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Automatic Planning of Manipulator Transfer
Movements
TOMAS LOZANO-PEREZ

Abstract-The class of problems that involve finding where to place or
how to move a solid object in the presence of obstacles is discussed. The
solution to this class of problems is essential to the automatic planning of
manipulator transfer movements, i.e., the motions to grasp a part and place
it at some destination. For example, planning transfer movements requires
the ability to plan paths for the manipulator that avoid collisions with
objects in the workspace and the ability to choose safe grasp points on
objects. The approach to these problems described here is based on a
method of computing an explicit representation of the manipulator config-
urations that would bring about a collision.

I. INTRODUCTION

A N IMPORTANT goal of research on programming
languages for computer-controlled manipulators is a

language in which assembly operations can be described
concisely. Two major approaches to manipulator program-
ming have been identified [34].

1) Explicit programming-in which the user specifies all
the manipulator motions needed to accomplish a
task.

2) Model-based programming in which the user speci-
fies geometric models of parts and a description of
the task in terms of these models. The detailed
manipulator motions are derived by the assembly
system from these specifications.

This paper presents algorithms for some of the central
geometric problems that arise in the model-based approach
to manipulator programming. In particular it deals with
the class of problems that involve finding where to place or
how to move a solid object in the presence of obstacles.
The solution to this class of problems is essential to the
automatic planning of manipulator transfer movements,
i.e., the motions to grasp a part and place it at some
destination. For example, planning transfer movements
requires the ability to plan paths for the manipulator that
avoid collisions with objects in the workspace and the
ability to choose safe grasp points on objects. The ap-
proach to these problems described here is based on a
method of computing an explicit representation of the
manipulator configurations that would bring about a colli-
sion [27].
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Several model-based manipulator systems have been de-
scribed in the recent literature: AL [10], [46]; Autopass
[24], [28]; [39], LAMA [25], [26]; and RAPT [38], [39], [40].
These are experimental systems currently under develop-
ment.' Work on the model-based aspects of AL has focused
on techniques for making coding decisions in manipulator
programs. The decisions are made among a fixed set of
strategies so as to minimize estimated execution times and
to bring estimates on the accuracy of part positions within
specified bounds. A central technical issue in this approach
is deriving the accuracy estimates from geometric relation-
ships and local accuracy information. RAPT has focused
on the specification of manipulator programs by specifying
the desired symbolic spatial relationships among objects.
These relations are then translated into algebraic con-
straints on the position parameters of the objects, which
can be solved by symbolic manipulation. These algebraic
solution techniques are also used to complete the specifica-
tion of partially specified actions so as to achieve the
desired relationships. Implementation work on LAMA and
Autopass has focused on techniques for planning collision-
free motions, e.g., grasping and parts transfer motions,
using polyhedral object models. The techniques reported in
this paper are extensions of the Autopass obstacle avoid-
ance algorithm and LAMA's grasping strategies.
A number of important problems relevant to model-

based manipulator programming have been addressed in-
dependently of any manipulator system, for example, the
problem of specifying compliant motion strategies based
on geometric and kinematic models of a task [30], the
selection of grasping positions [5], [31], [35], [51], and the
problem of collision detection and collision avoidance
among obstacles [3], [7], [12], [33], [47].
The algorithms discussed in this paper are based on

previous work on obstacle avoidance algorithms. In partic-
ular, [48] and [49] first formulated the obstacle avoidance
problem in terms of an obstacle transformation which
allows treating the moving object as a point. A similar
transformation was also used in [1], [2], [4], [45] for the
template layout problem; related applications are also dis-
cussed in [11] and [16]. Generalizations of these obstacle
transformation techniques and a review of related work

'The AL language, as originally described, includes explicit as well as
model-based programming capabilities. The former are currently availa-
ble, while the latter are still in the experimental stage.
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can be found [27] and [28]. Other approaches to automatic
obstacle avoidance are reviewed in [23] and [48].

II. THE "PICK AND PLACE" SYNTHESIS PROBLEM

The most common manipulator transfer movements are
of the "pick and place" type, consisting of 1) moving the
manipulator from its current configuration2 to a grasp
configuration on some object P; 2) grasping P; and 3)
moving P to some specified configuration. The pick and
place synthesis problem is that of deriving the manipulator
motions that will carry out a pick and place transfer
movement, given as input the following data:

1) a geometric description of the manipulator and the
objects in the workspace,

2) the current configurations of the manipulator and the
objects in the workspace,

3) the desired final configuration of P, and
4) (optional) the grasp configuration on P.

This paper focuses on the geometric aspects of the pick
and place synthesis problem. For example, when the grasp
configuration is known, the pick and place synthesis prob-
lem is equivalent to finding collision-free paths for the
manipulator and P between the configurations in items 2),
3), and 4) above; when the grasp configuration is un-
known, there is the additional task of choosing a configura-
tion such that:

1) the manipulator's fingers are in contact with P,
2) the manipulator does not collide with nearby objects,
3) the configuration is reachable, and
4) the object is stable in the manipulator's hand.

The first three conditions reflect geometric constraints on
the manipulator configuration relative to P and to other
objects in the workspace. The stability condition reflects
aspects of grasping beyond the purely geometric, but when
P is small, relative to the manipulator hand, and when
parts mating effects are ignored, then stability considera-
tions can typically be reduced to geometric heuristics (see
Section IX-F).
The geometric aspects of pick and place can be for-

mulated in terms of two fundamental spatial planning
problems [27], Findspace and Findpath, which occur in
many applications. The definition of these basic problems
are presented below for the case of polyhedral objects.

Let R be a convex polyhedron that bounds the work-
space and which contains kB other, possibly overlapping,
convex polyhedra Bj designated as obstacles. Let A, the
object being moved, be the union of kA convex polyhedra
Ai, i.e.,

kA

A UAi.
i=l

2Configuration will be used here to refer to the combined position and
orientation of an object as well as to the set of joint parameters specifying
the arrangement of manipulator links.

1) Findspace-Find a configuration for A, inside R,
such that for all i and for allj: Ai n Bj 0. This is called
a safe configuration.

2) Findpath Find a path for A from configuration s to
configuration g such that A is always in R and all config-
urations of A on the path are safe. This is called a safe
path.

Clearly, pick and place with a known grasp config-
uration can be viewed as a sequence of two Findpath
problems. In addition, the configurations that are legal
candidates for grasping can be derived from solutions to
the Findspace problem.
The reduction of the pick and place problem to these

more fundamental geometric problems assumes that the
locations of all objects are known to high accuracy and
that the path of the manipulator can be controlled to the
same precision. In a realistic environment, there is always
uncertainty in the positions of objects and error in the
control of the manipulator. Section X discusses some of the
effects of uncertainty.

III. THE CSPACE APPROACH TO SPATIAL
PLANNING: OVERVIEW

In this section, an overview of the configuration space
approach to spatial planning will be presented; further
details can be found [27].
The position and orientation of a rigid solid can be

specified by a single six-dimensional vector, called its con-
figuration. The six-dimensional space of configurations for
a solid A, is called its configuration space and is denoted
CspaceA. For example, a configuration may have one coor-
dinate value for each of the x, y, z coordinates of a selected
point on the object and one coordinate value for each of
the object's Euler angles [21]. In general, an n-dimensional
configuration space can be used to model any system for
which the position of every point on the object(s) can be
specified with n parameters. An example is the configura-
tion of an industrial robot with n joints, where n is typi-
cally 5 or 6. In CspaceA, the set of configurations of A
where A overlaps B, i.e., A n B #& 0, will be denoted
COA(B), the CspaceA obstacle due to B. Similarly, those
configurations of A where A is completely inside B, i.e.,
A c B, will be denoted CIA(B), the CspaceA interior of B.
Together, these two CspaceA constructs embody all the
information needed to solve Findspace and Findpath prob-
lems. Note that CIA(B) =-COA(-B), where -X de-
notes the set complement of X in R.

A. Fixed Orientation ofA

In two dimensions, if the orientation of a convex poly-
gon A is fixed, CspaceA is simply the (x, y) plane. This is
so because the (x, y) position of some reference vertex, rvA,
is sufficient to specify the polygon's configuration. In this
case, the presence of another convex polygon B constrains
rvA to be outside of COA(B), a larger convex polygon,
shown as the shaded region in Fig. 1. Since COA(B) in this
case is a set of (x, y) values, it is denoted COAXY(B).

682



LOZANO-PEREZ: MANIPULATOR TRANSFER MOVEMENTS

rvA

Fig. 1. CspaceA obstacle due to B, for fixed orientation of A.

Fig. 2. Findpath problem and its formulation using Cspace obstacles.
Note that shortest collision-free paths connect origin and destination
via vertices of Cspac(eA obstacles.

Similarly, if A and B are three-dimensional polyhedra in
fixed orientations, then the Cspace obstacles are denoted
COAxYz(B). Thus, the Findspace problem for polygons with
fixed orientation can be transformed to the equivalent
problem of placing rvA outside of COAy(B), but inside
CIAxy( R). Similarly, for multiple obstacles B1, a location for
A is safe if and only if rvA is not inside any of the
COAxY(Bj), but inside CIAxY(R).

If the orientation of A is fixed, then the Findpath
problem for the polygon A among the Bj is equivalent to
the Findpath problem for the point rvA among the
COAxy(Bj). When the COAxy(Bj) are polygons, the shortest3
safe paths for rvA are piecewise linear paths connecting the
start and the goal via the vertices of the COAxY(B) poly-
gons, in Fig. 2. Therefore, Findpath can be formulated as a

graph search problem. The graph is formed by connecting
all pairs of vertices of CspaceA obstacles (and the start and
goal) that can "see" each other, i.e., can be connected by a

straight line that does not intersect any of the obstacles.
The shortest path from the start to the goal in this visibility
graph (Vgraph) is the shortest safe path for A among the Bj
[28]. This algorithm solves Findpath problems when the
orientation of A is fixed. But because they require moving
A along obstacle boundaries, shortest paths are very sus-

ceptible to inaccuracies in the object models.
The approach to Findspace and Findpath described

above generalizes to problems involving three-dimensional
polyhedra with fixed orientation. The generalization re-

quires the use of a three-dimensional CspaceA, representing
the space of (x, y, z) positions of rvA. In this Cspace, the
obstacles are also polyhedra, denoted COAYZ((B). However,
the Vgraph algorithm has several additional drawbacks
when the obstacles are three-dimensional:

1) shortest paths do not typically traverse the vertices of
the COAYZ(B)

3This assumes Euclidean distance as a metric. For the optimality
conditions using a rectilinear (Manhattan) metric, see [22].

2) there may be no paths via vertices, within the enclos-
ing polyhedral region R, although other types of safe
paths within R may exist.

These drawbacks may be alleviated by introducing addi-
tional nodes in the Vgraph which do not correspond to
vertices [28]. An alternative strategy for finding safe paths
among two- or three-dimensional CspaceA obstacles is dis-
cussed in Section VII.

B. Algorithms for COA VZ(B)

The central operation in the Cspace approach to Finds-
pace and Findpath in two and three dimensions is comput-
ing COA,Y(B) and COA,YZ(B), respectively. Let conv(X)
denote the convex hull of X [14], vert(X) be the set of
vertices of the polyhedron X, X E) Y = {x - y x E X and
y E Y), and (X)O mean the polyhedron X in its initial
configurations, where rvx is at the origin. Then, if A and B
are convex polyhedra, it is simple to show [27] that

CoA vz(B) = B e (A)O = conv(vert(B) E vert((A)O)).
This result and the existence of O(n log n) convex hull
algorithms for finite sets of points in 63 [41], lead directly
to an O(v2 log v) algorithm for COAYZ(B), where v =
vert(A) + vert(B) . The result also holds when A and
B are convex polygons, but more efficient algorithms exist
for this case. In particular, an O(v) algorithm for COA Y( B)
is described in [27].

C. Variable Orientation ofA

When A is a three-dimensional solid which is allowed to
rotate, COA(B) is a complicated curved object in a six-
dimensional CspaceA. Rather than compute these objects
directly, the approach taken here is to use a sequence of
two- and three-dimensional objects to approximate the
high-dimensional CspaceA obstacles. In particular, a six-
dimensional CspaceA obstacle for a rigid solid can be
approximated by projections of its (x, y, z)-slices. Aj-slice
of an object C E 6A' is defined to be

{ (p ...

9 Aln ) E_ C Yj -< /i -< Y'}

where yj and YJ' are the lower and upper bounds of the
slice, respectively. Then, if K is a set of indices between 1
and n, a K-slice is the intersection of all the j-slices for
j E K. Notice that a K-slice of C is an object of the same
dimension as C. Slices can then be projected onto those
coordinates not in K to obtain objects of lower dimension.

Fig. 3 shows a two-dimensional example of slice projec-
tion. The objects shown shaded represent the (x, y) projec-
tion of three 0-slices of COA(B) when A and B are convex
polygons. These slices represent configurations where A
overlaps B for some orientation of A in the specified range
of 0. In [27] is a proof that these slice projections are
equivalent to the COxy of the area (volume) swept out by
A over the range of orientations of the slice. Note that
approximating the swept volume as a polyhedron leads to a
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Fig. 3. Slice projections of CspaceA obstacles computed using (x, y)-area
swept out by A over a range of 0 values. Each of the shaded obstacles is
(x, y)-projection of 0-slice of COA(B). Figure also shows a polygonal
approximation to slice projection and polygonal approximation to
swept volume from which it derives.

A3

Al

A1

Fig. 4. Illustration of Findpath algorithm using slice projection de-
scribed by Lozano-Perez and Wesley in [28]. A number of slice projec-
tions of Cspace obstacles are constructed for different ranges of orienta-
tions of A. Problem of planning safe paths in high-dimensional CspaceA
is decomposed into 1) planning safe paths via CO vertices within each
slice projection and 2) moving between slices at configurations that are
safe in both slices. A, is A in its initial configuration, A 3 represents A in
its final configuration, and A2 is a simple polyhedral approximation to
swept volume of A between its initial and final orientation.

polyhedron approximation for the projected slices of the
CspaceA obstacles, as shown in Fig. 3.

Slice projection has two important properties:

1) a solution to a Findspace problem in any of the slices
is a solution to the original problem, but since the
slices are an approximation to the CspaceA obstacle,
the converse is not necessarily true;

2) the slice projection of a CspaceA obstacle can be
computed by using the swept volume operation,
without having to compute the high-dimensional
CspaceA obstacle (see Section V).

When rotations of A are allowed, the slice projection
operation can be used to extend the Vgraph algorithm
described earlier to find safe (but suboptimal) paths [28]. A
number of slice projections of the CspaceA obstacles are
constructed for different ranges of orientations of A. The
problem of planning safe paths in the high-dimensional
CspaceA is decomposed into

1) planning safe paths via the vertices of CspaceA ob-
stacles within each slice projection, and

2) moving between slices at configurations that are safe
in both slices.

mulated as a graph search problem. This approach is
illustrated in Fig. 4. However, since the obstacles are
three-dimensional, the Vgraph algorithm is subject to the
drawbacks described earlier.

IV. FINDPATH FOR CARTESIAN MANIPULATORS

This section overviews an implementation4 of the Find-
path algorithm, for Cartesian manipulators (see definition
below). Sections V through VIII present a more detailed
description of the implementation. The system inputs are

1) a polyhedral model of the workspace-where each
object is represented by a tree of convex polyhedra
(see Fig. 5(a)),

2) a polyhedral model of the manipulator represented
as a set of link bodies connected by rotary or pris-
matic joints (see Fig. 5(b)),

3) a kinematic model of the manipulator-currently,
partly embedded in procedures which apply to the
polyhedral model and partly in the model structure,
and

4) a start and a goal configuration for the manipulator.

The system output is a safe path from the start to the goal
configurations of the manipulator. The paths are composed
of a sequence of linear segments in the Cspace of the
manipulator.
The implementation described here is limited to Carte-

sian manipulators, i.e., those having three perpendicular
translational degrees of freedom corresponding to the x, y,
and z axes and up to three rotary degrees of freedom,
usually centered at the wrist. Fig. 6 illustrates two different
types of Cartesian manipulators. The restriction to Carte-
sian manipulators allows the use of the COAXYZ(B) algo-
rithm described in Section Ill-B as the main tool for
capturing path constraints.
The Findpath algorithm carries out the following steps

in turn.

1) Constructing the CspaceA obstacles The slice pro-
jections of the CspaceA obstacles approximate the
constraints on the configurations of the manipulator
due to the presence of objects in the manipulator's
workspace (see Section V).

2) Representing free space-Once the CspaceA obstacles
are known, the system computes a decomposition of
the space outside these obstacles into convex poly-
hedral cells; these polyhedra are then linked into a
graph structure called the free space graph. Each node
of the graph represents a free space cell and a link
between cells indicates that they touch or overlap (see
Section VI).

3) Searching for a safe path-The free space graph is
searched to locate a cell path, a connected set of free
space cells that join the origin and the destination.
From the cell path, the system derives a line path, a

Both of these types of motions can be modeled as links in
the Vgraph, therefore the complete algorithm can be for-

4The current implementation is written in LISP for the M.I.T. LISP
machines.
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Fig. 5. Models of objects are structured as trees of convex polyhedra;
internal nodes represent union of their subtrees. Linked polyhedra are
used to represent manipulators; internal nodes represent joints and
leaves represent links. Nesting of subtrees in models of linked poly-
hedra reflect cascading effect of joint motions.

Fig. 6. Schematic representation of link arrangement in two types of
existing Cartesian manipulators.

piecewise linear path in the manipulator's Cspace (see
Section VII).

V. COMPUTING THE CSPACEA OBSTACLES

The first and most important step in the Findpath
algorithm is that of computing the CspaceA obstacles aris-
ing from the presence of objects in the workspace. The
CspaceA currently used by the system is the seven-

dimensional joint space of the manipulator, i.e., x, y, and z

displacements, the three wrist rotations, and the finger
opening. The CspaceA obstacles are complicated objects in
this high-dimension space. To avoid having to deal directly
with these objects, the system makes use of slice projection
to approximate the CspaceA obstacles by a set of three-
dimensional obstacles.
The COAXYZ(B) algorithm of Section Ill-B computes an

(x, y, z) cross section of COA(B) for a specified orienta-
tion of A. But this algorithm can be adapted to compute
the (x, y, z)-slice projections of COA(B). The construct
that relates slice projections to the cross sections is the
swept volume of an object. The swept volume of A is the
union of (A)a, i.e., A in configuration a, for a within
the configuration range denoted by [c, C']K, where c and c'
are configurations of A and K is a subset of the configura-
tion parameters. A configuration a is in the range [c, c'] K if,
for each i in K, the ith parameter of a is between the ith
parameters of c and c'. For example, if c and c' are of the
form (f,, 821 /3) and K = {3}, then the swept volume of A
over the range [c, C']K refers to the union of A over a set of

configurations differing only on 133. The swept volume of A
over this configuration range is denoted A[c, C']K. It can be
shown [27] that the (x, y, z)-slice projection of COA(B)
over the orientation range contained in [c, C']K iS the same
as COXYZ (B).

In summary, the computational requirements of the slice
projection technique are

1) choosing a decomposition of the orientation ranges of
the Cartesian manipulator into subranges, [c, C']K' to
be used for slice projection;

2) computing polyhedral approximations to A[c, C']K for
each orientation range;

3) computing COAx[Cz 'IK(Bj) for each obstacle Bj and
each orientation range.

This section addresses these issues. First we assume that
the orientation ranges defining the slices are given; we
discuss how to choose slice parameters at the end of the
section.

A. Computing the Swept Volume for Linked Polyhedra

The swept volume of a polyhedron A over a range of
translations is another polyhedron. Let T C I be the set of
configuration parameters corresponding to the translations
of A. If A is a convex polyhedron and the range of
positions of the reference vertex of A over the range of
translations [c, C']K can be represented as a convex poly-
hedron V, then A[c, C']T= A Ef V where X(D Y= {x +y
x C X and y C Y}. Since A ED V =conv(vert(A)ff

vert(V)), this leads to a direct algorithm for computing the
swept volume for translation. If the range of configurations
includes rotations, then the swept volume is not a poly-
hedron. In the rest of the paper it is assumed that a
polyhedral approximation to the swept volume is always
available. The Appendix describes an algorithm to com-
pute a simple approximation to the swept volume of a
convex polyhedron under pure rotation.
The swept volume of A, a rigid object, resembles another

rigid object with the same number of degrees of freedom.
But for manipulators, modeled as linked polyhedra, the
situation is more complex. Linked polyhedra are kinematic
chains with polyhedral links and prismatic or rotary joints.
The relative position and orientation of adjacent links, Ai
and Ai±I' is determined by the i th joint parameter (angle)
[36]. The set of joint parameters of a linked polyhedron
completely specifies the position and orientation of all the
links.
Note that for a linked polyhedron, the position of linkj

typically depends on the positions of links k <j, which are
closer to the base than link j. Let K = (j}, c (6i),
c' = (Ok'), and [c, C']K define a range of configurations
differing on the th CspaceA parameter. Since jointj varies
over a range of values, links 1 > j will move over a range of
positions which depend on the values of c and c', as shown
in Fig. 7. The union of each of the link volumes over its
specified range of positions is the swept volume of the
linked polyhedron. The swept volume of links j through n
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Fig. 7. Changes in second joint angle from 02 to 02 causes changes in
configurations of both link A 2 and link A 3.

A2

A1

A= A3[C.C']

A =(AUA2)IC.Ci

Fig. 8. Computing swept volume for linked polyhedra. If [c, C'] K in-
volves ranges of configurations of second and third link, first compute
the swept volume for third link and then swept volume for the union of
second link and swept volume of third link.

can be taken as defining a new jth link. The first j I1
links and the new jth link define a new manipulator whose
configuration can be described by the first j - 1 joint
parameters. On the other hand, the shape of the new linkj
depends not only on the K-parameters of c and c', O0 and
0,', but also on 0, for >j. This implicit dependence on

parameters of c and c' that are not in K is undesirable,
since it means that the shape of the new jth link will vary.

Letting K = {j, . . ., n}, then the shape of the swept volume
depends only on the K-parameters of c and c', while its
configuration is determined by the (I- K)-parameters. A
swept volume that satisfies this property is called displacea-
ble.

Given an operation for computing (a polyhedral ap-

proximation to) the swept volume of a polyhedron (see
Appendix), then this operation is applied to computing the
swept volume of linked polyhedra. The swept volume
A[c, c']K iS computed by the following process, illustrated
in Fig. 8:

1) let i = n, where n > 0 is the number of links in the
linked polyhedra, I l= n; let A* = 0;

2) place A in configuration c;

3) let A* = A* U Ai;
4) if i E K then let A* = A*[c, c']fi1, i.e., update A* to

be the swept volume of A* over the range of ith joint;
5) let i = i- 1. If i 0, then stop, or else go to step 3.

The swept volume obtained in this fashion can then be
used to compute the COA[YC,ClK(BK).

B. Computing Slice Projections for CSpaceA Obstacles

If A[c, C']K overlaps some obstacle B, then for some

configuration a in the range [c, C']KI (A)a overlaps B. The
converse is also true. If A[c, C']K is displaceable, then
COA[C C'lK(B) is the set of I- K projections of those

configurations of A within [c, C']K for which A overlaps B.
Equivalently, COA[C c,lK(B) is the I -K projection of the
[C, C']K slice of COA(B). If A is a Cartesian manipulator
and K is the index set for the wrist rotations of the
manipulator, then the configurations of the swept volume
are the (x, y, z) positions of a fixed reference vertex of the
manipulator model. The algorithm of Section III-B can be
used to compute COA[Yj clK(B) and thereby compute the
required slice projections of COA(B).

Given the swept volume of the manipulator model for a
particular range of parameters [c, C']K' the next step is to
compute the slices of all the Cspace obstacles for the
manipulator over that range of configurations; this set
is denoted COS[c, c']. In previous discussions of the
COAxYZ(B) algorithm we have assumed that A and B were
single polyhedra; we saw in the previous sections that both
the object and manipulator models are structured as part
trees, whose leaves are convex polyhedra. The actual model
of a manipulator a part is the union of the fringe, i.e., the
set of leaves, of the corresponding part tree. Thus if
A =U ,AA and B =U 'B 1B, the following result can be
used in computing COAYZ(B):

kA kB

COA(B)= U U COA,(Bj).
i=l j=l

This result means that kA X kB applications of the
COAxYZ(Bj) algorithm must be carried out to compute
COAxYZ(B) exactly. In the pick and place application, an
exact model of all the Cspace obstacles is not usually
needed since the manipulator will not move close enough
to all the obstacles.
The amount of time needed to compute the COS can be

reduced by simplifying the geometric models of both the Ai
and the Bj when appropriate. The current implementation
uses a simple family of successively finer approximations
based on the object's part tree. Consider the part tree for
Bj, where each of the leaves of the tree is a convex
polyhedron. Define a covering node set recursively to be
either 1) the set containing just the root of the part tree, or
2) obtained from another covering node set by replacing
some node, internal to the part tree, with all its descen-
dants. If each internal node represents the union of all its
descendants, then every covering node set is a complete
model of the object. In practice, internal nodes of the part
tree store the bounding rectangular solid' of the union of
all its descendants instead of the union itself. Thus, the
family of covering node sets represents progressively more
detailed models of the part [29]. Using these approxima-
tions reduces the number of applications of COAxYZ(Bj)
needed to compute the COS, since the number of poly-
hedra in a covering node set is less than or equal to that in
the full fringe. In addition, it can be used to simplify many
of the individual computations, because when A and B are

5A bounding rectangular solid for a polyhedron is a rectangular solid
whose edges are parallel to the coordinate axes and that completely
includes the polyhedron.
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bounding rectangular solids, computing COA,YZ(B) is triv-
ial. In particular, if the bounding solids are represented by
the endpoints of their main diagonal, e.g., A = (a,, a2)
and B = (bl, b2), then COA,YZ(B) = (b -(a2-a,), b2).

For simplicity, the current implementation uses a three-
level part tree for the swept volume of the manipulator and
for the objects in the workspace. Each tree has a root node
which models the complete object by one bounding rectan-
gular solid. The descendants of the root are bounding
rectangular solids for each of the convex components of
the model, and the leaves of the tree are the convex
polyhedra whose union is the complete object model.
Therefore if the object is modeled as the union of k convex
polyhedra, the part tree has 2k + 1 nodes. Using this
representation, COAYZ(B) can be modeled as a tree of
similar structure with 2(kA X kB) + 1 nodes. Any covering
node set of this tree is an approximation to the CspaceA
obstacle corresponding to B. In practice, the complete tree
is not computed at once, rather the simplest approximation

the bounding rectangular solid of the whole object-is
computed and successive covering node sets are computed
as needed. This is discussed further in Section VI.

C. Choosing the Slice Parameters

So far we have assumed that the configuration ranges
defining the CspaceA slices were given as input; in this
section, the choice of ranges is discussed. The primary
choice is how to make the ranges, since it is this that affects
the system's capability to use changes in the orientation of
the hand to avoid obstacles. In particular

1) the larger the orientation range of a slice, the larger
the manipulator's swept volume, the larger (and less
accurate) the CspaceA obstacles, and the fewer the
legal configurations and legal motions of the manipu-
lator;

2) the smaller the orientation range of slices, the larger
the number of slices required to cover the Cspace,
and the more time needed to compute the COS and
to search them for a path.

These conflicting effects can be balanced by taking ad-
vantage of the fact that for pick and place motions, the
accuracy requirements are higher near the start and the
goal of the path, where the manipulator is moving near
obstacles, than along the rest of the path [28], [48], [49].
This suggests defining slices with small rotation ranges
centered around the orientations of the start and the goal;
slices with larger ranges may be used for the remaining
orientations. This approach is used in the current imple-
mentation. In particular, a COS is defined for the orienta-
tion of the manipulator in the start configuration and one
for the orientation manipulator in the goal configuration;
these COS correspond to slices with singular orientation
ranges, i.e., where the upper bound of the range equals the
lower bound.' In addition, the total range of parameters in

CspaceA is divided among some number of other slices7
each with nonsingular ranges. Furthermore, slices with
singular ranges are defined for configurations at the inter-
section of the slice parameters of the "larger" slices. This
last type of slice allows moving between safe configurations
in the "larger" slices.
Note that the computational burden of adding an extra

slice is very low if bounding rectangles are used for objects.
This sacrifices some of the potential maneuvering space,
but gains a very large increase in speed. This is the com-
promise taken in the current implementation.

Motions within a slice with a singular orientation range
are limited to translations, while rotation is legal within a
slice with nonsingular ranges. Therefore, the classes of
motions allowed by the system are those composed of
translations interspersed with rotations, but where the rota-
tions happen in increments defined by the slice parameters.
This means that this approach may fail to find a safe path
in situations where

1) all safe paths require rotations combined with trans-
lations at a finer resolution than that allowed by the
slice ranges, or

2) the orientation ranges chosen, although adequate in
size, do not match those required in the problem.

These problems can be reduced at the expense of more
computation by using more slices with smaller ranges. But
problems exist which require continuous rotation along a
path. In practice, most robotics applications do not use the
very crowded environments that require very high rotation
resolution for the pick and place motions. The reason for
this is that safe paths in such environments are very hard
for humans to specify, are subject to positioning errors of
the parts, and are difficult for most industrial robots to
execute reliably at medium or high speeds.

VI. PATH SEARCHING AND FREE SPACE

Having computed the CspaceA obstacles, it still remains
for the system to find a path among these obstacles. This
section briefly touches on alternative strategies for finding
safe paths.
One approach to finding paths among obstacles is to

search for the shortest path between the start and the goal
without considering other constraints not embodied in the
model. For example, the Vgraph algorithm described in
Section III follows this approach. But the approach has
some important drawbacks. Shortest paths in CspaceA move
along the boundaries of the CspaceA obstacles and are
therefore very susceptible to model inaccuracy and position
error. This problem can be alleviated by adding a uniform
"safety margin" around the obstacles, but doing so might
disqualify some feasible paths. Furthermore, no efficient
algorithms currently exist for finding optimal paths among
three-dimensional obstacles. Unlike the situation in two
dimensions, there is no finite set of points through which

6A slice with a singular range is a cross section. 7Currently varying between 8 and 64.
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shortest paths are guaranteed to pass. Thus, algorithms
have to be based on iterative numerical methods. For these
reasons, only heuristic algorithms for finding safe paths
will be considered here. These heuristic algorithms require
less execution time and can be extended to consider criteria
such as safety margins, but they will not typically find the
shortest path.
Another issue is whether the path search is conducted

using primarily a representation of the CspaceA obstacles
themselves, as does the Vgraph algorithm, or of the
obstacles' complement, called the free space, as in [48] and
[49]. Although these representations are equivalent, they
lead to different heuristic algorithms. The current imple-
mentation uses the free space style of algorithm because it
simplifies the formulation of different search heuristics,
e.g., the use of variable resolution space representations
described below. The remainder of the section deals with
the free space representation technique employed in the
Findpath implementation. Section VII discusses the path
search algorithm used on this representation.

A. A Free Space Representation

The basic goals for a space representation are accuracy,
speed, and compactness. In addition, it should facilitate
heuristics for the task at hand. The most important heuris-
tic for a space representation is to avoid excess detail (and
therefore time spent) on parts of the space which do not
affect the operation. Therefore, the space representation
should not have to maintain a perfectly detailed model
everywhere. Instead, it should have the capability of main-
taining a rough model and be able to selectively refine [48],
[49] subsections to be as detailed as necessary.
A number of proposals exist for representations of space

and objects in space [9], [25], [42]; most of these divide the
space into a set of cells. We will not consider representa-
tions that use cells of uniform shape or size, since they
typically require huge numbers of cells to achieve sufficient
accuracy.8 Instead, we use a hybrid cell representation
employing two types of cells; 1) rectangular solids aligned
with the axes and 2) arbitrary convex polyhedra. The idea
is to use the simple rectangular cells away from obstacles
where representation economy is important and polyhedral
cells where high accuracy, e.g., near an obstacle, is needed.
The space representation described below is analogous

to the part representation described earlier, except that a
new type of node is introduced. The part tree representa-
tion uses rectangular bounding cells as internal nodes and
polyhedral cells as leaves. The leaves represent space that is
FULL, i.e., completely occupied by an object. The internal
cells represent MIXED space, i.e., cells that are part FULL
and part EMPTY. But note that the part tree does not have
an explicit representation of the EMPTY space. The space
representation simply adds explicit EMPTY cells to the parts
tree representation. Then each internal MIXED node be-

8Udupa [48], [49] employed a free space representation that used
rectangular cells of variable size. This approach is adequate for motions
that do not closely approach the obstacles.

r-
s

i IBA

E4 | @

(a) (b)
Fig. 9. This figure illustrates, in two dimensions, the space represen-

tation employed in implementation of Findpath algorithm. (a) Sample
CspaceA obstacle with its part representation. (b) Resulting space
representation. Rectangular nodes indicate mixed cells, round nodes
indicate full cells, and diamond nodes indicate empty cells.

comes the union of its descendants. In addition, the space
representation introduces a new MIXED root node from
which all the part representations descend.
The space representation is built up starting with a

bounding rectangular solid representing the workspace;
this is the first MIXED cell. The descendants of this node are
the MIXED cells corresponding to the roots of the trees
representing each of the COA YZ(BB), as described in Section
V-B, and a set of EMPTY bounding rectangular solids repre-
senting the free space outside the MIXED cells. The repre-
sentation of each MIXED cell can be further expanded into
other EMPTY, MIXED, and FULL cells, culminating in a
representation involving only EMPTY and FULL convex
polyhedral cells as leaves of the tree and MIXED cells as
internal nodes, Fig. 9. The polyhedral representation of
each EMPTY cell must be computed so that it does not
overlap any MIXED or FULL cells. As with the part represen-
tation, any covering node set of this tree represents a
complete model of the space at some nonuniform resolu-
tion. This hybrid cell representation is based on a generali-
zation of the quad tree representation used for images [8],
[17], [18], [20], [43] and the oct-tree representation of
objects [3].
The operations on the space representation described

above are very efficient when dealing with bounding rect-
angular solids. The most expensive operation is when the
volume difference of a MIXED rectangular cell and a FULL
polyhedral cell must be computed;9 this operation results
in a description of the EMPTY cells. However, this need only
be done when high accuracy is required, usually near the
start and the goal of the path. Therefore, the representation
meets the criteria stated at the beginning of the section.

B. Building a Free Space Graph

The process described in Section V produces a slice for
each CspaceA obstacle over each of the orientation ranges
[ci, cJ]K of the manipulator's wrist. The set of slices for

9The current implementation of this operation uses repeated applica-
tions of a cutting and capping operation [6].
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all obstacles over one orientation range is denoted
COS[ci, C]K. For each of these COSi, a space representa-
tion is computed, SRi as described above. For each of
these SR , a free space graph is built, FSGj; this is a graph
where each node is an EMPTY cell in the SRi and a link
indicates that the cells touch or overlap.10 In addition, it is
necessary to add links to each FSGi that connect to nodes
of other FSG, whose rotation range overlaps that of FSGi.
That is, for EMPTY cells Ck E SRi and C1 E SRj, if there is
some configuration c contained in both cells, then links
must be placed between Ck and Cl. This is so because the
existence of c guarantees that it is possible to pass from
any configuration in Ck to any C1 and vice versa while
remaining outside all the obstacles in COSi and COSj. The
resulting composite FSG is then searched for a path, since
each path through the graph corresponds to a class of safe
paths in CspaceA and vice versa.

VII. PATH SEARCHING

The Findpath problem is to find a path between two
points, the start and the goal, while staying in the free
space. In the current implementation, this is carried out by
the following steps.

1) Choose the largest EMPTY cell in any of the SR1
enclosing the start configuration. Otherwise, choose
some MIXED cell containing the start and expand the
representation of this MIXED cell into its constituent
EMPTY, MIXED, or FULL cells. If an EMPTY cell contains
the start configuration, stop, else repeat. Note that
this computes successively finer models, i.e., succes-
sive covering node sets, of the specific area around
the start without having to expand the complete
model or even any complete part tree. If no EMPTY
cell is ever found, the task is impossible, since the
start configuration causes a collision.

2) Perform step 1 for the goal configuration.
3) Construct a free space graph as described in Section

VI-B. At this point, the free space graph is in its final
form; the current implementation does not refine the
space representation further.

4) Search for the shortest path in the free space graph
from the cell including the start to that including the
goal. The graph search operation can be carried out
by any of the standard shortest path algorithms [13];
the current implementation uses the A* algorithm
[15]. These shortest path algorithms require that a
weight be assigned to each of the links of the free
space graph, e.g., indicating the time required to
traverse the cells. How this may be done is discussed
below. If no path exists, this may be due to the
approximations and quantizations used in the solu-
tion (see Section VII-C).

5) Choose a line path contained in the cell path. This
problem is discussed in Section VII-B.

l0The current representation allows EMPTY cells to overlap each other,
but not MIXED or FULL cells.

(a) (b) (c)
Fig. 10. Two-dimensional illustration of failings of the centroid weight-

ing function. (a) Overestimating when one cell is large, (b) underesti-
mating because of limited connectivity, and (c) overestimating because
of large overlap. Solid line is optimal path between cells, dashed lines
are path that function would use to evaluate distance between cells.

A. Assigning Link Weights for the FSG

The definition of an "optimal" path, or even a "good"
path, assumes some choice of performance index. The
current implementation uses estimated time of travel along
the path as the index. If CspaceA is the manipulator's joint
space, then the time to travel between two configurations
can be estimated as the maximum time for any of the joints
to travel at the maximum rated joint velocity between the
joint settings at each configuration. The weights assigned
to the links in the FSG should therefore reflect the time
needed to travel between two overlapping cells along the
optimal path. Of course, no weight assignment can actually
do this, since it requires knowing the complete optimal
path.
A simple alternative is to assign to a link the estimated

time of travel between the centroids of the cells that it
connects. This weighting function has the advantage of
being very easy to compute. For small cells it provides a
good approximation of the actual time to traverse the cells,
but for larger cells it might overestimate or underestimate
the actual time (see Fig. 10). The current implementation
uses the centroid weighting function, but does not divide
the large EMPTY rectangular cells into smaller cells; this
well be implemented in the near future.
A more complex weighting function, which would typi-

cally produce faster paths, is the following: the weight on
the link between cell C and C' is assigned the time to
traverse C from p, the point of entry to C, to p', the point
of entry into C'. The point p' is the one on C n c' that
minimizes the distance" to the line between p and the goal.
The initial C is the cell that contains the start configura-
tion, and the initial p is the start configuration. Clearly,
this technique requires much more computation than the
centroid weighting described above. For most applications,
the simpler centroid function, together with cell splitting,
should suffice.

B. Choosing a Line Path

The search of the FSG produces a list of EMPTY CspaceA
cells that touch or overlap; it is still necessary to choose a
specific path, i.e., some curve, within these cells. The
simplest type of path to choose is a piecewise linear one,
although the cells simply place configuration constraints

"1Actually, the difference in time between the straight line path and one
going through this point.
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CoA
co,

Co (A3

(a) (b)
Fig. II. (a) Start and goal configurations of manipulator and world model. (b) START COS: CspaceA obstacles for

manipulator in start configuration. (c) GOAL COS: CspaceA obstacles for manipulator in goal configuration. (d) CspaceA
obstacles for swept volume of manipulator over widea range of wrist configurations. (e) Cell Path with superimposed Line
Path. (f) Cell Path and Line Path superimposed on the GOAL COS.

on the manipulator along the path, and any path satisfying
those constraints will be safe.

If the centroid weighting has been used for the links, it is
natural to choose a piecewise linear path that traverses the
centroids of the cells. Of course, the straight line path
between two centroids is not guaranteed to remain within
the cells and might therefore not be safe. Therefore, an
intermediate configuration in the intersection between ad-
jacent cells should be chosen. The centroid of the intersec-
tion of adjacent cells on the path can be used for this
purpose; this is the technique used in the current imple-
mentation. Alternatively, this point could be chosen so as
to minimize the deviation from a straight line path between
the centroids. If the cell size is small enough, such paths are
adequate for most tasks.
The more complex weighting scheme described earlier

produces a sequence of entry points into the cells which
may be connected directly to obtain a path. Since the
points are contained in the intersection of the cells, a
straight line connecting them is guaranteed to be in the
cell.

C. Dealing with Path Search Failure

If the path search algorithm fails to find a safe path, the
reason for failure could be one of the following:

1) no safe paths exist;
2) no safe paths exist at the quantization of orientations

chosen;
3) the approximations of objects by bounding rectangu-

lar solids has removed necessary maneuvering space.

The last two causes of failure may be overcome by de-
creasing the orientation quantization or increasing the re-
presentation detail in the space representation, both at the
expense of extra computation. This suggests the possibility
of increasing the accuracy of the space representation when
a path search failure occurs. The current implementation
does not exploit this possibility.

VIII. EXAMPLES

This section presents output from the implementation
running on a simple example. The results are collected in
Fig. 1 1.

Fig. 11(a) is the initial and final configuration of the
model, including the manipulator model. Note that the
manipulator must rotate to execute this motion.

Fig. 11(b) is the COS for the start configuration. Each
convex solid in the figure is a representation of COA,YZ(Bj).
Note that most of these CspaceA obstacles are rectangular
solids, except for those arising from the interaction of the
hand A3 with block B, and the fingers A, and A2 with the
table. In these cases, the manipulator is so close to these
obstacles that its configuration is inside the bounding rect-
angular solid for the configuration obstacles (in practice,
the sides of the bounding rectangular solid are displaced
outward by some small E). This condition causes a detailed
expansion to be carried out.

Fig. 11(c) is the COS for the goal configuration. In the
goal configuration none of the obstacles needs to be ex-
panded in detail.
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(d)

(c)

(e) (f)
Fig. 11. (Continued)

Fig. 1l(d) is the COS for one of the intermediate config-
uration ranges. This COS is defined for the manipulator's
swept volume over a range of orientations of the wrist and
hand. One bounding rectangular solid, A*, approximates
the swept volume of the hand and fingers, A, U A2U A3.
The solids A4 and A5 remain unchanged.

Fig. 11(e) is the cell path and the line path. This shows
the cells from the various space representations that com-

pose the cell path. One group of cells correspond to free
space for the initial configuration, one large cell comes
from the intermediate configuration (where the hand rota-
tion takes place), and the last group of cells correspond to
the final configuration. The line path shown goes through
the centroid of each of the cells and also through the
centroids of the intersection of adjacent cells on the path.
Notice that because the cells are large, this path strategy
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produces paths that move too far from the obstacles. This
could be overcome by subdividing the cells before finding
the line path.

Fig. 11(f) is the cell path superimposed on the start COS.
This shows the relative placing of the free cells relative to
the obstacles.

IX. CHOOSING GRASP CONFIGURATIONS

The preceeding sections have discussed the problem of
finding safe paths for the manipulator; this is only part of
the pick and place synthesis problem. The major remaining
problem is choosing a grasp configuration on the part P.
For simple parts and noncluttered environments, auto-
matic grasping is amenable to simple ad hoc solutions but
for either cluttered environments or complex parts, the
problem is extremely difficult. As a step in the solution of
the grasping problem, we deal here with choosing grasping
configurations for relatively simple parts in cluttered en-
vironments. In this section, a Cspace approach to this
problem is proposed; the implementation of this approach
to grasping is currently underway.
The grasping problem is related to the Findspace prob-

lem introduced in Section III, insofar as it involves choos-
ing a safe configuration among a set of obstacles. But there
are additional constraints on the choice, for example,

1) the manipulator's fingers must be in contact with P;
2) the configuration must be reachable; and
3) P must be stable in the manipulator's hand, i.e., it

will not slip in the hand during a motion.

The first two conditions, contact and reachability, reflect
additional geometric constraints on the solution to the
Findspace problem. The third condition, stability, reflects
aspects of grasping beyond the purely geometric. Stability
will be briefly discussed later in the section.
The approach to grasping described here is based on the

one described in [25] and [26]. The basic idea is to build an
explicit description of the set of configurations of the
manipulator A for which the inside of the manipulator's
fingers are in contact with specified surfaces of P. This set
of configurations is some subset of COA(P), call it G.
Feasible grasp configurations are those in G that do not
cause any collisions with other objects in the workspace,
i.e., that are outside all of the COA(Bj). In this section, the
details of this approach are discussed. We make the follow-
ing simplifying assumptions:

1) the manipulator is Cartesian and its hand is a parallel
jaw, i.e., two parallel fingers that move along their
common normal,

2) only parallel planar surfaces, whose distance from
each other is less than the maximum finger opening,
are candidates for grasping. These are known as grasp
surfaces.

These assumptions simplify the method for identifying
feasible grasp configurations, while suggesting its useful-

H A

Fl

F1 ~~~~~~~~~F2

Fig. 12. Deflintlons of P, Pj, Fl, F2, and H used in choosing grasping
configurations.

ness and providing the foundation for a more general
approach.

A. Feasible Grasp Configurations

Let Pi and Pj be the parallel faces'2 of P to be grasped,
and F, and F2 be the inside faces of the manipulator's
fingers (Fig. 12). Under the two assumptions stated above,
when A grasps P, F, and F2 are coplanar with Pi and Pj,
respectively. Under these conditions, the legal (x, y, z)
positions of rvA are restricted to some plane H that is
parallel to Pi and Pj. Let GA(Pi, Pj) be the set of configura-
tions of A for which rvA is in H and for which Pi, Pj, Fl,
and F2 are automatically parallel. Note that GA(Pi, Pj)
represents those positions and orientations where A could
be when grasping Pi and Pj, without specifying the distance
between the fingers. GA(Pi, Pj) is called the grasp set for Pi
and P1.
Note that not all the configurations in GA(Pi, Pj) are

feasible grasp configurations, either because the fingers are
not in contact with the grasp surfaces or because the
manipulator configuration causes a collision with some
other object. Therefore, we must impose two additional
restrictions:

1) the internal faces of the fingers must overlap the
grasp surfaces;

2) the manipulator must not collide with any other
object in the workspace, i.e., the Bj.

With these restrictions on the configurations in the grasp
set, we obtain the set of feasible grasp configurations,
called a feasible grasp set and denoted FGA(Pi, Pj).

Define the configurations of F, and F2 to correspond to
those of the manipulator, i.e., each position and orientation
of these faces is characterized by the manipulator con-
figuration that would place them there. From these

12Note that objects in the current implementation are modelled as
unions of convex polyhedra. Convex polyhedra are defined as the inter-
section of a finite number of half-spaces, where each half-space is bounded
by a plane. The portion of each bounding plane on the boundary of the
polyhedron is a convex polygon, known as a face of the object.
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definitions it follows that COF,(Pi) iS the set of those
configurations of A for which the F, is in contact with Pi.
Furthermore, COF,(Pi) n GA(Pi, Pj) are those configura-
tions for which the finger is in surface-surface contact with
Pi. Therefore, it follows that

FGA(Pi, Pji) (COF (Pi) n CoF2(Pj ) n GA(Pi, Pj))
- U COA(Bj).

In this definition, we must let P be one of the Bj, say Bp, so
as to avoid collisions with P while approaching a grasp
configuration, but we must also allow A to contact P on
the grasp surfaces. The answer is to add a slight displace-
ment inward to Pi and Pj, when computing COA(Bp), while
using the original definition in the computation of COF,(Pi)
and COF2(Pj).
The feasible grasp set, as defined above, is a volume in a

six-dimensional CspaceA. We do not have algorithms for
computing this volume exactly. The algorithms of Section
III serve only to compute slice projections of the CspaceA
obstacles. It is clear that the same must be done for the
feasible grasp set, namely computing its slice projection for
some range of orientations. Such a slice would be the set of
(x, y, z) positions of A that for some range of orientations
of A, are in contact with P, but outside all of the Bj.
Presumably, this requires using the slice projections of
COF,(Pi), COF2(Pj), and the COA(Bj). A problem arises
when trying to do this, because slice projections were
defined over simple orientation range of the Cartesian
manipulator's wrist defined in Section V. These ranges are
not, in general, compatible with the ranges of orientations
that define GA(Pi, Pj). For a position of rvA on H, only a
small range of orientations will result in configurations that
are in GA(Pi, Pj), yet for that position to be in a slice of
FGA(Pi, Pj) it must be the case that no orientation within
the slice's defining range causes a collision. Therefore, few,
if any, configurations in the grasp set will be feasible grasp
configurations.
The solution to this problem is simply to define a new

set of slices whose orientation ranges are subsets of the
orientation ranges in GA(Pi, Pj). Note that a configuration
in such a slice already satisfies the orientation constraints
of the grasp set. Therefore, only the position constraints,
i.e., that the (x, y, z) position be in H, need to be enforced
to obtain the intersection of a Cspace obstacle in that slice
with the grasp set. This removes the need of computing the
complete representation of the obstacles, while simulta-
neously avoiding the problems introduced by irrelevant
orientations.
Computing the obstacle slices for orientations in the

grasp set requires being able to compute the swept volume
of the manipulator over orientation ranges that are not
simple ranges of joint angles defined in Section V. Let R be
the set of orientations in the grasp set that define a slice
and denote the swept volume of A over R as A[R]. Algo-
rithms for approximating the swept volume over these

S

Tk

Fk

(a) (b)
Fig. 13. Defining configurations of A for which F overlaps P. (a)

Illustration of definition of Tk and S. (b) Illustration of CJAvJZ( P1) e s,
with two positions of FA. reference vertex (indicated by the small circles)
showing area of overlap includes area of form TA. ED s for some s E S.

ranges can be based on the simple approach described in
the Appendix. The important constraint on the approxima-
tion to A [R] is that it does not intersect the grasp surfaces,
for positions of rvA on H.

In addition to the manipulator displacing and rotating,
the manipulator's fingers may move perpendicular to the
grasp surfaces. This additional degree of freedom has not
been discussed above. In fact, it poses no additional prob-
lems; the motion of the fingers can be treated, via slice
projection, uniformly with rotation. This simply requires
including the space swept out by the fingers during closing
in the swept volume used to define slices of the COA(Bj).

B. Overlap of Finger and Surface

The approach described above deals adequately with the
COA(Bj) in the definition of feasible grasp set, but is less
successful in dealing with COF,(P1) and COF2(Pj). The
reason for this is that a position in the slice projection of
COFI(Pi) simply indicates that for some orientation of A in
the slice, the finger is in contact with Pi. What is required
instead is the set of positions which for all orientations of
A in the slice, there is contact. In fact, we would like to
guarantee that the area of contact between the fingers and
the grasp faces always exceeds some fixed area. How this
may be accomplished is discussed below.

Let Fk and P,, be, respectively, a finger surface and the
corresponding grasp surface. We define Tk to be a small
strip at the tip of Fk, such that Fk = Tk E S, where S is the
set of points along a line segment, as shown in Fig. 13.
Again, we assume that the configurations of Tk correspond
to those of Fk (and therefore A). Assume A is in some
configuration c E GA(Pi, Pj), so that Fk and P1 are coplanar,
then CITYz(P1) is the set of (x, y, z) configurations of Tk,
and therefore of Fk and A, for which Fk n P, D Tk. But we
do not want to restrict the overlap between Fk and P, to be
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(a)

(b)

(c)

a-

(d)
Fig. 14. (a) Side view of manipulator hand, composed of finger and
"palm," holding P at initial and final configuration. (b) In initial config-
uration, shaded area represents CO,'-Vz(P.) -U CO YZ(Bj), i.e., feasible
grasp configurations for A, considering only safety at origin and letting T
be a point. (c) COAx-z(Bj) for final configuration of A and P. (d) Shaded
area represents CO,IVZ(P,)- UJCOA-VZ(Bj) U D, rI(COAxVZ(Bj)), which is
the feasible grasp set that takes into account safety at destination.

at the fingertip; instead, we want the area of overlap to
include some area Tk, obtainable by translating Tk along S,
i.e., Tk, = Tk ff {s}, with s E S. It is easy to show that

cITkyz(P) e s {c I 3s E S: Pfn (Fk)C (Tk) c {5}}s
Therefore, this is the desired set of configurations (see Fig.
13). This result can be applied to compute the slices needed
for the feasible grasp set. If R is the orientation range
defining the slice, then CITxyjR(Pl) e S[R] represents the
set of (x, y, z) configurations that for orientations in R
guarantee that the contact between Fk and P1 includes Tk.
Note that this approach can be generalized to any S and Tk
such that Fk = Tk f S; as Tk becomes smaller and ap-

proaches a point, then S approaches Fk.

C. Safety at the Destination

So far, the definition of FGA(PL, Pj) only embodies con-

straints relating to safety at the initial configuration of P;
however, a grasp configuration must also be safe at the
final configuration of P. Clearly, another feasible grasp set
can be computed at the final configuration of P, say

FGA(PI', Pj') where the primed faces indicate the faces at
their final configuration. But these two feasible grasp sets
cannot be intersected to obtain those grasp configurations
that are safe for both configurations of P, because a grasp
configuration corresponds to different manipulator config-
urations at each different configuration of P. What is
needed is a way of defining those grasp configurations in
the initial configuration of P that would lead to a collision
when P is in its final configuration (Fig. 14).
A grasp configuration establishes a fixed relationship

between the fingers and the grasped part P. Let the final
configuration of P be obtained by a displacement consist-
ing of a translation t and a rotation r, indicated by D1 r(P)
Clearly, any set of positions X bears the same relationship
to D1 r(P) as D, r'(X) bears to P. Therefore, if COA,YZ(Bj)
is a set of positions of A which cause collisions at the final
configuration of P then Dt-rl(COAYZ(Bj)) represent infeasi-
ble grasp configurations (Fig. 14). This result also holds for
swept volumes of A; therefore, it may be used to ensure
safety at the destination in the definition of feasible grasp
sets.

D. Computing the Feasible Grasp Set

The discussion in the preceding subsections is sum-
marized in the following definition of feasible grasp set for
some range of orientation in the grasp set. We denote this
orientation range as R, and let R' denote the same orienta-
tion range as R relative to P, but at the destination of P.
We also let (t, r) be the displacement between the initial
and final configurations of P. Then, the feasible grasp set,
for the orientation range R and displacement (t, r), is

FGAx,[Rz,(Pi, Pj) (((ciTy (P,) n CITxy[Rj] (Pj)) e S[R])
U COA[YR](Bj) U Dtr'(COA '](B)).
i

All the elements in this definition can be computed using
the COxyz algorithm of Section Ill-B and a swept volume
algorithm.

E. Approach and Departure

Configurations in the feasible grasp set as defined above
are guaranteed to be safe both at the initial and final
configurations of P. While these conditions are sufficient
in most situations, they do not guarantee that the feasible
grasp configurations can be used during a pick and place
operation. For a feasible grasp configuration to be a legal
grasp configuration, it must allow the manipulator to reach
and depart the initial and final configuration of P. In
summary, the following conditions must hold for a legal
grasp configuration:

1) it must be possible to reach it from the initial config-
uration of the manipulator;

2) it must be possible to remove P from its initial
configuration safely;

3) it must be possible to reach the final configuration of
P with P held in the hand;

- \\\\\|\\llz\\\\\\4
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4) it must be possible to withdraw the manipulator from
the final configuration of P.

The Findpath algorithm described in the preceeding
sections can be extended to deal with the problem of
choosing a grasping configuration that is reachable from
the manipulator's initial configuration. As we saw above,
the feasible grasp configurations, over some range of orien-
tations, are those within some specified volume of CspaceA,
but outside the slice projections of suitably defined CspaceA
obstacles. Hence, they are equivalent to the slices COS[c, c']
of Section VI-B. Therefore, a free space representation for
the feasible grasp configurations can be constructed and
the resulting free cells linked in the free space graph. The
feasible grasp configurations for alternative grasp surfaces
can also be linked into the graph. In the resulting FSG, any
path from the cell containing the origin to a cell containing
a feasible grasp configuration shows that this grasp config-
uration may be reached from the origin. The path search-
ing process must be modified to search for any cell that
contains a suitable grasp configuration, rather than search-
ing for a particular cell containing the destination.

Similarly, departure from the origin and approach to the
destination could be handled by testing whether the de-
stination is reachable using the FSG constructed as above.
The difference is that now the hand is holding P; therefore,
the polyhedral description of P must be treated as if it were
part of the manipulator. This requires adding a new set of
CspaceA obstacles, arising from the interaction of P and
the objects in the workspace, to the ones already computed
for the manipulator. This is entirely analogous to modify-
ing the description of the manipulator, which is already
modeled as a union of convex solids. But the geometric
relationships between P and Ai are determined by the
grasp configuration, which has several degrees of freedom.
The problem can be approached by treating these addi-
tional degrees of freedom, via slice projection, just as the
wrist rotations were treated. This approach imposes a great
cost in additional computation. A simpler, though less
general, technique is to use heuristics in choosing a feasible
grasp configuration and then test, via the path search
process, whether the grasp configuration permits depar-
ture. If it does not, a new configuration might be chosen
and the process repeated. This approach would not be
adequate for very cluttered environments or situations
involving parts mating at the destination. In such environ-
ments an approach based on slice projection would also be
susceptible to failure. Further research is needed in this
area.

F. Stability in Grasping

We have thus far not considered the issue of stability of
the feasible grasp point. An adequate treatment of stability
in grasping is not yet available, although some promising
approaches exist [5]. The techniques described in this sec-
tion can be used to implement two simple grasping heuris-
tics, which work adequately when 1) the manipulator hand
is made up of rigid fingers 2) the object to be grasped, P, is

small relative to the manipulator hand; and 3) parts mating
effects are ignored. The two heuristics are

1) ensure at least a minimum contact area with the grasp
surfaces. The amount of overlap should depend on
object properties such as weight and surface smooth-
ness.

2) The perpendicular projection of the center of mass of
P should be near to F1lnPi and F2 n Pj.

The implementation of the contact area heuristic was
discussed in Section IX-B. The center of mass heuristic can
be implemented by giving preference to grasp surfaces for
which the center of mass, projected onto the plane con-
taining Pi, falls within Pi, and similarly for Pj. Further-
more, for specified grasp surfaces, the choice among legal
grasp configurations should minimize the distance of the
projection of the center of mass to the area of overlap
between finger and grasp surface.

These heuristics, though adequate for many tasks, are
not a substitute for a general theory of stability in grasp-
ing. This remains one of the most interesting open prob-
lems in robotics.

X. THE EFFECT OF UNCERTAINTY

In the preceeding sections we have assumed that

1) the configuration of all the objects is known exactly,
and

2) the configuration of the manipulator can be con-
trolled exactly.

Both of these assumptions are only approximations to
reality. In practice, configurations can only be known to
within some uncertainty. Both of these sources of uncer-
tainty affect what manipulator motions are safe.

A. Modeling Worst Case Uncertainty in CspaceA

In CspaceA, the two sources of uncertainty have similar
effects, i.e., modifying the shape of the CspaceA obstacles.
This section deals with techniques for taking these effects
into account. The following notation is useful in the discus-
sion. Let e = ( (II)(f31, * *, f3n) 66Jn, and similarly, let
configurations be (yi) = (Y1y, ,yn) E 6Pn. The index set
.1...., n} will be referred to as I; let K C I. The set UK(e)
denotes the set of configurations in CspaceA whose K-
parameters are less than the absolute value of the corre-
sponding parameter of e.

(yi) E UK(e) { - Y_ if i E K,
otherwise.

Uncertainty in the configuration of A in CspaceA can be
represented as a region around its nominal configuration c;
within this region are all the configurations in which A may
be. Simple regions can be characterized by {c} EW UK(eA).
Assume that (A)a n B #& 0, i.e., that a E COA(B). Any
nominal configuration a' such that a' + x = a, for x E
UK(eA), should also belong to COA(B). This means that
under uncertainty of A, COA(B) should be replaced with



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-I 1, NO. 10, OCTOBER 1981

COA(B) E UK(eA). In practice, we do not ever compute
COA(B); rather, we compute slice projections of it using
the swept volume of A over ranges of orientation parame-
ters R. Therefore, the orientation and translation uncer-
tainty must be treated separately. Orientation uncertainty
affects the definition of the manipulator's swept volume.
For example, to compute a slice with parameters [c, C']R,
the swept volume A[c - eA, C' + eA]R is used in place of
A[c, C'] R. The effect of the uncertainty in the translation
parameters T can be computed as indicated in Section V.A
using the COAYZ( B) algorithm.
The worst case effect on COA(B1) of uncertainty in the

configuration of the Bj, can be modeled by replacing B
with the swept volume of B over the uncertainty range.
Alternatively, if the uncertainty in the configuration of Bj
can be approximated by an uncertainty in translation13
UT(eB), then the uncertainty of A and B can be combined
into a single uncertainty14 and treated as the uncertainty of
A. If T is the set of indices for translation parameters, then
the combined uncertainty is

UT(eA ) = UT(eB.) e UT(eA)-

B. The Effect of Uncertainty on Pick and Place Synthesis

The presence of uncertainty significantly affects manipu-
lator programming in general and the synthesis of pick and
place motions in particular. One approach to planning
motions in the presence of uncertainty is to plan paths that
are safe under the worst case uncertainty, i.e., paths outside
the expanded CspaceA obstacles defined above. This ap-
proach rules out most operations that involve moving near
objects, e.g., grasping. Another approach is to assume that
uncertainty does not significantly affect the outcome of
most operations and to plan motion assuming nominal
configurations. A compromise position is to redefine the
pick and place synthesis problem so as to isolate those
operations that are most susceptable to uncertainty from
those others where uncertainty plays a relatively minor
role. The latter can be addressed by the techniques out-
lined in this paper; the former require a different ap-
proach. One possible redefinition of the pick and place
problem is the following.

1) Find a nominal grasp configuration assuming that
there is no uncertainty.

2) Identify a grasp approach configuration, a configura-
tion that can be shown to be safe under worst case
uncertainty estimates for object and manipulator con-
figuration.

3) Identify a grasp deproach configuration, a configura-
tion which is safe for the manipulator grasping the
part, given the uncertainty in the part's configuration

13This can be done by defining a new translation uncertainty such that
the swept volume over this range of positions will contain the swept
volume over the original uncertainty range.

14This assumes that the translation space of the manipulator is the
same as that of the objects in the workspace, which is true for Cartesian
manipulators.

after grasping and the uncertainty in configurations
of nearby objects.

4) Compute a path from the manipulator's initial con-
figuration to the grasp approach configuration, as-
suming worst case uncertainty.

5) Identify a destination approach configuration, a con-
figuration which is safe for the manipulator holding
the object, given the uncertainty in the grasp config-
uration and the uncertainty of nearby objects.

6) Compute a safe path from the grasp deproach config-
uration to the destination approach configuration for
the manipulator and the grasped part, also assuming
worst case uncertainty.

7) Identify a destination deproach configuration, a config-
uration which is safe for the manipulator, given the
uncertainty of nearby objects.

This formulation of the synthesis problem factors out
the problems of approaching and deproaching both the
nominal grasp configuration and the destination. For both
of these problems, the use of sensory information to iden-
tify the actual state of the task and to accommodate to it is
important [25], [30], [44]. When the uncertainty is small,
the problem can be dealt with by ad hoc methods, e.g.,
opening the fingers very wide and relying on the grasping
action to place the object or the manipulator in approxi-
mately the correct orientation [19]. The general problem of
planning manipulator operations that are robust in the face
of uncertainty is an important problem [30], but beyond
the scope of this paper.

XI. SUMMARY

This paper has presented an approach to the central
geometric problems underlying the synthesis of pick and
place motions for Cartesian manipulators. The key tech-
nique in the approach is the use of explicit polyhedral
representations of the configuration constraints on the
manipulator. This representation permits the use of simple
and powerful geometric operations to solve problems in-
volving safe motions of the manipulator. In particular, the
problems of finding grasp configurations and safe paths in
the absence of uncertainty.
The concepts of configuration space and configuration

space obstacle have played a central role in the approach
to gross motion synthesis developed here. Similar concepts
play an important role in the approach to compliant mo-
tion synthesis described in [30]. These concepts have also
proven useful in other geometric applications [1], [2], [4],
[45].

APPENDIX I
A POLYHEDRAL APPROXIMATION FOR SWEPT VOLUME

The swept volume is the volume occupied by a poly-
hedron over a set of configurations, e.g., along some path.
The swept volume over a range of translations can be
computed using the CO'Y- algorithm. In this appendix, we
will limit our attention to computing a simple polyhedral
approximation to the swept volume for rotations of a
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Fig. 15. WEDGE iS convex polyhedron used to approximate the volume

swept out by cuboid aligned with coordinate axes, as it rotates around
the z axis, assuming the z axis does not penetrate the cuboid.

(a)

I Y

x

X=Ay X= AY
2 2

(b)

Fig. 16. Computing polyhedral approximation to swept volume under
pure rotation.

polyhedron around an arbitrary axis. This method is
included here for completeness; it is not the best poly-
hedral approximation to the swept volume.
The swept volume approximation described here returns

a list of convex polyhedra of two types:

1) CYLINDER-a polyhedral approximation to a right
circular cylinder.

2) WEDGE-a polyhedral approximation to the volume
swept out by a cuboid, aligned with the coordinate
axes, as it rotates around the z axis (Fig. 15). It
assumes that the z axis does not penetrate the cuboid
and that the rotation is less than 7r.

The input is a polyhedron, B, an axis of rotation which
is the z axis of a reference frame, and 0, the angle of
rotation. The first step is to rotate the frame around z so
that the x axis goes through the centroid of the projection
of B on the (x, y)-plane of the frame. Compute an aligned
bounding rectangular solid for B, RB(B), whose dimen-
sions are (A1x, Ay, Asz). If the z axis does not pass through
the object, then if 0 < 0max < S then simply return a WEDGE
enclosing the swept volume. If the z axis penetrates RB(B),
then if Ax > Ay, cut B using the planes x = (Ay)/2 and
x = ( -Ay)/2, and return a cylinder of radius V2 Ay whose
height is Az and return the swept volumes of the pieces of
B beyond the central area. The procedure is similar if
Ay > lAx. Fig. 16 illustrates this process. Here 0max is some
user specified parameter, although it could be chosen to
guarantee some kind of error bound. If 0 > Omax, then
divide the rotation into a set of successive rotations each
returning a wedge.
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