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Abstract. We have  investigated  the  problem of locat- 
ing  cylinders  in  a  depth  scan  map.  The  crucial  problem 
is deciding  whether a group of scans  could  arise  from  the 
same  cylinder. We investigated  a  number of traditional  ap- 
proaches  to  this  problem. We found  significant  reliability 
and  accuracy  problems in the  traditional  approaches  that 
involve fitting  ellipses  to  the  scan  data. As an  alterna- 
tive, we have  developed a simple  and  very  robust  method 
for  computing  the  axis of a cylinder  based  on  three  scans. 
This  computation  provides  the  basic  capability  needed  to 
segment  the  scan  data.  This  report  summarizes our expe- 
rience  with  several of the  methods  and  describes  the  new 
method in detail. 
1. The problem 

The  problem we address  in  this  paper is tha t  of locating 
cylinders in data  from  a  light-stripe  based  range-finder. We 
assume  that we have  available a number of seam which 
represent  the  distance  from  the  sensor,  that is, depth ,  of 
the  nearest  points on the  intersection of a  light  plane  and 
the  scene  (Figure 1). 

m 

Figure 1. Schematic of laser sensing system. For each position 
of t h e  plane of light, a scan of points in the camera can be 
processed to determine three-dimensional position. 

Our goal is to  identify  the  presence of cylinders in this  data. 
We assume  that  this is to  be  done by hypothesis  accumu- 
lation,  that  is, by testing  one or more  scans  to  construct a 
hypothesis  for a cylinder  axis  and,  then,  identifying  large 
consistent  sets of hypotheses.  Therefore,  the  crucial  step in 
the  computation is constructing a cylinder  axis  from  one or 
more  scans.  The  traditional  approach  to  this  problem is to  
fit an ellipse to  the  scan.  The  parameters of the  ellipse  can 
be  used t o  solve for  the  cylinder  axis [Bolles 861. The  ad- 
vantages of this  technique  are  that  only  one  scan is required 
to  construct a cylinder  hypothesis  and  that  the  solution is 
independent of sensor  location.  The  fitting  technique, how- 
ever, is subject  to  numerical  accuracy  problems,  especially 
when  only  small  segments of the ellipse are  available. 

In  this  paper, we develop a very  simple  technique  for 
solving for the  orientation of the  cylinder  axis  given  three 
scans  on  the  cylinder.  The  technique is very  stable  nu- 
merically. In addition, like ellipse  fitting,  the  solution is 
independent of sensor  location. 

2.  Our Approach 

2 .1  Characterizing the cylinder axis 

The  method we use for this  task is based 
geometric  question  (refer  to  Figure 2): 

/ 

on  the following 

Figure 2.  Two scans A and B on a cylinder.  The question is 
whether the line segments albl  and a2bz are parallel only when 
they are also parallel to the cylinder axis. 
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Take tu10 scans ('4 and B )  o n  a cylinder,  obtained  as  the 
intersect ion of two  diflerent  light  planes  with  the  cylinder. 
Pick  two  pairs of points on these  scans: a1,az a n d   b l ,  b2. 
Under  what  conditions are the  l ine  segments   and a 
are parallel. In particular,  what  additional  conditions  will 
imp ly   t ha t   t hey  are  parallel  only  when  they  are  also  parallel 
to  the  cylinder  axis.  

To  answer  this  question, we need  to  determine  the  con- 
ditions  under  which we can  find  four  points  on  the  surface 
of a cylinder,  such  that  the  lines  between  two  pairs of points 
are  parallel.  Without loss of generality, we can  consider a 
cylinder of radius r: with  axis  oriented  along t.he i axis,  and 
centered at  the  origin. A point  on  the  cylinder is given by 

p(8, h)  = (r cos 8, r sin 8 ,  h )  

Without loss of generality, we can  incorporate r into  the 
height h, by  scaling  the  dimensions of the axes.  In  this 
case,  points  on  the  cylinder  are  given by 

pi(8, h) = (cos@i,sinBi, Hi) i = 1 , 2 , .  . . 
Now we  are  free  to  rotate  the  coordinate  system  about  the 
i axis.  Thus,  without loss of generality, we choose a coor- 
dinate  system in which 

oZ = -e1. 

Hence,  our  four  points  can  be  represented  by 

a1 = p1 = (cosOl,sin81,Hz) 

bl = p2 = (cos81,-sin81,Hz) 

a2 = p3 = (cos 8 3 ,  sin 6'3, H3) 
bz = p4 = ( ~ o s 8 ~ , s i n O ~ , H 4 )  

Now consider  the  vectors p1 - pa and p3 - p4 

p1 - pz = (0 ,  2sinOl, H1 - Hz) 

p3 - p4 = (cos 83 - cos O4,sin 03 - sin84, H3 - H 4 )  . 
These  vectors  are  parallel if and  only if their  compo- 

nents  are  equal,  modulo  the  same  scale  factor, or equiva- 
lently, if their  cross  product is the  zero  vector. By looking 
at  components, we arrive  at  three  conditions  on  the  vectors, 
in order  for  them  to  be  parallel. 

2  sin 81 (cos 83 -- cos 84) = 0 (1) 

(cos83 - ~ 0 ~ 8 4 )  (HI - H z )  = 0 (2) 

2sin01 (H3 - H 4 )  = (sin83 - sine4) (HI - H @ )  

Now equation (1) implies  either  sin 81 = 0 or 84 = i 8 3 .  
Equation  (2)  implies  either 8 4  = 3 ~ 8 3  or H1 = H Z .  

Thus, we can  exhaustively  examine  the  conditions  needed 
for parallelism  case by case. 

1. Suppose 8 4  = 8 3 .  In  this  case,  it is clear  that p3 - p4 
is parallel  to i, as desired. 

2. Suppose H1 = Hz and  sin81 = 0. This is the  trivial 
case of p1 = pa, which we will ignore. 

3 .  Suppose 0 4  = - 8 3 .  In this  case, we have 

p1 - p2 = (0 ,2sinBl ,H1 - H z )  
p3 - p4 = (0,Zsin 6'3, Hz - H 4 )  . 

If sin 81 = 0 or sin O3 = 0 then we have  the  desired  case 
of the  lines  being  parallel  to  the 2 axis. So the  only 
case  remaining is given by the  above  two  equations 
under  the  condition  that  sin 81 = 0 and  s in& = 0. 
Unfortunately, so long as 

sin81  (Hz - H 4 )  = sin83 (HI - Hz) 

Figure 3. Two solutions to  the problem of parallel lines, whose 
endpoints lie on the surface of the cylinder. In  the case on the 
left, the lines are also parallel to the cylinder axis. In the case 
on the  right, they are  not. 

we-have a valid  set of points,  such  that  their  separation 
vectors  are  parallel,  but  are  not  themselves  parallel  to 
the  cylinder  axis. 
Two  different  classes of such  solutions  are  shown in 

Figure 3. We need  an  additional  condition  that will allow 
us to distinguish  the  case  on  the  right  from  that  on  the 
left. The figure  allows  us  a  simple  observation.  In  the  case 
on  the  right,  the  two  lines will only  intersect  the  cylinder 
a t   the  chosen  points.  Elsewhere,  the  lines will either  line 
inside or outside of the  cylinder  itself. On the  other  hand, 
in the  case  on  the  left,  the  entire  lines lie along  the  surface 
of the  cylinder.  Thus,  suppose we take  a  third  slice of the 
cylinder,  and  further  suppose  that  on  that  slice, we can find 
a  point 

p5 = ( ~ o s 8 ~ , s i n O g , H 5 )  
such  that p1 - p5 is parallel  to p1 - p2. Then we have 

p1 - p5 = (cos81 - cosOg,sin81 - sinB5, HI - H5)  

p1 - p2 = (0,2  sin 81, H1 - H z )  
Thus,  these  two  lines  being  parallel  implies 81 = i 8 g .  
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1. Suppose B1 = 0 5 .  Then  clearly p1 -- p j  and p1 - pz 
are  both  parallel  to 2 and we are  done. 

2. Suppose 01 = - 0 5 .  Then 
p1 - p j  = (0,2sinQl,N1 ~ H j ) .  

Now, p1 - p j  and p1 - pz being  parallel  implies  either 
sin01 = 0 or N1 - H5 = H1 - H Z .  Rut if p1 = p5, 

then  the  second  case  cannot  be  true,  which  implies 
sinBl = 0: which  implies that   the lines  are all parallel 
to  the i axis. 
This allows us to  make  the following observation. 

Take  three  scans (A,  B and  C )  on a cylinder,  obtained 
as   the  intersect ion of three  different  light  planes  with  the 
cyl inder.   Pick  two  pairs  of points on the first  two  scans: 
u1,az and bl, bz .  if the  l ine  segments Gb; and & are 
parallel, and there  is  a  point a3 on  the  third  scan,   that   l ies  
on the  extension of the  ray a, then   the   l ines   segments  
are also parallel to  the  cylinder axis. 

2.2 Solving  for  the  cylinder axis 

Figure 4. Illustration of a linear time algorithm for finding the 
cylinder axis. 

Consider how this  fact  can  be  used to develop  an  algorithm 
for  solving for the  cylinder  axis  (Figure 4). Given two scans 
( A  and B): pick two  points  on  one  scan: a z ( i  = 1 ,2 ) :  the 
points  should  be widely separated on the  scan,  but  they 
must lie on  the  common  overlap of the  two  scans. We must 
choose b i ( i  = 1 ,2 )  on  the B scan. We will write  b,,k(k 5 ,n) 
to indicate  the  choice of the  kth  point  on  the B scan as b,. 
Then,  for  each  point b , , k ( k  5 n)  on the B scan?  construct 
the  unit  vector V i , k  from a, pointing  at  the  point b t , k .  The 
dot  product U l , k  . V Z , ~  (for  any choice of points b l , k  and 
b z ; i )  measures  the  cosine of the  angle  between  the  two  line 
segments.  The  brute forc,e algorithm  simply  finds all the  dot 
products V 1 , k  and picks the  one  closest  to 1.0. If there 
are n points on scan B this  operation  requires  computing 
2n unit  vectors  and  performing n2 dot  products.  But, we 
can  do  better. 

A  more efficient algorithm  exploits  what, we know of 
the  geometry. We start   with k = 0,1 = 0. that  is, the  initial 

B points  are bl,O and b2,o; note  that  these  are  the same  
endpoint of the B scan.  The  basic  loop of the  algorithm 
increments k and  then  executes a loop that  increments 1 
and  evaluates v l , k  ‘ z z , ~  until  it  finds  a  maximum.  This loop 
is repeated  until  the  value of the  best  dot  product  starts 
dropping. 

!best = 0 
dotbest = V I , U  . V Z , O  

Loop  for k from 0 to  n 
dot = dotbest 
Loop  for 1 from 1be ; t  to  n 

If V 1 , k  . v2; l  2 dot 
Then dot = V 1 , k  . U Z , ~ ;  lbest = 1 
Else  Exit  Loop 

End  Loop 
If dot 2 dotbest 

Then dotbest = dot 
Else  Return(v1,k-1) 

End  Loop 

The  value of dotbeet should  approach 1 .O monotonically 
and  then  start  to  drop off. At  the  peak,  both  the U, ,k  are 
estimates of the  cylinder  axis  direction.  This  estimate  can 
be refined to  sub-pixel  resolution by interpolating  between 
the  points bz ,k  using, say, a  circular  interpolant.  In  the 
worst  case  this  algorithm  computes 2n unit  vectors  and n 
dot  products.  In  fact,  one  expects  significantly less than 
these  bounds. If there is relatively  little  rotation of the 
scanner  between  the A and B scans,  then  the  initial choice 
of k  and 1 to  be  greater  than 0 can  significantly  reduce  the 
computation. 

One  important  caveat in using  the  above  algorithm is 
that  the  presence of noise can lead to  false local extrema 
in the  value of the  dot  product.  Our  implementation ac- 
tually looks ahead on the  scan a bit  to  make  sure  that  the 
extremum is the  global  one. 

It is desirable  to  average  the  results  obtained from a 
variety of choices of the  points a,: to  reduce  the effects of 
error in measuring  the  position of the u,. For example, 
given points  alra2,a3,  the  operation  described  above  can 
be  repeated  for  the  three  different  combinations ( a l , a z ) ,  
(a2,  a s )  and (a1 a s ) .  

Once we have  obtained  an  estimate of the  cylinder  axis 
direction  from  a  pair of scans we need to  incorporate  a  third 
scan  to  test  that  the  estimated  axis is in fact a real one. We 
could do  this by extending  one of the  two  parallel  lines  until 
it  intersects  with  the  plane of a  third  scan and testing  that 
the  intersection point, also lies on  the  cylinder.  Alterna- 
tively, we can  cluster  axes  hypotheses  from  successi~e  pairs 
of scans. If a sequence of scans  pairwise give  rise to  roughly 
the  same  axis  direct,ion,  then  the  condition o f  being  parallel 
to  the  cylinder  axis is automatically  satisfied. 
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We have  found  that  the  axis  direction is sufficient to  
do  the  grouping of cylindrical  segments,  but  once  the  axis 
is known  it is straightforward  to  compute  numerically  an 
estimate of the  axis  displacement.  Any of the  methods in 
section 3 will serve.  In our testing, we have  either  simply 
used  the  position of the  average point, of the  scan  as a (very) 
rough  estimate of the  center of the  cylinder, or we have  used 
a straightforward  Hough  transform  technique  to  determine 
the offset of cylinder  axis. 

We have  tested  this  method in two ways: 

n’e  have  taken a number of very  accurate  scans of a 
number of cylinders  and  computed  the  axis  based  on 
that  data.   What we found is that  we can  estimate 
the  direction of the  cylinder  axis  to  approximately 1 
or 2  degrees on the  basis of two  scans  taken 0.2 inches 
apart. For scans  taken 1.0 inch  apart,  the  estimate is 
less than 1 degree  from the  correct  axis. 

e fire  have  performed  a  large  number of experiments us- 
ing much lower accuracy  data  with a variety of cylin- 
ders  and  other  elongated  objects  (cables).  This  data 
gives us an  idea of how robust  the  method is. We 
have  seen  no  catastrophic  failure  even for noisy data  
taken  from  surfaces  that  are  not  truly  cylindrical.  The 
axis  direction  estimates we obtain  from  cylindrical seg- 
ments  tend  to  be  clustered  within 5 degrees.  The 
method  even  tolerated  scans  that  were  partially  oc- 
cluded by overlapping  objects.  Figure 5 shows some 
Scans from  a  representative  tube  and  the  linear  seg- 
ments  identified by the  algorithm.  The  position of the 
axis in these  figures is not  being  computed  accurately, 
only the axis  direction is reliable. 

Figure 5. Examples of tube axes computed by the described 
method. 

2.3 Why it works 

Clearly,  the key to  the  performance of the  algorithm is the 
parallel-line  observation of the  previous  section.  The devel- 
opment of section 2.2 shows  algebraically  why  this  obser- 
vation  should  hold,  and  the  experiments  show  that  it  does, 
in fact,  work  as  desired.  In  this  section, we provide  a ge- 
ometric  argument  as  to why it  works.  Consider the  points 
a l ,  u2,bl chosen so that   the  line  segment a is not parallel 
to  the  cylinder  axis.  The key question is: Can we choose 
bz so that  a is parallel  to a? 

Figure 6. Part (a). End-on view of the scans on the cylinder 
with the chosen points  indicated. Part (b). Side view of the 
same situation. 

The  simplest way of visualizing  the  situation is shown in 
Figure 6. This  picture  helps us see  why  we  cannot  gener- 
ally pick ba to  satisfy  the  conditions  above.  Imagine  looking 
along  the  cylinder  axis,  then  the  points  on all scans  map 
into  segments of the  same  circle  (save for measurement er- 
ror). We require  that GG be  parallel  to &. Recall that  
parallel lines are  always  parallel  under  any  rectilinear  pro- 
jection,  therefore  the  lines G; must  be  parallel to & in 
the  end-on view of the  cylinder.  Note  that  only  points  along 
the  cylinder  axis  map  into  the  same  point  on  the  projection 
so, by construction, u l  and b ,  are  different  points  on  the 
circle  (Figure 6) and  define a line in the  projection.  Since 
bz must  be  chosen  to  be  on  the  circle,  it  must  be a t   the  
intersection of the  line  parallel to with  the  circle.  This 
intersection will be  on  the  opposite  side of the  circle  from 
u2. If the  scans  are  mostly  overlapping  in  the  projection, 
b 2  cannot  be  chosen  to  be on the B scan. 

There is a t  least  one  apparent  counterexample  to  the 
argument given above.  What if the  scans  cross  (see  figure 
7 ) ?  Then  it  should  be  possible to choose  parallel  lines as 
shown in the  figure. Do these  correspond  to  an  axis? We 
believe that  the  answer is yes! If one  can  find  two  sets 
of parallel  lines  then  the  scans  are  truly  ambiguous;  there 
really  are  two  cylinders  that  can give rise  to  that  pair of 
scans.  In  fact,  one  can  see  that  when  the  two  crossing  scans 
are  perpendicular  to  each  other,  two  sets of parallel  lines 
exist  and  the  situation is ambiguous. As the  scans  become 
more  parallel,  the  ambiguity  disappears  (and  only  one  set 
of parallel  lines  can  be  found). More on  this in section 2.3. 
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Figure 7. Part  (a). End-on view of the scans on the cylinder 
with  the chosen points indicated.  Part (b) .  Side view of the 
same situation. 

will have  rapidly  changing  values.  Figure 9 shows  the  axis 
angles  computed  from  the  examples in figure 5 and  the seg- 
mentation  into  linear  segments.  The  angles  are  relatively 
noisy due to the  inaccuracies in the  scan  data,  but  during 
the  straight  segments  the  deviation from the  average  angle 
is within 2 or 3 degrees. We use  a  simple  split  and  merge 
algorithm  to  find  segments of nearly  constant  angle. We 
have  used  this  method in the  results in figure 5 with  quite 
satisfactory  performance. 

.4n alternative  construction  (Figure 8) reaches  the  same 
conclusion.  Consider the  conditions  that b2 must  satisfy 
simultaneously: 

Figure 9. Axis angles computed for the examples of Figure 5. 
The  straight segments are indicated in  each graph, and corre- 
spond to  the cylinder segments found in Figure 5. 

3. Fitting,  and why it is not 

Figure 8 .  Alternative  construction for proving the  paralkl-line 
observation. 

e Obviously, b2 has  to  be  on  the B scan. 
e If the  segment azb:! is to  be  parallel  to  then  it 

must  be in the  plane P defined  by  the  three  points 
ul,bl,az. Therefore, 6 2  is constrained  to lie on  the 
ellipse E formed by the  intersection of the  plane P 
and  the  cylinder. 

e Therefore, b2 must  be  one of the  two  possible  inter- 
sections of the B ellipse  and  the E ellipse. But ,  bl is 
already  (by  construction)  one of these  intersections, so 
b2 must  be  the  other and it must  be  on  the  line  parallel 
to  alb l  going  through a2. 

~ 

Clearly, b2 cannot  generally  be  chosen t o  satisfy all those 
conditions. 

The,  perhaps  unsurprising,  conclusion is that  there is 
a good  reason  why  the  implemented  method  works well. 

2.4 Getting  the  bends 

We have used the  method  described in section 2 to segment 
a tube  made up  of straight  and  curved  sections.  The de- 
sired  result is a  list of the  scans  on  the  straight  sections. 
n7e  detect  the  onset of a bend by examining  the  angles  that 
the  computed  axes  make to the  global  coordinate  axes.  The 
axes  on  the  straight  sections w i l l  have  nearly  constant val- 
ues of these  angles  while  the  axes  computed  along  the  bends 

Initially, we attempted  to  locate  the  cylinders  using ellipse 
fitting.  Bob Bolles of SRI has  reported  satisfactory  per- 
formance  with  this  method. A description of his  approach 
can  be  found  in  [Bolles 861. We attempted  to  replicate his 
approach  and  found  that while it  was  possible  to  detect 
cylinders  that  way,  the  method was error  prone  and inac- 
curate.  It  worked  for Bolles because of the  high  quality 
of the  data  he  was  using  (obtained  from  a  Technical  Arts 
scanner).  With a much less accurately  calibrat,ed  scanner 
a t  MIT, only  about  half  the  scans  could  be succesfully fit- 
ted  and  the  expected  error in the  axis  direction  was  around 
20 degrees.  In  this  section, we describe  some of these  at- 
tempts. 

First we attempted  to  ignore efficiency and  applied  the 
two  best  known  algorithms for fitting conics [Bookstein 791 
and  [Sampson 821. The  results  were  dismal.  The  methods 
have slow convergence  and  they  are very sensitive  to error. 
They  worked  quite well with  idealized  sampled  data, bu t  
they  amplified  noise by an  order of magnitude.  The  main 
reason  seems  to  be  that  realistic  scan  data  only covers a 
small  portion of the  outline of the  ellipse.  These  methods 
work fairly well when  data  covering  most of the  perimeter 
is available. 

,kt this  point, we attempted a new approach  based  on 
using  only  four  points of data  and  cxploiting  the  known 
radius.  The  hope  was  that  this  would  be  much  more  efi- 
cient  and  not  noticeably less accurate.  The  basic  idea  stems 
from  the  observation  that  the  perpendicular  distance of any 
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point  on  the  cylinder  from  the  axis line is R, the  cylinder 
radius. You need four  points  to  constrain  the  line  because 
the line  has  four  degrees of freedom.  The  points  can  be 
drawn  from  anywhere  on  the  cylinder.  Let t is a unit vec- 
tor  along  the  cylinder  axis, q is a point  on  the  cylinder  axis 
chosen so that  its position  vector is perpendicular  to t ,  and 
p i ,  (1 5 i 5 4) are  the  points  on  the  cylinders. We want to 
find t and q that  satisfy  the following six  constraints: 

I I ( P Z  - 4 )  X tli R 
q . t = 0  

lltll = 1 

The first four of these  constraints  state  that  the  per- 
pendicular  distance  from  the p i  to  the  axis  line is R, the 
cylinder  radius. 

As expected,  this  method  was  more efficient but  it 
proved  sensitive  to  the  choice of points  on  the  scan.  Again, 
given points  distributed  around  the  perimeter  improved  its 
performance. 

We tried  several  other  variations of these  methods, all 
with  similar  (n0n)performance.  Ultimately, we think  that 
methods  that  depend  on  obtaining  accurate conic  fits and 
operating  on  the  conic  parameters  are  doomed  to  failure. 

Before  discovering the  method  described in section  2, 
the  most effective technique we found involved connecting 
the  endpoints of the  scans  and  locating  sets of them  that 
are  parallel. If the  scans of a  tube  are all taken  while  the 
scanner is translating,  this  method  provides a very quick 
way of segmenting  the  data. We later  found  out  that  this 
is precisely the  method  used by Agin  in his  early  Stanford 
thesis iAgin 72;. 

4. Surface Rulings 

Finally, we observe  that  our  technique  for  finding  cylinder 
axes  from  data  essentially  reduces  to  finding  rulings  on  the 

. cylinder  surface  from  sparse  scans,  and  using  the  simple 
relationship  between  the  surface  rulings  and  the  axis of the 
cylinder  to  deduce  the  position  and  orientation  ofthat  axis. 
This  observation  suggests  that  more  complex  surfaces  could 
also  be  analyzed in this  manner.  For  example;  cones  could 
be  deduced by finding  rulings  on  the  surface  that  intersect 
a t  a common  point. I t  may  also  be  possible  to  analyze 
generalized  cylinders in this  manner,  and we are  currently 
investigating  this  extension. 
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