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Class-Specific Grasping of 3D Objects from a Single 2D Image

Han-Pang Chiu, Huan Liu, Leslie Pack Kaelbling, Tomas Lozano-Pérez

Abstract— Our goal is to grasp 3D objects given a single
image, by using prior 3D shape models of object classes. The
shape models, defined as a collection of oriented primitive
shapes centered at fixed 3D positions, can be learned from a
few labeled images for each class. The 3D class model can then
be used to estimate the 3D shape of a detected object, including
occluded parts, from a single image. The estimated 3D shape
is used as to select one of the target grasps for the object. We
show that our 3D shape estimation is sufficiently accurate for a
robot to successfully grasp the object, even in situations where
the part to be grasped is not visible in the input image.

I. INTRODUCTION

Our ultimate goal is to be able to recognize objects
from known classes from a single image and to be able to
grasp them. Robust monocular sensing could be a valuable
complement or even substitute for more expensive three-
dimensional sensors. However, given only a single 2D image,
even a calibrated image, it can be challenging to reconstruct
the 3D shape with sufficient precision to perform effective
grasping, especially if the variation in shape of instances of
the class is substantial.

In this paper, we describe an approach to reconstruct full
3D shapes from a single 2D image, based on 3D class models
that are an extension of the Potemkin model [1], [2]. An
object class is defined as a collection of parts, which have
an arbitrary arrangement in 3D; our approach assumes that,
from any viewpoint, the parts themselves can be treated as
being nearly planar. This 3D model can be efficiently learned
from a few part-labeled 2D views of instances of an object
class from different, uncalibrated viewpoints. It does not
require any 3D training information.

Once a model is learned, the reconstruction mechanism
can be built on top of any 2D view-specific recognition
system that returns a bounding box for the detected object.
Within the bounding box, we use a model-based segmen-
tation method to obtain an object contour. We then deform
projections of the 3D parts of the class to match the object
contour. Based on this fit of the visible parts to the oriented
3D primitive shapes, we can obtain an approximate recon-
struction of the full 3D object.

The novelty of our approach is that it computes a reason-
ably accurate qualitative 3D shape model for novel instances
of a known class, including its occluded parts, from only
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a single 2D image of the object in general position. With
a fixed calibrated camera, the 3D estimation is sufficiently
accurate for a robot to successfully grasp the object, even in
situations where the part to be grasped is not visible in the
input image.

II. RELATED WORK

Existing systems for planar grasp planning [4] extract the
contour of the object from a single image, and detect contact
points for grasping directly from the image, without any
3D information. However, these systems have limited ap-
plicability; robust manipulation of complex objects requires
reliable 3D information. To obtain this 3D information, many
systems [8], [9] detect and reconstruct surfaces of objects
with the aid of stereo vision systems or laser scanners. Even
when the sensors perform effectively, there still remains a
recognition problem, especially when the objects can vary
in shape, and a need to reconstruct hidden surfaces.

To avoid reconstructing 3D model for grasping, several
recent approaches [16], [17], [19] identify grasp points of ob-
jects directly from monocular images. Saxena et al. [16], [17]
use a supervised learning algorithm to learn 2D grasp points
in monocular images, by using synthetic images as training
data. They then use two or more images to triangulate the 3D
location of the grasp point. This approach [18] can also be
extended to involve 3D scene information obtained by depth
sensor. Stark et al. [19] identify grasp regions of functional
objects as a set of object pixels that has been occluded by the
human in the course of an interaction. They use 2D features
extracted from the identified regions to map grasp areas on
detected objects. The 3D location of the grasp area is then
obtained by 3D triangulation from a calibrated stereo rig.

These approaches can transfer grasping experience across
similar objects by mapping 2D grasp points from training
objects to test objects. However, they are still limited to
grasping based on the visible surfaces.

More recently, two approaches to grasping objects from
only a single image, including reconstruction of hidden
surfaces, have been described.

Glover et al. [6] learn generative probabilistic models of
2D object geometry that capture the shape variability of a
specific deformable object. The learned models can be used
to detect objects based on visible portion of each object, and
then to recover occluded object contours in a single image.
However, their approach doesn’t capture variability of objects
within a class and is limited to planar grasp planning.

Collet et al. [3] build a metric 3D model for an object by
using a set of calibrated training images. Given a single test
image, they can detect multiple instances of the same object,



match instances to the stored model, and return accurate 6-
DOF pose estimates, suitable for manipulation. While this
approach provides reliable 3D information of known objects
for grasping, it does not handle new instances that vary
substantially from the stored model.

There has been recent work in the computer vision com-
munity on estimating 3D poses of class-specific instances
from single images [14], [20]. However, it hasn’t been shown
to work for robotic grasping.

III. 3D CLASS MODELS

In this paper, we use a 3D extension of the Potemkin
model [1] to represent object classes. The original Potemkin
model was made up of a set of vertical planar parts, and
was primarily used to transform images of objects from
one view to several other views, generating virtual data
for many viewpoints for multi-view recognition. In previous
work [2], we have extended the Potemkin model to allow
parts to be selected from a library of orientations, and
demonstrated that the new model was more effective for
image viewpoint transformation. In this paper, we further
augment the model to support reconstruction of the 3D
shapes of object instances.

A. Definition

Informally, the 3D Potemkin (3DP) class model can be
viewed as a collection of 3D planar shapes, one for each
part, which are arranged in three dimensions. The model
specifies the locations and orientations of these parts in an
object-centered 3D reference frame. In addition, it contains
canonical images with labeled parts, which allow recognition
results to be decomposed into parts. The view space is
divided into a discrete set of view bins, and an explicit 3D
rotation from the object-centered 3D reference frame to the
view reference frame is represented for each view bin.

The recognition process produces a 3DP instance model,
which is also a collection of 3D planar shapes arranged in
three dimensions, corresponding to the parts of the particular
2D instance from which it was constructed.

More formally, a 3DP object class model with IV parts is
defined by:

o k view bins, which are contiguous regions of the view
sphere. Each view bin is characterized by a rotation
matrix, T, € R3>*3, which maps object-centered 3D
coordinates to 3D coordinates in each view reference
frame «;

o k part-labeled images, specifying the image regions of
parts of an instance in each view bin «;

e a class skeleton, S1,...,Sn, specifying the 3D posi-
tions of part centroids, in the object-centered reference
frame; and

e N 3D planes, Q;,i € 1,..., N, specifying the 3D plane
parameters for each planar part, in the object-centered
reference frame;
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In addition, the 3DP class model contains an estimated
bounding polygon to represent the extent of the 3D part
graphically, but this polygon plays no role in reconstruction.
Instead, the part shapes in the part-labeled images for each
viewpoint are used for reconstruction.

B. Estimating a 3DP model from data

In broad outline, the part centroids are obtained by solving
for 3D positions that best project into the observed part
centroids in the part-labeled images in at least two views. The
3D planes are chosen so as to optimize the match between the
2D transformations between the boundaries of corresponding
parts in the part-labeled images. Below, we give a brief
overview of this estimation process; further details can be
found in [2].

o The view bins are selected. The choice of view bins is

arbitrary and guided by the demands of the application.
In our applications, we have used 12 views bins equally
spaced around a circle at a fixed elevation. The view
bins determine the associated rotation matrices.

o The part-labeled images in each viewpoint should be
for similarly-shaped instances of the class (though they
can be significantly deformed during the recognition
process) and two of them must be for the same actual
instance.

 The skeleton locations S are estimated, using Power-
Factorization [7], from the mean and covariance of the
coordinates of the centroids of labeled part j in the set
of part-labeled images.

o Learning the 3D planes is more involved. The process is
trained in two phases: one generic, and one object-class
specific. These phases are described below.

The first phase is class-independent and carried out once
only. In it, the system learns, for each element of a set of
oriented 3D shape primitives, what 2D image transformations
are induced by changes of viewpoint of the shape primitive.
The necessary data can be relatively simply acquired from
synthetic image sequences of a few objects rotating through
the desired space of views. Transforms for each primitive
between each view bin pair are learned by establishing
correspondences between points on these synthetic training
images using the shape-context algorithm [15], and then
using linear regression to solve for a 2D projective transform
that best models the correspondence data.

The second phase is class-specific. The shape-context
algorithm is used again to match points on the boundaries of
each part; these matched points are then used to construct the
cross-view transforms for the part across the labeled views.
For each part, the oriented planar primitive that best accounts
for observed cross-view transforms of the parts in the training
set is selected to represent the part.

In previous experiments [2], we ran a greedy selection
algorithm to select a small set of primitives that would
effectively model four test object classes (chair, bicycle,
airplane, car), which together have 21 separate parts. Four
primitive orientations suffice to model all of the parts of
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Fig. 2. Learned 3DP class model for four-legged chairs in the object-
centered reference frame, and in each view reference frame.

these classes effectively. The primitives chosen for each part
of each class are shown in Figure 1.

Once the primitives are selected, a small set of images,
which are a subset of the k part-labeled images in the model,
of the same object instance, from any set of views, as long as
each part is visible in at least two views, are used to estimate
the positions and orientations of the parts for this class. By
finding a similarity transform between the actual part outlines
and the projections of the primitives in two different views,
and having computed correspondences between the outlines
of the projections of the primitives in phase 1, we can solve
for 3D positions of points on the outline of the shape. This
allows us to estimate a rough extent and planar model of the
part in 3D, even when there is very little data available. We
compute ()1, ...,Qn based on these planar parts.

Figure 2 shows an estimated 3DP class model for chairs.
It was constructed from two part-labeled images of the same
object instance, knowing the view bins but with no further
camera calibration.

These easily-obtained 3DP class models may not be able
to capture highly detailed shape information or all of the vari-
ability within a class, but each provides adequate information
to represent the basic 3D structure shared by instances of a
class. Figure 3 shows two views of the learned 3DP class
model of toy cars.

IV. AUTOMATIC SINGLE-VIEW
RECONSTRUCTION

In this section we will describe how to use 3DP object
class models to reconstruct 3D objects from a single image.
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Fig. 4. Given a model instance with labeled parts (blue), the parts of
another instance (red) in the same view can be found by matching points
along the boundaries of the instances (middle) and by deforming the model
instance into the target instance (right).

To achieve complete automation of the reconstruction pro-
cess for manipulation, we developed a vision-based system
involving several steps: detection, segmentation, part regis-
tration, and model creation. We will address the details of
each step below.

A. Detection and segmentation

Given the input image, we need to detect the object,
identify the viewpoint, and obtain the contour of the object.
In theory, this step can be carried out by using any existing
multi-view object-class recognition system. For example,
Leibe et al.’s car detection system [11], composed of a set
of seven view-dependent ISM detectors [12], provides robust
results on localizing cars (a bounding box and a coarse object
segmentation for each detected car) and identifying their
viewpoints on test images.

In our system, we used the detection method developed
by Wang et al. [21]. One advantage of this detection method
is it needs only a few training instances for each viewpoint
of each object class. To make the detection process more
robust and efficient, we stored a background image taken
by the same fixed camera in advance and used this stored
image to filter foreground regions in the test image. Then
our system only searches over these regions for detecting
objects.

The detection system is able to determine a bounding
box for the detected object and to identify the viewpoint
bin. Within the bounding box, the outline of the detected
object can be obtained by existing model-based segmentation
techniques [13], [10]. We use the part-labeled outline for the
identified view bin in our model to initialize the segmen-
tation process. The segmented contours in our system were
obtained by using the publically available implementation of
level-set evolution by Li et al. [13].
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Fig. 5. Given the 3DP model of chairs in the view-reference frame (left), the
whole region of the partially-occluded leg on the model instance (middle) in
the same view can be registered based on visible portion. The total region of
the partially-occluded leg on the target instance (right) then can be obtained
by deforming the model instance into the target instance. The first row only
shows visible portion on the model and the instances in the same view.

B. Part registration

Once an object outline is available, we need to obtain
the part regions corresponding to the individual parts in the
model. Our approach is based on the fact that objects in
the same class, seen from the same view, have similar 2D
arrangements of parts. That is, the centroids of the projected
parts have characteristic arrangements.

We use the shape context algorithm [15] to match and
deform the boundaries of the stored part-labeled image for
the detected view bin into the corresponding boundary of the
detected instance, as shown in figure 4. This match induces a
deformation of the part-labeled image that is used to predict
internal part boundaries for the detected instance. We then get
the regions of non-occluded parts on the detected instance.

C. Partially-occluded part registration

For those parts that are partially-occluded in the part-
labeled image, we use the 3DP model in the view-reference
frame to register the whole regions of the parts based on
visible portion. Then we apply the deformation on those parts
from the part-labeled image to the detected instance, and get
the corresponding regions of parts, as shown in figure 5.

D. Creating the 3D model

Now we are able to generate a 3D instance model from
the segmented parts of the detected object in the input image
using our 3D model of the class.

In our controlled environment, we calibrated a fixed
camera M € R3>** in advance, using the Matlab camera
calibration toolbox. Then all objects are randomly placed on
the known 3D ground plane Q4 (ag X +b,Y +c4Z+dy = 0),
a table, within a Im by 1.2m area, visible from the camera.

We proceed in the following stages:

o Recover 3D coordinates of each image point (i, Yim)
on the ground region by solving for X, Y, and Z in
the following projection equations.
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mi1 Mmi2 M3 Mig
M= | mg moy M3 Moy 2
m31  MM32 M3z M34
I m1X +mi2Y + misZ + may 3)
T ma X A+ maY +masZ +maa
Yim = mo1 X + maoY + mo3Z + Moy (4)
T mg X +mgY + masZ +mag
agX +b,Y + ¢gZ +dy = 0. )

o For each planar part ¢ of the 3DP class model, compute
the parameters (G;q, bia, Cio) Of the 3D plane Q;, in
the 3D reference frame of view bin « (identified by the
detector) by applying the 3D rotation matrix 7, to Q;.
Note that the scale of parameter d;, is unknown.

« Fit a line [, through image points where the detected
object touches the ground region in the image, and get
the 3D coordinates of those ground points.

o For each object part j that includes points along the
line [, estimate d;, based on the recovered 3D coor-
dinates of points on that ground line. Then, solve for
the 3D coordinates of all 2D points of part j using
equations (2)—(4) and @, (the plane supporting part
9)-

o For each part k connected via adjoining pixels in the
image to some previously recovered part j, estimate dj,,
based on the recovered 3D coordinates of those points
on the intersection of part j and part k. Then solve for
the 3D coordinates of all the 2D points of part £ using
equations (2)—(4) and @i, (the plane supporting part
k). Repeat this process until all parts are reconstructed.

E. Estimating locations of totally-occluded parts

After we reconstruct a 3D model for the visible parts of
the detected instance in the source image, we are able to
further predict approximate 3D coordinates for the totally
occluded parts. We compute a 3D transformation (over
translation, rotation and scale) from the 3D class model to
the reconstructed 3D instance. The transformation is chosen
to minimize the sum of squared distances between matching
points an on the recovered 3D parts of the instance and the
corresponding 3D primitive parts in the class model. Then
for each totally-occluded part of the instance in the source
image, we apply this 3D transformation to the corresponding
part in the class model.

Figure 6 shows one example of a completely automated
reconstruction. It involves detection [21], segmentation [13],
part registration, and finally the reconstructed 3D instance
model on the ground plane.

The ability to estimate the 3D shape and extent of the
entire instance, including parts that are not visible in the
source image, is very important for robot manipulation, as
demonstrated in the next section.
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Fig. 6. The processing pipeline for automatic single-view 3D reconstruction.
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Fig. 7. From left to right: The estimated 3D instance is imported into the OpenRave [5] system and used to select a grasp from a pre-stored table that is

kinematically feasible.

V. GRASPING EXPERIMENTS

Ultimately, the quality of these reconstructions can be
tested by whether they support robust behavior in the real
world. We do this by placing novel instances of known
classes on a table in front of a robot manipulator and using
the 3DP reconstruction as the basis for grasping the object
and picking it up. The goal of our experiments is to evaluate
whether the reconstruction accuracy for 3DP instance models
is sufficient for grasping.

All grasping experiments in this section were conducted
as follows (Figure 7):

« Place an object to be grasped on a known 3D ground
plane, a table, within a 1m by 1.2m area. Acquire an
image from a calibrated fixed camera.

o Generate a 3DP instance model of the object, as de-
scribed in Section 4.

o Pick a feasible grasp for the object from a table of pre-
taught grasps.

o Execute the grasp using a 7-DOF Barrett arm and 4-
DOF Barrett hand.

o Count grasp as successful if the robot can lift the object
from the table.

We conducted two sets of experiments. The first set tests
the accuracy of the estimated 3D locations and orientations
on small toy cars, which require precise 3D localization for
successful grasping. The second set tests the effectiveness of
our 3DP instance models for three classes of larger objects
(coolers, stools, and water cans). Figure 8 shows the training
instance, the constructed 3DP class model, and test instances
for each of the four classes used in our experiments. The
training instance is used to construct the 3DP class model,
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to train detectors, and to initialize the segmentation/part-
registration process of detected objects.

A. Grasping with a single target grasp

In the first set of experiments, we used a single class model
for a car. We placed each of the 5 test toy cars in different
positions and orientations on the table, and reconstructed the
3DP instance model from each input image. Because all the
toy cars are small and are grasped with the same target grasp,
the grasp is determined only by the estimated orientation and
3D location of the center. The robot successfully grasped the
car in 38 of 44 trials. The successful rate was around 86%.
Figure 9 shows four grasps on different toy cars.

B. Grasping with multiple target grasps

In the second set of experiments, we tested the quality
of the face reconstructions on three object classes (stools,
coolers and watering cans) that are physically larger. We
placed each instance of the three classes in different positions
and orientations on the table, and reconstructed the 3DP
instance model from each input image. The grasps for these
classes are targeted at specific faces of the object rather
than the object center. All parts, including both visible and
occluded parts, of the 3D instance model are used as grasp
candidates. The reconstruction for these classes needs to
adapt to substantial size and shape variations among the
instances so as to recover reasonably accurate face descrip-
tions.

To simplify the process of choosing grasps, we took one
object instance in each class to teach grasps. For example,
figure 7 shows two demonstrated grasps for two different
parts of one instance of the stool class. For each demon-
strated grasp we recorded a set of grasp transforms, each



Fig. 8.
training instance, and 3-5 test instances used in experiments.

Fig. 9.

one relative to one part (a planar face) of the reconstructed
model of the object instance. These demonstrated grasps
serve as the basis for choosing grasps for other instances
of the same class. All the grasps are executed “open-loop”,
that is, the robot moves to the grasp pose and closes the
fingers. Generally, the object will accommodate to the grasp
somewhat, sometimes leading to success and other times to
failure.

Given a reconstructed 3DP model from a test image, we
find a face and corresponding grasp that is reachable by the
robot, move there, grasp and lift. Figure 10 shows four grasps
for each of the three classes. We found that grasps on the
wide side of the stools, the handle of the coolers and the
handle of the watering cans succeeded in lifting the object
in approximately 79% of the cases (101 of 128). Each of the
objects had approximately the same success rate. However,
attempts to grasp the stools on the narrow end fared much
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For each class, there is one training instance (From Left: the first column), one 3DP class model (the second column) constructed using the

Four grasps on different toy cars.

worse: only 30% (8 of 26) of the attempts were successful.

One interesting question is the performance in grasping
when the grasp face was one of the occluded faces. For
the wide end of the stools and the cooler handle, the
success rate was around 80% (46 of 53) while the narrow
end of the stools yielded 30%. The watering-can handle
was always visible in our experiments. When an occluded
face was being grasped, we experienced improved success
using grasps expressed relative to the reconstructed occluded
face (21 of 22) compared to when the grasp is expressed
relative to a visible face (25 of 31). This demonstrates the
value of reconstructing full 3D models of objects, which
support prediction of positions of occluded faces (see our
accompanying video).



Fig. 10. Four grasps for each of the three classes (from top to bottom: coolers, stools, and watering cans).

VI. CONCLUSIONS

We have demonstrated an approach for reconstructing the
three-dimensional structure of instances from several object
classes from a single image. The reconstructions, although
not perfect, are accurate enough to enable simple open-loop
grasping and can be used as the starting point for more
sophisticated sensor-based grasping strategies.
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