

over more than 100 simulated runs. Just executing the goal

WRT repeatedly does not work well for this object, whereagOn the real robot, we ran 10 experiments using RRG-Info

searching with a depth of 1 works reasonably well. Note thatvith lookahead-search depth of 2, for the Brita pitcher and

using risk values at the leaves leads to a substantial ineprovthe power drill with high initial uncertainty. Both objects

ment over using belief entropy. were grasped stably and lifted successfully 10 out of 10
Recall that at lookahead-search depth 1, the decision prémes, with the trigger being pressed successfully on the

cedure is considering plans with two actions, for examplepower drill and the Brita pitcher being grasped properly by

an information WRT followed by the goal WRT. Increasing the handle. An example sequence of grasping the power drill

the depth to 2 causes the decision procedure to choose dg-shown in Figure 10.

tions that may result in a lower probability of success after For the other 8 objects, we ran four experiments each:

just 2 actions, but that pay off in terms of a higher prob#pili one at low uncertainty levels (1 cm/3 deg) and three at high

of success later on. This is due to the fact that, although inancertainty levels (5 cm/30 deg). 27 out of the 32 experi-

formation WRT 1 (shown in Figure 6) provides information ments succeeded. Two of the 5 failures (for the cooler and

about all three dimensions at once and information WRT 2he can) were due to the robot contacting the object in a part

only provides information about two dimensions, informa-of the hand with no sensors. One failure each (for the cup

tion WRT 2 for the power drill acts as a “funnel” for in- and tea box) were due to the coarseness of the state grid (as

formation WRT 1, enabling it to be effective more often. in the simulation results in Section 5.1). One failure with t

Increasing the lookahead-search depth to 3 yields no addjiant tea cup was due to due to inaccurate collision depth

tional benefit. calculations for objects with thin features (like the te@cu
Although, for the drill, lookahead search with depth 1 handle) in our swept path computations, which are some-

has a success probability essentially identical to usirepatd  What coarsely discretized for speed.

of 2 or 3 after 10 actions, searching deeper reduces the num- Videos of our real robot experiments can be seen here:

ber of actions needed to succeed more than 90% of the tintetp://people.csail.mit.edu/kjhsiao/wrtpomdps
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Fig. 10 An example sequence of grasping the powerdrill: the rightpan each pair shows the actual grasp that just occurreie tie left panel

in each pair shows the robot’s resulting belief state. Inléfiepanel, the dark blue box on the table and the red pointisning the powerdrill
show the current most likely state; the light blue boxes shtates that are 1 standard deviation in each dimension aeaythe mean (shown
in purple). The pink spheres and arrows show the observed btamtacts. In panels a-c: info-grasp 2 is used three timesrow, to narrow
down the general position and orientation of the drill; gahehows the result of reorienting the drill, which is ne@ggdecause the end grasp
is infeasible before doing so; panels e and f show info-glabping used twice to narrow down the remaining major axisnokuainty; panel g
shows info-grasp 3 being used to precisely nail down theiostaf the drill; panel h shows the goal grasp being used erttfil; panel i shows
the power drill having been lifted and the trigger presseztassfully.

6 Conclusion in order to gain information, by, for instance, pushing them
against walls. Another important area for further research

We can draw several conclusions from this work. First, justS generalizing this work to more objects and more than
updating the belief state using observations and repeatirij'€e degrees of freedom per object. Promising approaches
the goal action until we are confident that success is likelj© €xplore include combinations of factoring, samplingd an
is already sufficient to add a great deal of robustness to mardaptive-resolution grids.

situations. Second, even when information-gatheringasti We believe this work forms a step toward more general
are necessary, a small search depth is effective in our fram#tegration of tactile sensing and manipulation, ultinhate
work; a depth of 1 is usually sufficient, and a depth greatepupporting complex tasks such as multi-step assemblies.
than 2 is generally not useful. This means that action se-

lection does not have to be very expensive. Third, we cancknowledgements This research was supported by the National Sci-
choose effective actions despite our aggressive obsenvati €nce Foundation under Grant No. 0712012

clustering, designed to bring the observation branching fa

tor to a manageable level. Fourth, the quality of the obser-

vation and transition models limit the effectiveness of ourReferences

system; this presents substantial opportunities for &umnte-

search. In particular, a more predictive transition mobat t 1. Akella, S., Mason, M.T.: Usir_wg partial sensor informatto orient
could more accurately estimate how objects move when we ?fggsé)mtl' Journal of Robotics Research (JRIRJLO), 963-997
bump into them could further improve our results. It could 3 ajien, p.k., Bajcsy, R.: Object recognition using visiamd touch.
also enable us to add actions that purposely push objects In: Intl. Joint Conf. on Artificial Intelligence (IJCAI) (185)
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