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An Automatic Registration Method for Frameless
Stereotaxy, Image Guided Surgery, and
Enhanced Reality Visualization

W. E. L. Grimson,* Member, IEEE, G. J. Ettinger, S. J. White, T. Lozano-Pérez,
W. M. Wells III, Member, IEEE, and R. Kikinis

Abstract— There is a need for frameless guidance systems to
help surgeons plan the exact location for incisions, to define
the margins of tumors, and to precisely identify locations of
neighboring critical structures. We have developed an automatic
technique for registering clinical data, such as segmented mag-
netic resonance imaging (MRI) or computed tomography (CT)
reconstructions, with any view of the patient on the operating
table. We demonstrate on the specific example of neurosurgery.
The method enables a visual mix of live video of the patient and
the segmented three-dimensional (3-D) MRI or CT model. This
supports enhanced reality techniques for planning and guiding
neurosurgical procedures and allows us to interactively view
extracranial or intracranial structures nonintrusively. Extensions
of the method include image guided biopsies, focused therapeutic
procedures, and clinical studies involving change detection over
time sequences of images.

I. MOTIVATING PROBLEM

ANY surgical procedures require highly precise lo-

calization on the part of the surgeon, in order to
extract targeted tissue while minimizing damage to adjacent
structures. The difficulty of this three-dimensional (3-D) local-
ization is exacerbated by the fact that it often requires isolating
a structure deeply buried within the body. While methods exist
[e.g., magnetic resonance imaging (MRI), computed tomogra-
phy (CT)] for imaging and displaying the 3-D structure of the
body, the surgeon must still relate what she sees on the 3-D
display with the patient’s actual anatomy.
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Current methods often involve a surgeon simply utilizing
traditional two-dimensional (2-D) slices of MRI or CT imagery
and mentally transforming them to the actual patient. Thus,
three is a clear need for registered visualization techniques,
where 3-D reconstructions of internal anatomy are overlaid
with the surgeon’s view of the patient, so that she can directly
visualize important structures, and act accordingly.

We describe a method for executing this automatic regis-
tration and visualization. While particularly relevant in pro-
cedures that involve minimal invasion of the body, such as
biopsies or endoscopic procedures, we use visualization and
guidance in neurosurgical procedures as a motivating example.

An Ideal Solution

Ideally, one would prefer a system that could automatically
register 3-D data sets and track changes in the position of a
data set over time, without requiring the attachment of any
device to the patient. Such an ideal system should support:

* Real-time, adaptive, enhanced reality patient visualiza-

tions in the operating room.

* Dynamic image-guided surgical planning.

» Image guided surgical procedures, such as biopsies or

minimally invasive therapeutic procedures.

» Registered transfer of a priori surgical plans to the patient

in the operating room.

While we are developing all aspects of such a system,
this paper focuses on one key component, the registration of
different data sources to determine relevant coordinate frame
transformations.

We have created a system that performs the registration of
clinical image data with the position of the patient on the
operating table at the time of surgery. This system uses meth-
ods from visual object recognition and does not require the
use of previously attached frames or landmarks. The method
has been combined with an enhanced reality visualization
technique [14], [4], [41], in which we display a composite
image of the 3-D anatomical structures with a view of the
patient. This registration enables the transfer to the operating
room of preoperative surgical plans, obtained through analysis
of the segmented 3-D preoperative data [8], where they can
be graphically overlaid onto video images of the patient. Such
transfer allows the surgeon to mark internal landmarks used
to guide the progression of the surgery.
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Thus, the specific problem we consider is

* Input: a video view of the patient, together with a
segmented MRI or CT model of the anatomy of the
patient, each defined in its own coordinate system.

* OQutput: a transformation aligning the model with the
patient, and a transformation describing the position and
orientation of the video camera relative to the patient.

Extensions of our method include adaptively reregistering
the video image of the patient to the 3-D anatomical data as the
patient or the video source moves, other surgical applications
such as image guided biopsy, or focused therapeutic proce-
dures (e.g., tumor ablation), and registering data sets acquired
over time for detection of changes in anatomy over time.

II. AN EXAMPLE SCENARIO

The following scenario demonstrates the use of our method.

1) A patient requiring surgical therapy is scanned by a 3-D,
high resolution, internal anatomy scanner, such as MRI or CT.

2) The current scan is segmented into different tissue
types, and graphical models of desired structures (e.g., tumor,
ventricles, skin surface, bone, white matter, etc.) are generated.

3) The patient is placed in the operating room, which is
equipped with:

* A laser range scanner for obtaining depth data of the

patient’s skin surface where the surgery is to be performed.

» Enhanced reality visualization equipment, such as a video
or digital camera, mixer and display monitor; or a head-
mounted display with trackable landmarks.

» The operating table may contain landmarks that will re-
main viewable and fixed relative to the patient during
surgery.

* Landmark tracking equipment.

4) Prior to draping, the patient is scanned by a laser range
scanner. The 3-D locations of any table landmarks are also
calculated to identify their location relative to the patient.

5) The current MRI or CT scan is automatically registered
to the patient skin surface depth data obtained by the laser
range scanner. This provides a transformation from MRUCT
to patient.

6) The position and orientation of a video camera relative
to the patient is determined, by matching video images of the
laser points on an object to the actual 3-D laser data. This
provides a transformation from patient to video camera.

7) The registered internal anatomy is displayed in enhanced
reality visualization [14], [4], [41] to “see” inside the patient.
In particular, the two previously computed transformations can
be used to transform the 3-D model into the same view as the
video image of the patient, so that video mixing allows the
surgeon to see both images, simultaneously.

8) The patient is draped, and surgery is performed. The
enhanced reality visualization does not interfere with the
surgeon, nor does it require her to do anything different from
that to which she is accustomed. Rather, the system provides
her with additional visualization information to greatly expand
her limited field of view.

9) The location of table landmarks can be continually
tracked to identify changes in the position of the patient’s
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attitude, relative to the visualization camera. Visualization is
maintained by updating the MRI/CT to patient transformation.

10) Viewer location can be continually tracked to identify
any changes in the position of the viewer. Visualization
updates are performed by updating the patient to viewer
transformation.

11) In general, the surgical procedure is executed with
an accurately registered enhanced visualization of the entire
relevant anatomy of the patient. The hope is that by providing
this information to the surgeon, procedures can be more
efficiently and effectively executed, with reduced side effects
to the patient.

III. DETAILS OF OUR APPROACH

In Section II, Part 1) is standard practice. Methods exist for
2) [8], [13]. Here we focus on 3)-8). Parts 9)-11) are part
of our planned future work. For 3)-8), the key is registration
of data obtained from the patient in the operating room with
previously obtained data and surgical plans.

We use a multistage matching and verification of a 3-D
data set acquired at the time of the surgical procedure with
3-D clinical data sets acquired previously. The central ideas
are to use a laser striping device to obtain 3-D data from
the skin of the patient at run time, and to use a sequence of
recognition techniques from computer vision to match this data
to segmented skin data from the MRI or CT reconstruction.
These matching techniques allow us to accurately register the
clinical data with the current position of the patient. As a
consequence we can display a superimposed image of the 3-D
structures overlaid on a view of the patient.

A. Model Input

We obtain a segmented 3-D reconstruction of the patient’s
anatomy, for example using CT or MRI. Current segmentation
techniques typically train an intensity classifier on a user
selected set of samples, where the operator uses knowledge of
anatomy to identify tissue type. Once training is completed,
the rest of the scans can be automatically classified on the
basis of their intensities and thus, segmented into tissue types
[8], [13]. Automatically removing gain artifacts from the
data can improve the segmentation [42]. Similarly, methods
that correct for distortions due to magnetic susceptibility
differences between materials [35] can further improve the
segmentation.

‘We refer to this 3-D anatomical reconstruction as the model,
which is represented relative to a model coordinate frame, with
the coordinate system’s origin taken as the model centroid.

B. Data Input

We obtain a set of 3-D data points from the patient’s
skin surface using a laser range scanner, which operates by
scanning a laser beam through an optical mechanism that
results in a controlled plane of light. A video camera is placed
at an angle to this plane such that a portion of the plane is
in the camera field of view. When an object is placed in this
visible region such that it intersects the laser plane, points
in the camera image illuminated by the laser unambiguously
correspond to fixed 3-D scene points. The 3-D measurements
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Fig. 1.

Example of graphical interface used to obtain initial alignment.

of the scanner (Technical Arts 100x) are accurate to within
0.08 mm.

We refer to this 3-D information as the data, which is
represented in a coordinate frame attached to the laser, and
which reflects the position of the patient in a coordinate frame
that exists in the operating room. Our problem is to determine
a transformation that will map the model into the data.

C. Matching Data Sets

We find this transformation by matching the two data sets.

1) First, we separate laser data of the patient’s head from
background data. Currently we do this with a simple user
interface (Fig. 1), in which the view from the laser’s video
camera is displayed with the laser data overlaid on top of that
view. The user can use a simple mouse interface to block out
laser points coming from the skin of the patient. This laser
data can be further edited by displaying the data, overlaid on
the MRI model by means of the rough transformation specified
above. Using any of the three orthogonal views of the two data
sets, the laser data can be furthered edited using a simple set
of mouse interfaces. Note that this process need not be perfect
we simply want to remove gross outliers from the data. There
are also methods for extracting such data automatically.

2) To initiate the matching, we have several options. First,
we have developed a simple graphical interface (see Fig. 1)
that can be used to roughly align the laser data with the
3-D model. The model is displayed in its initial orientation
on a series of three orthogonal 2-D views, together with the
laser data. The user can refine the initial transformation by
rotating and translating the data in any of the views. This initial
alignment does not need to be very accurate: rotational errors
OF 10-20 degrees, and translational errors of centimeters
are permissible, since the subsequent matching stage is quite
reliable at removing these misalignments.

3) If we have a rough alignment provided by the user,
this is usually sufficient to move to the pose refinement stage
described below. In some cases, however, we may not want
to rely on user intervention (for example in the batch mode
registration of MRI scans acquired over time, described in
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a later section). In this case, we need an automatic way of
efficiently finding good initial alignments. We have developed
several schemes for accomplishing this.

We can sample a set of evenly spaced directions on the view
sphere. For each view, we extract a sampled set of visible
points of the model, using a z-buffer. In particular, given
a pixel size for the z-buffer and an estimate for the view
direction, we project the model points into a plane orthogonal
to the view direction. Within each pixel in this plane, we keep
only the point closest to the viewer. This gives us a temporary
model, which we can use for matching. While it is possible in
this method for points to leak through the z-buffer from the
back of the model, this does not affect the performance of the
method. The point on the view sphere serves to estimate the
rotation needed to roughly align the model and the data. For
each such model and its associated alignment, we execute the
matching process described below.

Yet another method takes advantage of the data itself to find
initial transformations. In particular, as a preprocessing step,
we can hash all pairs of MRI points based on distance between
thern. Furthermore, at each MRI skin point, we can estimate
the surface normal to the skin by a local fit of the neighboring
data. To find an initial transformation, we can select any two
laser data points, where for stability we select two points that
are widely separated. Using the distance between these two
laser points, we can access the hash table to find possible
matching MRI points. For each such pair in the hash table, if
we consider the hypothesis that the laser points match the MRI
points (there are two such matches), then this determines five
of the six degrees of freedom associated with the coordinate
frame transformation. The missing parameter is the rotation
about the axis connecting the two points. To solve for this
parameter, we can estimate the normal to the skin surface at
the laser point by fitting a plane to the neighboring data. Then
the rotation we need is the rotation about the axis between the
points that will rotate the laser normal to align with the MRI
normal. Note that such a rotation may not exist, in which
case we can discard this pair. Similarly, after solving for
the rotation, we can check that application of this rotation
to the normal at the other point also causes it to agree with
its matching normal. If not, the pair is discarded. By cycling
over all the possible pairings of MRI points to laser points,
as defined by the entries in the hash table, we can collect the
set of feasible initial transformations. These can be ranked on
the basis of the RMS fit of the transformed laser data to the
MRI data, and the resulting rank ordered list of hypotheses
can be further processed using the methods described below,
stopping when a sufficiently accurate fit is found.

A related approach is to use Interpretation Tree Search
[15]-[17] to match triples of visible sampled model points to
the three selected laser points. This method basically searches
over all possible ways of matching three laser points (selected
to be widely separated from one another) to three points
selected from the sample MRI model. For each pairing of
triples of model and data points, the method tests whether
the pairwise distances between model points and laser points
are roughly the same. If all such tests are valid, the match
is kept, and we compute the coordinate frame transformation
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(a) Example of laser data (shown as large dots) overlaid on CT model
of a plastic skull, after an initial alignment of the two point sets. Note the
transparent laser points which are actually lying inside the skull. (b) Example
of registered laser data (shown as large dots) overlaid on CT model.

Fig. 2.

that maps the laser points into their corresponding model
points. These transformations form a set of hypotheses. Due
to the sampling of the model data, the actual object points
corresponding to the selected laser points may not exist, so
these hypothesized transformations are at best approximations
to the actual transformation. For efficiency, we hash pairs
of points on distance, and ounly retrieve likely candidates for
testing.

In the example shown in Fig. 2, there are 481 laser sample
points, and the skull model has 35265 sample points. Given
an initial sampled viewpoint and a coarsely sampled z-buffer,
there are 409 model points in the sampled view. In principle,
there are 2.02e14 possible hypotheses for the aligning trans-
formation, but using simple distance constraints (and allowing
for some amount of error in the distance measurements), there
are only 16945 possible hypotheses that remain for further
testing.

4) We can use the alignment method [22] to filter these
hypotheses. In particular, we filter out those hypotheses for
which the transformed view vector becomes unviewable (e.g.,
lies below the operating table). Then, for each remaining hy-
pothesis, we transform all the laser points by the hypothesized
transformation, and verify that the fraction of the transformed
laser points that do not have a corresponding model point
within some predefined distance is less than some predefined
bound. We discard those hypotheses that do not satisfy this
verification. For efficiency, we use two levels of sampling of
the laser points, first verifying that a coarsely sampled set of
laser points are in agreement, then further verifying, for those
that pass this test, that all the laser points are in agreement.

An example of the model and laser data after a verified
alignment is shown in Fig. 2. For this example, there is only
one surviving hypothesis, out of the 16 945 initial hypotheses.
Note that some of the laser points are partially buried in the
CT model (displayed as partially transparent), indicating that
the initial alignment is close but not sufficiently accurate.

5) For each verified hypothesis (whether obtained automat-
ically or by initial user alignment), we refine the alignment of
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the two data sets by minimizing an evaluation function that
measures the amount of mismatch between the two data sets.

a) Evaluate the current pose by summing, for all transformed
laser points, a term that is itself a sum of the distances
(weighted by a Gaussian distribution) from the transformed
point to all nearby model points [40]: This Gaussian weighted
distribution is a method for roughly interpolating between
the sampled model points to estimate the nearest point on
the underlying surface to the transformed laser point. More
precisely, if £; is a vector representing a laser point, m; is a
vector representing a model point, and 7 is a coordinate frame
transformation, then the evaluation function for a particular
pose (or transformation) is

El(T) — _ Zze—(\T&—m]’P/Zai)' 1)
J

1

This objective function is similar to the posterior marginal pose
estimation (PMPE) method used in [40] and to the elastic net
constraints of [9]. One can visualize this objective function as
if we placed a Gaussian distribution of some spread ¢ at each
model point, then summed the contributions from each such
distribution at each point in the volume. Then the contribution
of each transformed laser point toward the evaluation function
is simply the summed value at that point. Because of its
formulation, the objective function is generally quite smooth,
and thus, facilitates “pulling in” solutions from moderately
removed locations in parameter space. As well, it bears some
similarity to the radial basis approximation schemes used for
learning and recognition (e.g., [5], [10]).

b) In earlier versions of the system, we used Powell’s method
[34] to iteratively minimize this evaluation function: Powell’s
method is basically a conjugate gradient descent method.
Starting at some initial point, it searches along a line in the
parameter space for the point that minimizes the objective
function along that line. Then from that point it picks a new
direction and mimizes along that line, and so on. Ideally, such
methods should pick “conjugate” directions along which to
minimize, that is, directions with the property that movement
along a new such direction will not spoil the minimization
along previously used directions. Powell’s method is a simple
means for choosing these conjugate directions, without directly
estimating the gradient of the objective function.

It is more efficient, however, to use the Davi-
don—Fletcher—Powell quasi-Newton method [34]. This
requires an estimate of the gradient of the objective function,
so we need the partial derivatives of that function with respect
to the transformation parameters p

3E1 _ —1 —(l,[éi—mj|2/20'2) ) ) 8767’
5 —Zi:%:(ﬂe Tli—mj, =
)

where (-,-) denotes a dot product. For each of the translation
components of the transformation, the partial derivative is
straightforward, for example

0Tl )
A,




GRIMSON ef al.: AUTOMATIC REGISTRATION METHOD

where ¢, is the x component of the translation vector, and v,
is a unit vector in the z direction.

For the rotation components, we can treat the rotation as an
instantaneous rotation about three orthogonal axes. For each
axis r with associated angle of rotation 6, applying Rodrigues’
formula suffices to show that the partial derivative is given by
the following cross product:

oTY;
00

where R is the associated rotation matrix. Thus, the gradient
of the evaluation function is straightforwardly computed using
the appropriate expressions for the partial derivatives in (2).

The DFP method essentially iteratively builds up a good
approximation to the inverse Hessian matrix, which can then
be applied to the data to solve for the parameters yielding a
minimum of evaluation function [34]. This yields an estimate
for the pose of the laser points in model coordinates.

¢) Execute this refinement and evaluation process using a
multiresolution set of Gaussians: Initially a broad Gaussian is
used to allow influence over large areas, resulting in a coarse
initial alignment, but one which can be reached from a wide
range of starting positions. Subsequently, more narrowly tuned
Gaussian distributions can be used to refine the pose, while
focussing on only nearby model points to derive the pose.

d) Using the resulting pose of this refinement, repeat the
pose evaluation process, now using a rectified least squares
distance measure: In particular, perform a second sampling
of the model from the current viewpoint, using a much more
finely sampled z-buffer. Relative to this finer model, evaluate
each pose by measuring the distance from each transformed
laser point to the nearest model point (with a cutoff at some
predefined maximum distance). Evaluate the pose by summing
the squared distances of each point. Minimize using the DFP
method on the evaluation function

:TXRZ{

1/2
Exy(T) = % > min{d2,,, min [T —m;|?} (3)

where dpnax 1S some preset maximum distance and where n
is the number of laser points ¢;. This objective function is
essentially the maximum a posteriori model matching scheme
of [40]. It acts much like a robust chamfer matching scheme,
or an iterative closest point matching scheme, similar to that
used by [3], [23], and [28]. To use DFP on this evaluation
function, we again need to estimate the gradient, given by

—-1/2
6EZ 1(1 . 2 ) ‘ P
ap n |:n ; Inln{dmaxy IIllel I?VZz m]l }
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where we assume that for small changes, the closest point does
not change, and hence the min operation can be ignored. The
partial derivatives are identical to the previous case.

The expectation is that this second objective function is
more accurate locally, since it is composed of saturated
quadratic forms, but it is also prone to getting stuck in local
minimum. Hence we add one more stage.
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e) We observe that while the above method always gets
very close to the best solution, it can get trapped into local
minimums in the minimization of E — 2: To improve upon
this, we take the pose returned by the above step, and perturb
it randomly, then repeat the minimization. We continue to do
this, keeping the new pose if its associated RMS error is better
than our current best. We terminate this process when the
number of such trials that have passed since the RMS value
was last improved becomes larger than some threshold.

) The best found solution is a pose, and a measure of the
residual deviation of the fit to the model surface: An example
is shown in Fig. 2.

g) An alternative is to only utilize laser data that is “more
distinctive:” We do this by estimating the curvature, along
the plane of the laser, at each laser data point, and keeping
only a predefined percentage of the most highly curved laser
points. The motivation is to restrict our matching to points that
carry more information about the local structure of the surface.
Initial experiments show that using only highly curved points
improves the residual RMS error.

h) Once the final solution is found, the residual error at each
point can be measured, and laser points with large residual
errors can be removed from the data set: The final stages of
the registration process can then be rerun using the remaining
data, to obtain a tighter fit to the surface.

We collect such solutions for each verified hypothesis, over
all legal view samples, and rank order them by smallest RMS
measure. The result is a highly accurate transformation of the
MRI data into the coordinate frame of the laser sensor.

D. Camera Calibration

Given a registration, we need to relate it to a view of the
patient. A video camera can be positioned in roughly the
viewpoint of the surgeon, i.e., looking over her shoulder. By
calibrating the position and orientation of this camera relative
to the laser coordinate system, we can render the aligned MRI
or CT data relative to the camera’s view. This rendering can
be mixed with the live video signal, giving the surgeon an
enhanced reality view of the patient’s anatomy [4], [14], [41].
This can be used to plan a craniotomy or a biopsy, or to define
the margins of an exposed tumor for minimal excision.

When the laser scanner video camera is used for this
purpose, the camera model is straightforward. Points in the
laser scan of any object in the camera field have unique
correspondences with points in the image plane. During cali-
bration, points from a calibration object are used to generate an
approximation of the camera pose. When a patient is scanned,
corresponding 3-D laser measurements and image points are
used to refine the camera pose model via Powell’s method.

When an independent camera is used for video capture from
the surgeon’s view a similar method is used using objects
in the scene with flat surface facets. Images of the laser
slices are taken with the video camera. Straight 2-D line
segments are located in the video images and matched to
corresponding straight 3-D line segments in the laser data.
If three such matching segments are found, they can be used
to solve for an approximation to the perspective projection



134

@ ®)

Fig. 3. Example of (a) video image, and (b) the overlay of a registered 3-D
(CT) model of an object with the real object in that image (figures courtesy
of J. P. Mellor).

transformation, and thus, for the pose of the camera. Using
this as a starting point, Powell’s method can again be used
to optimize the pose estimate to best bring all of the laser
data into projective alignment with the corresponding video
data. Thus, one can use simple faceted objects in the surgical
setting directly to calibrate the camera, and this process can
be repeated throughout the surgical procedure as needed (e.g.,
if the position of the camera is perturbed).

If a small number of fiducial points are known in both laser
and image coordinates, then methods exist for automatically
updating the camera calibration parameters [29].

Fig. 3 shows the alignment of the CT model of the skull
with the actual image of the skull in a calibrated video camera,
demonstrating the visual overlay provided by this system.

E. Visualization

We can combine the camera calibration and the registration
of the data sets, to achieve a visualization of the data. In
particular, we can apply the transformation between the data
sets to bring the MRI or CT model into alignment with the
patient, in the coordinate frame of the laser system. We can
then project that model into the coordinate frame of the video
camera, by applying the computed camera model. This gives
us a virtual view of the MRI model, as seen by that camera.
This can then be mixed with an actual video view of the
camera, and used as a visualization tool by the surgeon.

IV. TESTING AND APPLICATION OF THE METHOD

As a first test, we have run a series of controlled ex-
periments, in which we have registered a CT reconstruction
of a plastic skull with laser data extracted for a variety of
viewpoints. We have run the system where we sample over
a range of views on the viewing sphere. In all cases, the
system finds a “correct” registration, with typical residual
RMS errors of 1.6 mm. The issue of how reliable RMS error
is as a measure of success is discussed in the next section.
Examples are shown in Fig. 4. Using the skull data of Fig. 2,
and sampling over a set of views, leads to the statistics in
Table I.

As a second test, we have run trials matching laser data
against an MRI scan of one of the authors, an example of
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Fig. 4. Examples of registered laser data (shown as large dots) overlaid on
CT model.

TABLE I
STATISTICS ON REGISTRATION FROM MULTIPLE VIEWS. SHOWN ARE THE VIEWS
FOR WHICH THE LASER AND CAMERA ARE VISIBLE TO ONE ANOTHER. COARSE
MODEL Is THE NUMBER OF MODEL POINTS TO INITIALLY MATCH, AGAINST 481
LASER POINTS. HYPOTHESES INDICATES THE NUMBER OF ACCEPTABLE MATCHES
FOUND BY INTERPRETATION TREE SEARCH. IN ONLY ONE CASE DIp A
HyPOTHESIS SURVIVE ALIGNMENT VERIFICATION, IN WHICH CASE A FINER
MODEL OF 9428 POINTS WAS REFINED RELATIVE TO THE LASER DATA, AS SHOWN

Coarse model Hypotheses  Fine model Solutions RMS
406 88012 — 0 —
409 16945 9428 1 1.71
500 97862 — 0 —
502 95978 — 0 —
497 114602 — 0 —
494 101477 — 0 —
429 62656 — 0 —
426 58521 — 0 —

which is shown in Fig. 5. This is a visualization in which the
surface of the brain has been rendered and registered with
the view of the patient, and the result projected and mixed
with a video image of the patient. We have run the system
both with an initial pose estimate, and by sampling a range of
views on the viewing sphere. In all cases, the system finds
a correct registration, with typical residual RMS errors on
the order of 1.5 mm. The resolution of this MRI scan is
0.9375 x 0.9375 x 1.5 mm.

We have also run a series of trials with neurosurgery
patients. An example registration of the laser data against MRI
models of a patient is shown in Fig. 6. The tumor and the
ventricles of the patient are highlighted. The RMS errors in
such cases were typically about 1.5 mm.

We have been using this registration and visualization
method to transfer presurgical plans to the patient. In our
current method, we use our registration method to provide a
visual overlay of the view of the patient with internal structures
selected by the surgeon. By viewing this overlay on a live
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Fig. 5. Visualization image of brain merged with video view.

video monitor, the surgeon can trace with a marker the outline
of key structure on the patient’s scalp [14]. This enables the
surgeon to mark locations for planned surgical steps, prior to
the placement of the patient in the OR. To date, we have used
this procedure on roughly 20 neurosurgical patients at Brigham
and Women’s Hospital in Boston, MA. (See Section IV.)

Besides applications for surgical planning and guidance,
the method has other applications, including the registration
of multiple clinical data sets such as MRI versus CT. We
have registered sequences of MRI scans of the same patient,
taken over a period of several months, and used differences
in the registered scans to visualize and measure changes in
anatomy [11]. These scans were part of a NIH study of
multiple sclerosis (MS) at Brigham and Women’s Hospital
aimed at determining the optimal frequency for performing
MR imaging of MS patients. In this testing, we automatically
registered 20 sets of 50 MRI scans each.

V. COMPUTATIONAL EVALUATION

We have examined a series of issues relating to the compu-
tational performance of our system.

A. Minimization Error

It is worth commenting on the interpretation of the RMS
error. First, the issue of what is a correct registration is
difficult to evaluate on the basis of RMS error. Certainly
solutions with low RMS are likely to be good fits of the
two data sets, by definition, but this does not ensure that they
are “correct.” Rather, RMS is a measure of the “success” of
the method at finding a good fit between data sets, while the
correct registration is one in which homologous anatomical
points are mapped onto one another. To test this latter issue,
we need phantom studies, an issue we are investigating.
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Fig. 6. Examples of combining the registration of MRI to laser data and
the calibration of a video camera relative to the laser to provide an enhanced
reality visualization of patients. In each case, the tumor and the ventricles are
displayed in registration with the patient.

Second, we are actually mostly interested in how accurately
we have measured the transformation. While the RMS measure
is a useful indicator of fit, the actual transformation, when
applied to model points, may be much more accurate. This is
discussed later in this section.

Third, the RMS error will clearly be a function of the density
of the model points. For efficiency, we often run the method
with a subsampling of the MRI model. To explore the effect
of this sampling on the residual error, we ran experiments on
two patients, in which we varied the sampling of the MRI and
recorded the final RMS error (Fig. 7). One can see that as more
model points are included the RMS error declines to roughly
1 mm. Note that the voxel size is 0.9375 x 0.9375 x 1.5 mm
so that the expected RMS error just due to the discrete size of
the voxels is .578 mm. When combined with the fact that we
are measuring distance to the nearest vertex of an isosurface
triangle, not to the actual surface itself, one can see that the
method is close to the limit of RMS accuracy. The key issue
here is how to strike a good balance between the efficiency
one gains by using a sample of the full MRI model and the
potential cost in goodness of fit introduced by such a sampling.
Fig. 7 shows that sampling rates of two or three probably
introduce very little error, while sampling rates of five are
probably the limit one should tolerate.

One way of dealing with the fact that the MRI data points
are only a sampling of the surface is to account for residual
errors in modeling the surface. When evaluating the terms
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RMS error as function of sampling
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Fig. 7. RMS error as a function of the sampling of the MRI data. Patient
071594 had an MRI model of 123,725 points, which were matched against
956 laser points. Patient 070194 had an MRI model of 109 641 points, which
were matched against 949 laser points. The graphs show the RMS error (in
mm) as a function of the fraction of the model actually sampled.

in (3), one still searches for the closest MRI point to the
transformed laser point. Rather than summing squared distance
over all such points, we use the normal component

(T2 —my) - Ny

where IN; is the normal to the surface at the point m;. Thus,
we use the component of the vector between the transformed
laser point and the nearest MRI point, in the direction of the
normal to the MRI surface at that point, rather than simply
using the distance of the vector itself. This will reduce the
effects of errors due to subsampling the MRI surface.
Finally, it is worth noting that the sparsity of the laser
data clearly impacts the RMS error. If the laser data were
dense, so that we could be guaranteed of getting data from
portions of the skin with varying structure, it is likely that
the RMS error would be significantly reduced. Our experience
in matching MRI scans to MRI scans using this technique
supports that observation. We stress, however, that the RMS
error is probably less relevant to determining accuracy of the
method than the issue of repeatability discussed below.

B. Repeatability

A key issue with any registration algorithm based on min-
imizing an evaluation function is the question of local min-
imum. Since most realistic objective functions will have
complex associated energy landscapes, it is important to test
that the algorithm avoids getting trapped in local minimum.

To explore this issue, we ran the following test. We took
several cases involving real patients and found a transforma-
tion close to what appears to be the correct alignment. We then
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TABLE I
TABLE OF MEAN RMS VALUES FOR SET OF PERTURBATION TRIALS

Patient Mean RMS Error
sknll wo normals 1.705
skull w normals 0.585
070194 wo normals 1.495
071594 wo normals 1.819
071594 w normals 1.371
082294 wo normals 1.514
082294 w normals 1.007

ran a series of trials in which we perturbed that transformation
and used the result as an initial alignment to the registration
algorithm. We then let the registration method converge to a
solution, which we recorded. In typical trials, we perturbed
the transformation by n mm of translational offset and 2n
degrees of rotational offset. We have run trials where n ranged
from one to 10, with the method successfully finding correct
solutions. A detailed example of a set of trials is given in
Table II, using a perturbation of 5 mm and 10°, and using
a sampling of one in every five MRI points. One can see
that factoring out the normal component of the residual error
reduces the overall RMS error, and that typically the RMS
error is on the order of the size of a voxel.

More importantly, to test the repeatability of the system
in finding the same transformation, we took each cluster of
transformations and applied the following test. We computed
an entry vector into the skull, based on the surgeon’s expected
trajectory. We then applied each transformation out of the
clustered set to that vector, collecting a set of possible entries.
Starting at the skin surface, we traced a set of points along each
of the transformed entry vectors, for example using a vector
6 centimeters long and sampling every centimeter along the
ray. This defines a cluster of points at each sampling, based
on the deviation in the computed transformations applied to
the expected entry vector. The key question is how much
spread there is in these points, since that will determine the
deviation that the surgeon might be expected to see from the
ideal location. To measure this, we found the centroid of each
cluster of points, then computed statistics on those clusters,
which are described in in Table III. We ran tests in which the
normal component of residual error was used and in which the
full residual error was used. As well, we varied the threshold
on RMS error below which a solution was accepted. As one
might expect, while this may occassionally cause the system to
miss a solution (as shown by the success rate) it does reduces
the deviation in the computed entry vectors.

It is worth noting the range of variation in the results. In
particular, in the case of the skull and Patient 070194, the laser
data primarily covered the face, where there is considerable
variation in structure. This led to very low deviations in entry
vector, because the structure served to distinctively identify
the best registration. The remaining variation (on the order of
10-30 wm) is probably due to the fact that we are randomly
sampling every fifth point in the MRI skin surface, which can
introduce a small amount of residual perturbation.

In the case of Patients 071594 and 082294, the laser data
primarily covered the cheek and side of the face (other cases
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TABLE 1II
TABLE OF DEVIATIONS IN ENTRY TUBE, FOR SET OF PERTURBATION TRIALS. ENTRY VECTOR DEVIATION Is MEDIAN DEVIATION, FROM START TO END OF 6 cm
TUBE. 95 PERCENTILE DEVIATION LISTS THE DEVIATION BELOW WHICH 95% OF THE SAMPLES LIE, GIVING AN INDICATION OF THE SPREAD OF
THE DEVIATION. SUCCESS RATE Is THE PERCENTAGE OF TRIALS IN WHICH AN RMS VALUE Was OBTAINED BELOW THE DESIRED CUTOFF

Patient RMS cutoff Entry Vector Deviation 95 Percentile Deviation % Success Rate
skull wo normals 5.0 0.011-0.009 0.645-.625 100
skull w normals 5.0 0.213-0.199 1.085-1.113 96
070194 wo normals 5.0 0.031-0.034 1.017-1.090 98
070194 wo normals 2.0 0.030-0.033 1.013-1.087 96
071594 wo normals 5.0 0.104-0.113 0.982-01.004 100
071594 w normals 5.0 2.129-2.458 18.911-19.939 100
071594 w normals 1.37 1.260-1.166 18.459-13.783 56
082294 wo normals 5.0 1.680-1.630 6.384-6.440 100
082294 wo normals 1.52 1.582-1.419 6.032-5.727 96
082294 w normals 5.0 1.160-0.90& 2.846-2.851 100
082294 w normals 1.01 0.723-0.742 3.274-3.107 76
TABLE IV TABLE V

TABLE OF DEVIATIONS IN ENTRY TUBE, FOR SET OF PERTURBATION TRIALS.
PERTURBATION IS 7 mun OF TRANSLATION AND 21° OF ROTATION. MEDIAN
DEVIATION 1S MEDIAN DEVIATION, FROM START TO END OF 6 ¢cm TUBE. 95
PERCENTILE DEVIATION LisTS THE DEvIATION BELOW WHICH 95%
OF THE SAMPLES LIE, GIVING AN INDICATION OF THE SPREAD OF THE
DEVIATION. FOUND Is NUMBER OF TRIALS OUT OF 20 FOR WHICH A
SOLUTION WITH AN RMS ERROR OF LEss THAN 1.6 mm Is Founp

Perturbation Found Median 95 Percentile
Deviation Deviation
1.0 20 0.969 344
20 20 0.921 2.083
3.0 20 0.814 3.031
4.0 19 1.080 3.202
5.0 13 0.990 6.620
6.0 14 1223 2.674
7.0 11 2273 4.993
8.0 14 0.846 3.425
9.0 9 1.937 5.280
10.0 7 1.368 3.009
11.0 8 0.941 4341
12.0 5 1.009 5519
13.0 4 0.621 2.814

we have run cover the back or the top of the head), where
there is much less distinctive data available. In these cases,
the residual deviation is higher. In one case, where some of
the laser data came from the nose of the patient, the typical
deviation was 100 pgm. In the second case, the laser data was
almost entirely from the check of the patient, and here the
typical deviation was on the order of 1.6 mm. In all cases, one
can see that extreme deviations are very rare.

One conclusion is that a good way to utilize the system is to
ensure that the laser acquires data from the face of the patient,
ensuring reliable registration, then using the visualization
camera in whatever orientation is best suited for the surgeon.

Finally, we note that while using normal residual error
reduces the RMS error associated with solutions, it does not
improve the reliability of the system to find the same solution.

C. Capture Radius

Another way of testing the method is to run a capture
radius test. In this trial, we took the data from one of our
patients and found a good registration for that patient’s data.

SaME As TABLE IV, EXCEPT FOUND Is NUMBER OF TRIALS OUT OF 20 FOR
‘WHICH A SOLUTION WITH AN RMS ERROR OF LESS THAN 5.0 mm Is FOUND

Perturbation Found Mc.d".m 95% Deviation
Deviation
1.0 20 0.969 3.440
2.0 20 0.921 2.083
3.0 20 0.814 3.031
4.0 20 1.080 4.402
5.0 19 1.662 22.318
6.0 19 1.363 17.634
7.0 18 3.754 131.091
8.0 18 2.073 16.714
9.0 17 4.375 27.773
10.0 15 3.044 137.169
11.0 13 2.528 85.483
12.0 13 11.435 127.461
13.0 11 13.493 81.886
14.0 9 8.554 197.988
15.0 7 9.768 136.693
16.0 9 10.808 136.934
17.0 11 114.949 179.150
18.0 12 8.680 106.366
19.0 10 69.834 180.454

With that as a starting point, we randomly perturbed the
solution by a translational offset of » mm and a rotational
offset by 2n degrees (note that the rotational effects will
result in an overall translation of data by more than n mm).
For each value of n we ran 20 trials, gathered the resulting
transformations and performed a cluster analysis similar to the
cases above. Table IV and V summarize the results. Note that
during these trials we set dmax to 10 mm so that we rely
on the Gaussian based minimization F; doing a good job of
pulling the registration into close range. We list two sets of
results, one where we keep all legal transformations and one
where we restrict ourselves to transformations with good RMS
values. The latter case increases the number of trials with no
solution, but improves the accuracy of the found solutions.
The observation is that a capture radius of 5 mm and 10° is
very reliable and can easily be obtained automatically by our
indexing method, or by our simple user interface. If we are
willing to take more than one trial, should the first trial result
in an unacceptable registration, as measured by the RMS error,
then the capture radius easily extends to twice this range.
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Fig. 8. Example of registering MRI data sets from different times. A
subsample set of surface points from one image are matched and overlaid
on the surface of the second image.

VI. CLINICAL TESTING

We have tested our system on a number of actual neuro-
surgery patients at Brigham and Women’s Hospital for the
purpose of accurately planning craniotomy locations. Each
patient had a MRI scan performed approximately one day prior
to surgery. Clinicians at the Surgical Planning Lab segmented
the MRI scan into skin, brain, tumor, ventricles, and other
structures of interest. Once the patient’s head was shaved in
preparation for surgery he was brought to the Surgical Planning
Lab for laser registration by our system. The registration
procedure consisted of the following steps

1) Execute steps 1) to 7) of Section II.

2) Verify the registration by a visual animation of the
transformed MRI skin overlaid on the video image as well
as a color coded examination of residual errors of transformed
laser data overlaid on the MRI skin model.

3) Render the internal brain structures in their registered lo-
cations relative to the camera, such that they can be mixed with
the video signal to produce an enhanced reality visualization.

4) The surgeon draws the position of the tumor and other
structures of interest directly on the scalp while looking at
the visualization. The selection and opacity of the different
anatomical structures is dynamically controlled to provide the
surgeon with as much geometric information as possible from
the given viewpoint.

Each step in the process can be repeated to refine the surgical
plan. Elapsed time is approximately 5 min. Manual alignment
aimed at achieving such visualizations could take as much
as 45 min with an accuracy of 10-30 mm. Our registration,
thus, achieves an order of magnitude improvement in both
efficiency and accuracy, two factors which are critical to the
neurosurgeons. Feedback from the surgeons has been highly
positive as they have found this easily accessible form of 3-D
geometric knowledge to prepare them well for the surgeries.
Current work involves migrating the laser registration system
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into the OR for neurosurgery guidance as well as for planning
and guiding other types of surgery.

VII. OTHER APPLICATIONS

As mentioned, the method has applications for surgical
planning and guidance, including tumor excision and biopsy.
The method has broader application, however, including the
registration of multiple clinical data sets such as MRI versus
CT. As a demonstration of this, we have taken two MRI scans
of the same patient, obtained several months apart. These scans
are part of an ongoing NIH study of MS at Brigham and
Womens Hospital aimed at determining the optimal frequency
for performing MR imaging of MS patients. Under this study
patients with varying disease stages are imaged at different
frequencies to identify changes in MS lesion activity. To
support this analysis, one needs to register the MRI scans from
times, and compare them to detect relevant changes. We have
applied our technique to this task, using the surface of the
intracranial cavity (ICC) as the basis for the registration. An
original MRI ICC surface is used as a model, and a second
MRI ICC surface is aligned with the first by sampling points
on that surface (taking one of every 30 points at random). A
view of the resulting overlay is shown in Fig. 8. The resolution
of these scans is 0.9375 mm x 0.9375 mm x 3 mm.

Given this alignment, we can transform the second data set
into the coordinate frame of the first data set, then resection
the data with interpolation to obtain 2-D slices equivalent to
those of the first data set. We can then compare individual
slices of the first data set to the resectioned second data set,
and do image differencing to find changes (Fig. 9).

VIII. RELATED WORK

Registration of data sets is an important problem in many
medical applications and hence has seen considerable work
in the past. Two recent reviews of registration methods in-
clude [1] and [39]. Of particular relevance are three different
approaches. First, Pelizzari and colleagues [18], [26], [27],
[30]-[33], [38] have developed a method that matches ret-
rospective data sets, such as MRI or CT or PET, to one ‘
another. Similar to our approach, this work uses a least squares
minimization of distances between data sets, although their
system uses a different distance function for minimization.
Typical RMS errors are on the order of 3-5 mm. As opposed
to our system, however, this approach requires some operator
intervention to set an initial starting position, which our system
does not. It also requires some operator intervention to steer
the system toward the correct solution, suggesting that local
minimum are a potential problem. Our system avoids this
difficulty by randomly perturbing near final solutions to find
better nearby minimums.

A second related approach [6], [7], [24], [25], [36] also does
a least-squares minimization of a distance function to match
data sets. Here, the distance is weighted by an estimate of
the inverse variance of the noise in the measurements, and a
Levenberg—Marquardt method is used to find the minimum.
The method requires a reasonable initial starting position,
though the authors observe that sampling over the view sphere
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Fig. 9. A series of MRI slices of a patient taken several weeks apart, over
a period of eight months. Shown are the results of reslicing and normalizing
each subsequent MRI scan, relative to the first scan, so that, in principle, the
same slice of the anatomy is shown. One can easily see the changes in lesions
in the upper left and lower left, over time.

could remove this restriction. Once a first estimate of the
solution is found, points with large errors are removed and
the minimization process is repeated to refine the pose. It is
unclear whether the removal of outliers is sufficient to keep
the method from getting trapped into local minimums.

A third approach [2], [12], [19]-[21], [37] performs rigid
registration of 3-D surfaces by matching ridge lines which
track points of maximum curvature along the surface. The
ridge lines are characterized by five intrinsic parameters which
are used to hash the ridge points of the model data set into a
five-dimensional hash table. During matching, the hash table
is used to efficiently find model ridge points which are similar
to ridge points from a second data set. A rigid transform is
computed for each pair of matched ridge points and the results
are collected in a six-dimensional transform accumulator. The
most accessed cell in the accumulator is selected as the best
transform. This method is not directly suitable for dealing with
sparse data, such as the laser input.

IX. CONCLUSIONS

We have described a method that automatically registers
segmented clinical reconstructions (such as MRI or CT) of a
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patient with a live view of that patient, enabling a surgeon to
visualize internal structures before executing procedures. The
method enables a visual mix of live video of the patient with
the segmented 3-D MRI or CT model, supporting enhanced
reality techniques for planning and guiding neurosurgical pro-
cedures, and to interactively view extracranial or intracranial
structures nonintrusively. Extensions include image guided
procedures and clinical studies involving change detection
over time sequences of images. The method has been applied
to a series of neurosurgery cases, and has demonstrated
reliability in accurately locating internal structures.

The heart of the method is a multistage, multiresolution,
registration method that can be used in fully automatic or
semiautomatic mode, and which reliably finds solutions whose
accuracy at finding a target ranges from 10 ym, in cases where
highly varied structures are sensed, to 1.5 mm, in cases where
much smoother structures are sensed. These results suggest
that the best use of this visualization technique is to register
based on data taken from a highly structured viewpoint, such
as the face of a neurosurgery patient, but to use a visualization
viewpoint from whatever view is desired by the surgeon.
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