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match instances to the stored model, and return accurate 6-
DOF pose estimates, suitable for manipulation. While this
approach provides reliable 3D information of known objects
for grasping, it does not handle new instances that vary
substantially from the stored model.
There has been recent work in the computer vision com-

munity on estimating 3D poses of class-specific instances
from single images [14], [20]. However, it hasn’t been shown
to work for robotic grasping.

III. 3D CLASS MODELS

In this paper, we use a 3D extension of the Potemkin
model [1] to represent object classes. The original Potemkin
model was made up of a set of vertical planar parts, and
was primarily used to transform images of objects from
one view to several other views, generating virtual data
for many viewpoints for multi-view recognition. In previous
work [2], we have extended the Potemkin model to allow
parts to be selected from a library of orientations, and
demonstrated that the new model was more effective for
image viewpoint transformation. In this paper, we further
augment the model to support reconstruction of the 3D
shapes of object instances.

A. Definition

Informally, the 3D Potemkin (3DP) class model can be
viewed as a collection of 3D planar shapes, one for each
part, which are arranged in three dimensions. The model
specifies the locations and orientations of these parts in an
object-centered 3D reference frame. In addition, it contains
canonical images with labeled parts, which allow recognition
results to be decomposed into parts. The view space is
divided into a discrete set of view bins, and an explicit 3D
rotation from the object-centered 3D reference frame to the
view reference frame is represented for each view bin.
The recognition process produces a 3DP instance model,

which is also a collection of 3D planar shapes arranged in
three dimensions, corresponding to the parts of the particular
2D instance from which it was constructed.
More formally, a 3DP object class model with N parts is

defined by:
• k view bins, which are contiguous regions of the view
sphere. Each view bin is characterized by a rotation
matrix, Tα ∈ R3×3, which maps object-centered 3D
coordinates to 3D coordinates in each view reference
frame α;

• k part-labeled images, specifying the image regions of
parts of an instance in each view bin α;

• a class skeleton, S1, . . . , SN , specifying the 3D posi-
tions of part centroids, in the object-centered reference
frame; and

• N 3D planes, Qi, i ∈ 1, . . . , N , specifying the 3D plane
parameters for each planar part, in the object-centered
reference frame;

Qi : aiX + biY + ciZ + di = 0. (1)

In addition, the 3DP class model contains an estimated
bounding polygon to represent the extent of the 3D part
graphically, but this polygon plays no role in reconstruction.
Instead, the part shapes in the part-labeled images for each
viewpoint are used for reconstruction.

B. Estimating a 3DP model from data

In broad outline, the part centroids are obtained by solving
for 3D positions that best project into the observed part
centroids in the part-labeled images in at least two views. The
3D planes are chosen so as to optimize the match between the
2D transformations between the boundaries of corresponding
parts in the part-labeled images. Below, we give a brief
overview of this estimation process; further details can be
found in [2].

• The view bins are selected. The choice of view bins is
arbitrary and guided by the demands of the application.
In our applications, we have used 12 views bins equally
spaced around a circle at a fixed elevation. The view
bins determine the associated rotation matrices.

• The part-labeled images in each viewpoint should be
for similarly-shaped instances of the class (though they
can be significantly deformed during the recognition
process) and two of them must be for the same actual
instance.

• The skeleton locations Sj are estimated, using Power-
Factorization [7], from the mean and covariance of the
coordinates of the centroids of labeled part j in the set
of part-labeled images.

• Learning the 3D planes is more involved. The process is
trained in two phases: one generic, and one object-class
specific. These phases are described below.

The first phase is class-independent and carried out once
only. In it, the system learns, for each element of a set of
oriented 3D shape primitives, what 2D image transformations
are induced by changes of viewpoint of the shape primitive.
The necessary data can be relatively simply acquired from
synthetic image sequences of a few objects rotating through
the desired space of views. Transforms for each primitive
between each view bin pair are learned by establishing
correspondences between points on these synthetic training
images using the shape-context algorithm [15], and then
using linear regression to solve for a 2D projective transform
that best models the correspondence data.
The second phase is class-specific. The shape-context

algorithm is used again to match points on the boundaries of
each part; these matched points are then used to construct the
cross-view transforms for the part across the labeled views.
For each part, the oriented planar primitive that best accounts
for observed cross-view transforms of the parts in the training
set is selected to represent the part.
In previous experiments [2], we ran a greedy selection

algorithm to select a small set of primitives that would
effectively model four test object classes (chair, bicycle,
airplane, car), which together have 21 separate parts. Four
primitive orientations suffice to model all of the parts of
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Fig. 5. Given the 3DP model of chairs in the view-reference frame (left), the
whole region of the partially-occluded leg on the model instance (middle) in
the same view can be registered based on visible portion. The total region of
the partially-occluded leg on the target instance (right) then can be obtained
by deforming the model instance into the target instance. The first row only
shows visible portion on the model and the instances in the same view.

B. Part registration

Once an object outline is available, we need to obtain
the part regions corresponding to the individual parts in the
model. Our approach is based on the fact that objects in
the same class, seen from the same view, have similar 2D
arrangements of parts. That is, the centroids of the projected
parts have characteristic arrangements.
We use the shape context algorithm [15] to match and

deform the boundaries of the stored part-labeled image for
the detected view bin into the corresponding boundary of the
detected instance, as shown in figure 4. This match induces a
deformation of the part-labeled image that is used to predict
internal part boundaries for the detected instance. We then get
the regions of non-occluded parts on the detected instance.

C. Partially-occluded part registration

For those parts that are partially-occluded in the part-
labeled image, we use the 3DP model in the view-reference
frame to register the whole regions of the parts based on
visible portion. Then we apply the deformation on those parts
from the part-labeled image to the detected instance, and get
the corresponding regions of parts, as shown in figure 5.

D. Creating the 3D model

Now we are able to generate a 3D instance model from
the segmented parts of the detected object in the input image
using our 3D model of the class.
In our controlled environment, we calibrated a fixed

camera M ∈ R3×4 in advance, using the Matlab camera
calibration toolbox. Then all objects are randomly placed on
the known 3D ground plane Qg(agX+bgY +cgZ+dg = 0),
a table, within a 1m by 1.2m area, visible from the camera.
We proceed in the following stages:
• Recover 3D coordinates of each image point (xim, yim)
on the ground region by solving for X , Y , and Z in
the following projection equations.

M =

⎡

⎣
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

⎤

⎦ . (2)

xim =
m11X + m12Y + m13Z + m14

m31X + m32Y + m33Z + m34

. (3)

yim =
m21X + m22Y + m23Z + m24

m31X + m32Y + m33Z + m34

. (4)

agX + bgY + cgZ + dg = 0. (5)

• For each planar part i of the 3DP class model, compute
the parameters (aiα, biα, ciα) of the 3D plane Qiα in
the 3D reference frame of view bin α (identified by the
detector) by applying the 3D rotation matrix Tα to Qi.
Note that the scale of parameter diα is unknown.

• Fit a line lg through image points where the detected
object touches the ground region in the image, and get
the 3D coordinates of those ground points.

• For each object part j that includes points along the
line lg , estimate djα based on the recovered 3D coor-
dinates of points on that ground line. Then, solve for
the 3D coordinates of all 2D points of part j using
equations (2)–(4) and Qjα (the plane supporting part
j).

• For each part k connected via adjoining pixels in the
image to some previously recovered part j, estimate dkα
based on the recovered 3D coordinates of those points
on the intersection of part j and part k. Then solve for
the 3D coordinates of all the 2D points of part k using
equations (2)–(4) and Qkα (the plane supporting part
k). Repeat this process until all parts are reconstructed.

E. Estimating locations of totally-occluded parts

After we reconstruct a 3D model for the visible parts of
the detected instance in the source image, we are able to
further predict approximate 3D coordinates for the totally
occluded parts. We compute a 3D transformation (over
translation, rotation and scale) from the 3D class model to
the reconstructed 3D instance. The transformation is chosen
to minimize the sum of squared distances between matching
points an on the recovered 3D parts of the instance and the
corresponding 3D primitive parts in the class model. Then
for each totally-occluded part of the instance in the source
image, we apply this 3D transformation to the corresponding
part in the class model.
Figure 6 shows one example of a completely automated

reconstruction. It involves detection [21], segmentation [13],
part registration, and finally the reconstructed 3D instance
model on the ground plane.
The ability to estimate the 3D shape and extent of the

entire instance, including parts that are not visible in the
source image, is very important for robot manipulation, as
demonstrated in the next section.
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Fig. 6. The processing pipeline for automatic single-view 3D reconstruction.
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Fig. 7. From left to right: The estimated 3D instance is imported into the OpenRave [5] system and used to select a grasp from a pre-stored table that is
kinematically feasible.

V. GRASPING EXPERIMENTS

Ultimately, the quality of these reconstructions can be
tested by whether they support robust behavior in the real
world. We do this by placing novel instances of known
classes on a table in front of a robot manipulator and using
the 3DP reconstruction as the basis for grasping the object
and picking it up. The goal of our experiments is to evaluate
whether the reconstruction accuracy for 3DP instance models
is sufficient for grasping.
All grasping experiments in this section were conducted

as follows (Figure 7):

• Place an object to be grasped on a known 3D ground
plane, a table, within a 1m by 1.2m area. Acquire an
image from a calibrated fixed camera.

• Generate a 3DP instance model of the object, as de-
scribed in Section 4.

• Pick a feasible grasp for the object from a table of pre-
taught grasps.

• Execute the grasp using a 7-DOF Barrett arm and 4-
DOF Barrett hand.

• Count grasp as successful if the robot can lift the object
from the table.

We conducted two sets of experiments. The first set tests
the accuracy of the estimated 3D locations and orientations
on small toy cars, which require precise 3D localization for
successful grasping. The second set tests the effectiveness of
our 3DP instance models for three classes of larger objects
(coolers, stools, and water cans). Figure 8 shows the training
instance, the constructed 3DP class model, and test instances
for each of the four classes used in our experiments. The
training instance is used to construct the 3DP class model,

to train detectors, and to initialize the segmentation/part-
registration process of detected objects.

A. Grasping with a single target grasp
In the first set of experiments, we used a single class model

for a car. We placed each of the 5 test toy cars in different
positions and orientations on the table, and reconstructed the
3DP instance model from each input image. Because all the
toy cars are small and are grasped with the same target grasp,
the grasp is determined only by the estimated orientation and
3D location of the center. The robot successfully grasped the
car in 38 of 44 trials. The successful rate was around 86%.
Figure 9 shows four grasps on different toy cars.

B. Grasping with multiple target grasps
In the second set of experiments, we tested the quality

of the face reconstructions on three object classes (stools,
coolers and watering cans) that are physically larger. We
placed each instance of the three classes in different positions
and orientations on the table, and reconstructed the 3DP
instance model from each input image. The grasps for these
classes are targeted at specific faces of the object rather
than the object center. All parts, including both visible and
occluded parts, of the 3D instance model are used as grasp
candidates. The reconstruction for these classes needs to
adapt to substantial size and shape variations among the
instances so as to recover reasonably accurate face descrip-
tions.
To simplify the process of choosing grasps, we took one

object instance in each class to teach grasps. For example,
figure 7 shows two demonstrated grasps for two different
parts of one instance of the stool class. For each demon-
strated grasp we recorded a set of grasp transforms, each

583



-100 -50 0 50
-150

-100

-50

0

50

-2
-1

0
1x 10

5

0

0.5

-1

0

1

z

-0.5

0

0.5

1 -0.5
0

0.5
1

-0.5
0

0.5
1

y

x

z

-1 -0.5 0 0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1
0

1
x

y

-1

-0.5

0

-0.500.5
y

x

Fig. 8. For each class, there is one training instance (From Left: the first column), one 3DP class model (the second column) constructed using the
training instance, and 3-5 test instances used in experiments.

Fig. 9. Four grasps on different toy cars.

one relative to one part (a planar face) of the reconstructed
model of the object instance. These demonstrated grasps
serve as the basis for choosing grasps for other instances
of the same class. All the grasps are executed “open-loop”,
that is, the robot moves to the grasp pose and closes the
fingers. Generally, the object will accommodate to the grasp
somewhat, sometimes leading to success and other times to
failure.
Given a reconstructed 3DP model from a test image, we

find a face and corresponding grasp that is reachable by the
robot, move there, grasp and lift. Figure 10 shows four grasps
for each of the three classes. We found that grasps on the
wide side of the stools, the handle of the coolers and the
handle of the watering cans succeeded in lifting the object
in approximately 79% of the cases (101 of 128). Each of the
objects had approximately the same success rate. However,
attempts to grasp the stools on the narrow end fared much

worse: only 30% (8 of 26) of the attempts were successful.

One interesting question is the performance in grasping
when the grasp face was one of the occluded faces. For
the wide end of the stools and the cooler handle, the
success rate was around 80% (46 of 53) while the narrow
end of the stools yielded 30%. The watering-can handle
was always visible in our experiments. When an occluded
face was being grasped, we experienced improved success
using grasps expressed relative to the reconstructed occluded
face (21 of 22) compared to when the grasp is expressed
relative to a visible face (25 of 31). This demonstrates the
value of reconstructing full 3D models of objects, which
support prediction of positions of occluded faces (see our
accompanying video).


