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On Multiple Moving Objects 1 

M i c h a e l  E r d m a n n  2 and  Tomfis  L o z a n o - P 6 r e z  2 

Abstract. This paper explores the motion-planning problem for multiple moving objects. The 
approach taken consists of assigning priorities to the objects, then planning motions one object at a 
time. For each moving object, the planner constructs a configuration space-time that represents the 
time-varying constraints imposed on the moving object by the other moving and stationary objects. 
The planner represents this space-time approximately, using two-dimensional slices. The space-time 
is then searched for a collision-free path. The paper demonstrates this approach in two domains. 
One domain consists of translating planar objects; the other domain consists of two-link planar 
articulated arms. 

Key Words. Robotics, Motion planning, Coordinated motion, Configuration space, Autonomous 
robots, Collision avoidance. 

1. Introduction. A planner solving complex manipulation problems should be 
able to synthesize motion strategies for multiple moving objects. The need for 
this capability is evident both in large assembly operations during which it is 
impractical to move only one part at a time, and in tasks whose solutions involve 
the cooperation of several robots. 

1.1. Examples. This paper considers the motion-planning problem for multiple 
moving objects. We have implemented planners for multiple moving objects in 
two domains. The first domain consists of translating planar objects, while the 
second domain consists of two-link planar articulated arms. A detailed discussion 
of these domains will be given later. 

The approach taken consists of assigning priorities to the objects, then planning 
object motions one object at a time. The planner assumes that the prioritization 
is given, then plans object motions in the order determined by the prioritization. 
A given object's motion is planned taking into account the motions of all objects 
whose motions have already been planned, as well as all stationary obstacles. 

1This report describes research performed at the Artificial Intelligence Laboratory of the 
Massachusetts Institute of Technology. Michael Erdmann is supported in part by a fellowship from 
General Motors Research Laboratories. Tomfis Lozano-P6rez is supported by an NSF Presidential 
Young Investigator grant. Support for the Laboratory's Artificial Intelligence research is provided in 
part by the System Development Foundation, in part by the Office of Naval Research under Office 
of Naval Research Contract N00014-81-K-0494, and in part by the Advanced Research Projects 
Agency under Office of Naval Research Contracts N00014-80-C-0505 and N00014-82-K-0344. 
2 Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA. 

Received February, 1986; revised October 22, 1986, Communicated by Chee-Keng Yap. 



478 M. Erdmann and T. Lozano-P6rez 

Fig. 1. The start and goal configurations of four translating planar objects. The numbers attached to 
the objects indicate the order in which object motions were planned. 

The time-varying constraints imposed on a given object by other moving objects 
are represented in a configuration space-time. Details will be given later (see, 
for instance, Sections 3 and 4). 

As an example, consider the objects of Figure 1. The figure displays both the 
start and goal positions of the objects. In this example, the objects are permitted 
to translate but not to rotate. The numbers attached to the objects indicate the 
order in which object motions were planned. Figure 2 displays a solution deter- 
mined by the planner to be discussed in this paper. Running on a Lisp Machine, 
the time required by the planner to solve this problem was slightly under 7 minutes. 

As another example, Figure 3 shows the start and goal configurations for three 
articulated arms. Again, the numbers attached to the arms indicate the order in 
which object motions were planned. A solution for this problem is shown in 
Figure 4. The planner required approximately 36 minutes to solve this problem. 

In both examples the planner generated a series of collision-free motions taking 
the objects from their start configurations to their desired goal configurations. 
The objects generally move simultaneously, although the planner will also con- 
sider stopping an object to wait for other objects to pass, if doing so is advan- 
tageous. 

1.2. Problem Statement. This paper concentrates on the motion-planning prob- 
lem. There are, however, other important issues that a task planner should 
understand. In particular, the dynamics of  object interactions, the effect of 
uncertainty on object motions, and the design of environments conducive to 
particular tasks, are problems that deserve attention. These issues are beyond the 
scope of this paper. 
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Fig. 3. Start and goal configurations for three articulated arms. The numbers attached to the arms 
indicate the order in which object motions were planned. 

The assumptions of this paper  are: 

1. The environment consists of  a set of  stationary objects and a set of  moving 
objects, modeled as polyhedra. 

2. All objects perform rigid motions. In the case of articulated arms, this means 
that each link is rigid, although the links may rotate relative to each other. 

3. Object interactions may be specified in geometrical terms. The physics of  
object interactions are not considered. 

4. Planned motions should be correct to some resolution. Some of our imple- 
mented planners have resolution bounds. 

The envisioned planner expects a specification of the moving objects' desired 
configurations at particular times. In the simplest case, this specification consists 
of  a set of  initial states and a set of goal states. Our implemented planner is of 
this form. In more complicated settings, a sequence of desired states could be 
specified. For instance, the sequence could be cyclical, representing the steps in 
some repetitive task. The planning process consists of  determining a series of 
motions that satisfies the goal specifications, while avoiding object collisions. (By 
a collision we mean an overlap of object interiors; nonoverlapping touching 
contacts are permitted.) 

1.3. Motivating Topics. The motivation for studying multiple moving objects 
stems from the complexity of  manipulation tasks. The total degrees of  freedom 
of all the objects in a task may be high. Traditional methods of robot planning 
are applicable primarily for a single moving object. (See, for example, Udupa 
[24], Lozano-P6rez and Wesley [15], Lozano-P6rez [13], [14], Brooks [3], and 
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Fig. 5. Two interlocked links. In order to separate the two links, it is necessary to rotate both links 
simultaneously. 

Brooks and Lozano-P~rez [4].) Thus all but one of the objects in a task must be 
held fixed during each major step of the task. This is seldom an efficient approach. 

Furthermore, the approach of only moving one object at a time may actually 
limit the class of solvable tasks. For instance, consider the interlocked rotating 
links shown in Figure 5. In order to separate the two links, both links must be 
rotated simultaneously. The two links cannot be separated by moving only one 
link, since either link constrains the other link from moving. 

Stepping outside the immediate problem boundaries considered by this paper, 
imagine an automated factory. The factory consists of  numerous autonomous 
robots, all moving and interacting. Some of these robots are fixed, performing 
tasks at particular locations, others are feeders, serving to move objects through 
a gauntlet of  operations, and still others are mobile, moving as independent 
vehicles throughout vast stretches of  the factory. The aim here is to solve such 
motion tasks efficiently and safely. 

2. Previous Work. We are aware of several major lines of previous work on 
multiple moving objects. 

Campbell  and Luh [5] construct a numerical optimization problem to find an 
optimal path of  a manipulator  between a sequence of edges in space. The positions 
of the edges may be time-varying. Thus, given a collection of moving objects, 
this approach may be used to compute the trajectory of an additional moving 
object. 

A limitation of this algorithm is that it determines a shortest path between the 
specified sequence of edges without ensuring that the resulting path is collision- 
free. Effectively, Campbell  and Luh's algorithm is used as a subroutine inside a 
shortest-path search of  configuration space. In searching the space, some other 
mechanism must ensure that proposed paths between edges are collision-flee. 
This may be done easily in an environment consisting solely of  static obstacles. 
Unfortunately in an environment consisting of moving obstacles, a separate 
mechanism for proposing edge sequences must be developed. 

A number of local techniques have been developed for comput~ing collision-flee 
motions of several moving objects. These techniques maintain collision-flee 
trajectories over small periods of time. They are used in an on-line fashion to 
obtain collision-free trajectories between start and goal configurations over large 
time intervals. In particular, Freund and Hoyer  [9] have devised an on-line 
control system for coordinating motions in a multirobot system. Along a different 
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direction, Tournassoud [23] has used separating hyperplanes to avoid locally 
collisions of multiple moving objects. 

Kant and Zucker [12] decompose the multiple moving objects problem into 
two subproblems. The first subproblem consists of planning a path for each of 
the moving objects that avoids collisions with the static objects in the environment. 
The second subproblem consists of varying the velocities of the moving objects 
along their specified trajectories so as to avoid collisions with moving obstacles. 
Effectively, the algorithm plans the velocities of the moving objects one object 
at a time. Given that the velocities for some set of moving objects are known, 
the algorithm computes the velocities of another moving object so as to avoid 
collisions with any of the moving objects whose velocities have already been 
determined. The velocities may be so chosen as to ensure minimum traversal times. 

The advantage of this approach lies in its explicit representation of time. In 
fact, the subproblem of determining velocities is formulated elegantly as a 
path-planning problem in a two-dimensional space-time. The algorithm guaran- 
tees that the resulting motions avoid any collisions of moving objects with 
stationary objects or other moving objects. The limitation of this approach is 
that it does not permit path alterations, only velocity alterations. This may prevent 
solutions in cases where some moving object forever remains in the path of some 
other moving object. 

A number of researchers have focused on the special case of coordinating the 
motions of several circular bodies in two-dimensional regions bounded by collec- 
tions of polygonal walls. (See the work by Schwartz and Sharir [20], Yap [26], 
and Ramanathan and Alagar [17].) These authors demonstrate various provably 
correct algorithms for solving the coordinated disk motion problem. The time 
complexities of these algorithms are shown to be polynomial in the number of 
walls and exponential in the number of disks. 

Fortune et  al. [8] use retraction and critical curve methods to solve the problem 
of coordinating the motions of two polar manipulators. These authors construct, 
for one of the manipulators, a graph that represents the manipulator's free space 
as a function of the second manipulator's configuration. They then partition the 
second manipulator's free space into regions and critical curves over which the 
topology of this graph is invariant. Thus they can represent the combined free 
space of the two manipulators as a series of graphs, which then can be searched 
for a collision-free coordinated motion. 

Hopcroft et  al. [10] have examined the complexity classification of the coordin- 
ated motion problem. In particular, they have shown that the two-dimensional 
problem of coordinating the motions of an arbitrary number of rectangles in a 
rectangular region is PSPACE-hard. Hopcroft and Wilfong [11] showed that the 
problem is in fact in PSPACE. Spirakis and Yap [22] considered the complexity 
of moving many disks, showing this problem to be NP-hard. 

Reif and Sharir [ 18] have also considered the multiple moving objects problem. 
They showed that the problem of planning motions for a three-dimensional rigid 
body in an environment containing stationary and moving obstacles is PSPACE- 
hard given bounds on the moving object's velocity, and NP-hard without such 
velocity bounds. Furthermore, they exhibit a polynomial-time algorithm for the 
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two-dimensional version of the asteroid avoidance problem, assuming a 
bounded number of moving obstacles. They also exhibit a singly exponential- 
time algorithm for the three-dimensional version of the problem, assuming 
an unbounded number of moving obstacles. 

3. General Problem Discussion. The structure of a multiple moving objects 
planner depends on the type of object interactions permitted. The relevant issues 
are centralization and cooperation. 

3.1. Autonomous Planning. Perhaps the simplest case consists of planning for 
a single moving object in the presence of a number of other objects, some of 
which are stationary and some of which may be moving. The algorithms of 
Campbell and Luh [5] and Kant and Zucker [12] are formulated in these terms. 
Of course, given an algorithm for planning for a single moving object in the 
presence of other, possibly moving, objects, it is always possible to plan for a 
set of moving objects, by planning motions one object at a time. This approach, 
however, is not guaranteed to be complete. 

The method of planning for a single moving object is also appropriate for an 
independent autonomous robot that is trying to navigate and work amidst a group 
of other independent entities. For small periods of time and in small neighbor- 
hoods about itself, the robot can observe the motions of other objects, predicting 
their immediate future behavior. The robot can then plan its motions using its 
algorithm for planning motions of a single moving object in the presence of other 
moving objects. Such an approach requires continuous real-time planning. 

3.2. Centralized Planning. The previous discussion assumed decentralized con- 
trol. Planning occurred in independent entities on the individual level. Another 
question to address is the centralized planning problem, in which the motions 
of several moving objects are being planned at once. For instance, the planning 
of complex assembly operations requires centralized planning for multiple objects 
and robots. 

3.3. Configuration Space. Let us observe that the centralized multiple moving 
objects planning problem is conceptually no more difficult than the problem of 
planning motions for a single moving object in the presence of a collection of 
stationary objects. To see this, let us consider the motion-planning problem for 
a single moving object. One approach taken is to transform this problem into 
that of planning point motions in the object's configuration space. The configur- 
ation space [1], [13], [14], [19], [7], [6] of an object is the parameter space 
representing the degrees of freedom of the object. Obstacles in real space constitute 
constraints on the object's motion. These may be represented as hypersurfaces 
in the object's configuration space. The planning process consists of determining 
a path of a point in configuration space that does not violate any of these 
hypersurfaces. Figure 6 shows the configuration space of a translating triangle 
determined by two stationary obstacles. 

Now observe that one can construct a configuration space for the multiple 
moving objects problem. The dimension of this space is the sum of the degrees 
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Fig. 6. The left figure consists of a translating triangle, and two stationary obstacles. The right figure 
displays the configuration space constraints imposed on the triangle by the obstacles. For comparison, 
the constraints are superimposed on the actual obstacles. 

of freedom of all the moving objects. Again, constraints in real space may be 
represented as hypersurfaces in the configuration space. These surfaces corre- 
spond to configurations of the moving objects at which some moving object is 
touching another moving or stationary object. A point in this configuration space 
represents the configurations of all the moving objects, while a trajectory in the 
configuration space describes the motions of all the objects at once. The planning 
process, as for a single moving object, consists of determining a trajectory in 
configuration space that does not violate any of the hypersurfaces. 

We see, therefore, that the approach for planning for a single moving object 
in the presence of purely stationary objects applies equally well to planning for 
multiple moving objects, except in higher dimensions. From this point of view, 
the multiple moving objects problem is solved conceptually. There are, however, 
some practical concerns. In particular, for tasks involving a large number of 
moving objects, the dimension of the configuration space may be very high. Thus, 
both the construction of the space and the search for a collision-free trajectory 
may be time consuming. 

3.4. Prioritized Planning. We have already noted that methods for planning for 
a single moving object in the presence of other moving objects may be used for 
planning for several moving objects, by planning motions one object at a time. 
The appeal of this decomposition approach is that it reduces the problem from 
a single planning problem in a very high-dimensional space to a sequence of 
planning problems in low-dimensional spaces. Of course, in contrast to the 
configuration space approach, in general this decomposition approach need not 
be complete. By not considering all moving objects at once, the planner runs the 
risk of choosing a trajectory for an object early on that prevents finding a solution 
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for an object later in the planning sequence. In this section, we explore some 
cases that readily lend themselves to the decomposition approach. 

In essence, any task in which a prioritization of motions may be assigned, may 
be approached using the decomposition approach. In the case of  cooperating 
robots, a prioritization may be assigned in terms of  master/slave relationships. 
In other words, one robot is actually performing the task, while the others are 
helping. Any robot helping another observes the other's motions, acting in a 
cooperating fashion. 

In the case of assembly operations, in which many parts may be moving at 
once, the order in which parts fit together may determine a prioritization. For 
instance, if a robot is placing a part onto another part located on a conveyor 
belt, then the robot must cooperate with the conveyor. In turn, the motion of the 
conveyor belt and the motions of objects fed onto the conveyor are planned after 
observing the distribution of parts on the conveyor. If objects begin jamming up 
at some point, then the rate at which objects are fed onto the conveyor may have 
to be changed, or the conveyor may have to be stopped. 

Notice that a prioritization does not imply that an object of lower priority must 
follow or assist an object of higher priority. Assistance is just one example in 
which priorities may be assigned naturally. In general, an object of low priority 
may be performing independent operations. A prioritization simply states that 
the burden of avoiding collisions between two objects fails on the object of lower 
priority. The high-priority object may move in any fashion that it desires. The 
low-priority object may also move in any fashion that it desires, so long as it 
does not collide with the high-priority object. 

Finally, let us observe that the prioritization need not be constant. For instance, 
in the case of cooperating robots, the master/slave relationships may alternate 
during the course of performing a task. Furthermore, at times the particular 
prioritization chosen may be irrelevant. For instance, if during the course of a 
task two robots cannot possibly interfere with each other, then the order in which 
motions are planned does not matter. 

These observations suggest that the prioritized decomposition scheme be used 
to plan subtasks inside of a larger planner that assigns priorities. The larger 
planner decomposes a task into smaller subtasks; it determines which objects 
could possibly interfere with each other; and it uses task constraints to decide 
on the order of motions within a subtask. 

4. Outline of the Approach. We now outline a method for planning motions of 
several moving objects. It is assumed that the objects have been assigned priorities. 
Motions are planned one object at a time, according to the assigned priorities. 
Each object's motion is planned so as to avoid collisions with all station- 
ary objects and all moving objects whose motions have already been deter- 
mined. Situations in which this approach is suitable were discussed previously, 
in Section 3. 

4.1. Incorporating Time. The constraints on a single moving object in an other- 
wise static environment are readily captured by the configuration space of the 
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object. Motions of the object are planned by planning motions of a representative 
point in the configuration space. 

Now suppose that the environment is no longer static. In this case the constraints 
on the moving object whose motions are being planned vary with time. However, 
notice that it is still possible to construct a configuration space at any fixed point 
in time. The configuration space at a particular point in time geometrically 
captures the constraints on the object's degrees of freedom at that time. The 
configuration space is identical to a configuration space constructed from a static 
environment arranged as are all objects, both stationary and moving, at the given 
point in time. Considering all points in time, this construction produces a 
space-time configuration space that reflects the time-varying constraints on the 
object's possible motions. A particular slice of this space at any given time is 
just an ordinary configuration space. The constraints of stationary objects are 
constant as functions of time; the constraints arising from moving objects change 
as functions of time. Planning an object motion entails planning the motion of 
a point in the configuration space-time that does not violate any constraints. 

Notice that i t  is indeed necessary to incorporate time in some fashion in order 
to accurately represent the time-varying constraints. This is not necessary if one 
is planning for all of the moving objects at once, for then it is possible to treat 
all the objects effectively as one composite abstract object, with a high number 
of  degrees of freedom. By only planning motions for one object at a time, it is 
necessary to treat the environment as time-varying. This is because the planner 
must somehow consider the behavior of those objects whose motions have already 
been planned. 

As a final comment, suppose that there are n objects, each with k degrees of 
freedom. The composite configuration space approach involves planning in a 
space of dimension nk. The prioritized decomposition scheme involves planning 
n motions in spaces of dimension k + 1. 

4.2. Issues. Configuration space-time correctly describes the problem of plan- 
ning motions for a single object in a time-varying environment. It remains 
therefore to devise algorithms that efficiently consider the relevant portions of 
the configuration space-time while planning a motion. Some issues that arise 
while solving this problem include: 
1. How to build the space-time configuration space. 
2. How much of the space-time configuration space to build. 
3. How to search the space for a collision-free trajectory. 

We have explored these issues, and implemented algorithms, in two different 
domains. The first domain consists of polygonal objects in the plane. The objects 
are permitted to translate but not to rotate. The second domain consists of two-link 
planar arms with rotary joints. The arms are permitted to rotate at their joints, 
with their base points held fixed in the plane. The remainder of this paper is a 
description of our observations and results. 

4.3. Searching in Time. Let us make a few general observations regarding 
searching in configuration space-time. First, ':"~ un . . . .  searches in general spaces, 
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it is always necessary to search forward in time. Objects are not permitted to 
move back in time and interact with themselves. In other words, configurations 
are assumed to be single-valued functions of time, As a simple extension, if object 
velocities have minimum or maximum bounds, then the angle of  motion between 
slices is constrained to lie in some appropriate range. In other words, the 
space-time region reachable from some starting point is a cone whose edges are 
defined by the velocity bounds. The search algorithm must consider these restric- 
tions when proposing paths. 

As a side note, suppose that we placed no temporal restrictions on the search 
algorithm, but simply treated the space-time regions as one would treat purely 
spatial regions. The search algorithm might then propose a path from start to 
goal that would not be a single-valued function of time. Said differently, the 
graph of configuration versus time might contain vertical segments or it might 
curve back in time. In order to realize such a proposed path physically, the 
planner would at times have to slow down or even reverse the motions of the 
other objects whose motions were previously planned. Our implemented planners 
did not consider such paths. 

Another observation concerns the safety of achieved goals. Suppose that a 
given moving object's goal is specified solely as a configuration, with no mention 
of time. Suppose that the planner achieves the goal at some time before the other 
moving objects have stopped moving. Then it is still possible for one of the other 
moving objects to collide with the given object. In order to avoid this, the planner 
must check that the achieved goat remains safe until all objects have stopped 
moving. A simple method for ensuring safety of attained goals is to specify goals 
as space-time configurations, where the spatial coordinate represents the actual 
goal and the temporal coordinate represents the earliest time at which the goal 
may be considered attained. Notice that no such check is explicitly necessary for 
cyclical tasks in which all objects continue to move after achieving their goals. 

5. Translating Planar Objects. The first domain that we will explore consists of 
two-dimensional polygons. The environment is composed of both stationary 
objects and moving objects. The moving objects are allowed to translate but not 
to rotate. The objective is to plan a collision-free motion for a moving object in 
the presence of the stationary objects and those other moving objects whose 
motions have already been planned. 

5.1. Constructing the Configuration Space-Time. Configuration space obstacles 
are shape-invariant under translations. Given some moving object and some 
stationary object, suppose we construct the resulting configuration space obstacle. 
Now suppose that we change the position of the stationary object. Then the 
shape of  the resulting configuration space obstacle remains unchanged. Further- 
more, the position of the configuration space obstacle translates exactly as does 
the real space obstacle. (See, for instance, Figure 7.) 

This invariance greatly simplifies the computation of the configuration space- 
time. In order to compute the time-varying constraints imposed on a moving 
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fi I 

Fig. 7. The top two frames show a rectangle and a stationary obstacle, along with the constraints in 
the rectangle's configuration space that are determined by the obstacle. The bottom two frames show 
how the translation of the real space obstacle is reflected in configuration space by a translation of 
the configuration space obstacle. 

object by some stationary objects and other moving objects, it is enough initially 
to treat the moving objects as stationary. Specifically, the planner computes a 
standard configuration space obstacle for each of the stationary and moving 
objects. The actual constraint imposed by a moving object at a particular time 
may then be determined simply by performing a polygonal translation of the 
associated configuration space obstacle. In short, for translation spaces, it is 
sufficient to compute the configuration space obstacles once. The time-varying 
constraints may be determined easily by performing translations of  these configur- 
ation space obstacles. 

5.2. Representing the Configuration Space-Time. Let us assume that all transla- 
tions of  moving objects in space are piecewise linear, with constant velocity over 
each segment. This assumption is reasonable in polyhedral environments. Then 
it is sufficient to represent the configuration space-t ime as a list of  configuration 
space slices at particular points in time. The times are those at which some moving 
object whose motion has already been planned changes its velocity. This is 
because all object motions between such points in time are straight-line constant- 
velocity motions in space. In particular, the corresponding configuration space-  
time obstacles are simply swept volumes, determined by sweeping configuration 
space obstacles along straight lines through space-time. 
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Using this representation of configuration space-time, it is easy to decide 
whether a proposed path collides with any of the other stationary or moving 
objects. Specifically, the decision amounts to determining whether a moving point 
collides with a moving polygon. In turn, that computation may be reduced to 
deciding whether a stationary line segment intersects a stationary polygon (see 
Figure 8). 

In summary, configuration space-time is represented as a list of configuration 
space slices at particular times. The times are those at which some moving object 
changes its velocity. A slice is computed from the slice at time zero by translating 
the configuration space obstacles that correspond to the moving obstacles in real 
space. Motions between slices are implicitly represented as straight-line transla- 
tions of these configuration space obstacles. 

5.3. Searching for a Collision-Free Path. Once the configuration space-time has 

Real Space: ~ Vo~,tacl, 

IE VpIanned 

Configuration Space: 
Vobstacl~ 

m Vplanned 

Line-Polygon Test: ~: 

Fig. 8. The problem of deciding whether two moving objects collide is first t ransformed into the 
problem of deciding whether a moving point collides with a moving configuration space obstacle. 
This problem is then transformed into a line-polygon intersection test. 
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been constructed, a collision-free path may be determined by finding motions 
that do not intersect any of  the constraints explicitly or implicitly represented in 
configuration space-time. 

There are several methods for generating possible path segments between slices. 
For instance, one could consider all overlapping free space regions between 
slices. This approach has the advantage of not immediately choosing a particular 
trajectory, but instead implicitly representing all trajectories within a region. 

The particular algorithm that we implemented considers all path segments 
between adjacent slices that terminate at vertices of obstacles. Any path segment 
that pierces a stationary configuration space obstacle or that intersects an 
implicitly represented moving obstacle is ignored. This algorithm is a variation 
of  the V-graph algorithm used in Lozano-P6rez and Wesley [ 15] and Lozano-P6rez 
[14]. 

The difficulty with this approach is that the algorithm may not find a path 
because it generates too few path segments. The fundamental cause of this 
difficulty lies in the discrete representation of time. Time is only represented 
implicitly between slices. Thus there is no natural mechanism for performing 
motions over time intervals that are shorter than the interval between two adjacent 
slices. In order to alleviate this problem slightly, the planner does not use solely 
the slices arising from changes in object motions. Instead, the planner introduces 
a fixed number of extra configuration space slices between those that are already 
represented. This is equivalent to ignoring solutions that involve motions below 
some fixed time resolution. A complete algorithm would also need to consider 
the space-time between slices. 

Finally, let us note that the search of configuration space-time may wish to 
take into account costs of particular paths. Both the distance traveled and the 
time to reach a goal configuration may be important. Standard search techniques 
apply. 

5.4. Complexity and Completeness. For each slice, given a particular object 
whose motion is being planned, the configuration space constraints can be 
constructed in time that is linear in the number of edges in the environment. 
Thus, let m = nr, where n is the number of  edges in the environment, and r is 
the number of slices constructed. Then the configuration space-time can be 
constructed in O(m) time. Our planner uses a search that has time complexity 
O(rn3), although a faster version of the algorithm may be implemented, as we 
shall see. Note that the search must be able to decide whether a motion between 
two vertices in two adjacent slices lies in free space-time. This is done using the 
line-polygon intersection test described in Section 5.2. One such test is performed 
for each moving or stationary obstacle in the environment. In toto, the tests 
require time O(n) per proposed motion. Thus, for a given vertex, the time required 
to find all vertices in adjacent slices that are reachable via collision-free straight- 
line motions through space-time is O(n2). The overall time for testing safety of 
all possible vertex-vertex transitions between adjacent slices is therefore O(rn3). 

In fact, a slightly faster construction of  the visibility graph is possible. To see 
this, consider a particular vertex w in a given slice: The objective is to find all 
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vertices in some adjacent slice that are reachable by a straight-line motion through 
space-time. Imagine constructing, for each configuration space obstacle, a certain 
visibility polygon. Specifically, this visibility polygon represents the set of points 
in the slice containing w that are visible from w along straight lines which do 
not intersect the obstacle. (Observe that a visibility polygon geometrically solves 
a line-polygon test for an entire set of lines.) Taken over all obstacles, the collection 
of these visibility polygons may be constructed using an algorithm of time 
complexity O(n log n). The total number of vertices in the polygons is O(n). 
(See, for instance, Sharir and Schorr [21] and Asano et al. [2].) Now consider 
translating each visibility polygon into the adjacent slice. Each polygon should 
be translated with the same velocity as is used to translate its generating configur- 
ation space obstacle. A translated visibility polygon describes precisely all points 
in the adjacent slice that are reachable from w along straight lines which do not 
"intersect the corresponding space-time obstacle. Consequently, the intersection 
of  all the translated visibility polygons describes all points in the adjacent slice 
that are reachable from w along some straight-line motion that does not intersect 
any space-time obstacle. The vertices of this intersection polygon may be used 
to define the visibility graph. The intersection may be computed using an algorithm 
of time complexity O((n + c) log n), where c is the total number of edge-edge 
intersections that arise (see Nievergelt and Preparata [16]). Consequently, the 
entire visibility graph may be constructed in time O(rn(n + c) log n). We did not 
implement the search algorithm in this form. 

The planner, as implemented, is complete only to the time resolution between 
slices. Observe, however, that the slice representation essentially represents the 
complete configuration space-time. In fact, between slices the space-time con- 
straints are simply a collection of polyhedral swept volumes. Thus the space-time 
representation is complete, although the search algorithm is not. To be complete, 
a search algorithm would need to consider motions that could change direction 
between slices. 

One approach toward making the algorithm complete, would be to introduce 
space-times slices at certain critical times. The objective is to introduce slices at 
those times at which the topology of free space changes. This is a function of 
the number of interactions between the other objects in the environment. A slice 
should be introduced whenever two moving or stationary configuration space 
obstacles touch or intersect. A conservative bound on the number of slices is 
given by r = O(sn2). Here s is the number of distinct time intervals over which 
each of the objects whose motions were previously planned performs a single 
straight-line constant-velocity motion. We did not implement the planner in this 
form. 

5.5. Summary for Translating Planar Objects 
1. The position of a configuration space obstacle at a particular time may be 

determined from its position at time zero by translation. 
2. Configuration space-time is represented as a series of configuration space 

slices at fixed points in time. 
3. Configuration space-time is searched using a visibility graph algorithm. 
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4. Collisions between proposed trajectories and moving objects are detected 
using line-polygon intersection tests. 

5. The planner is complete only to the time resolution between slices, unless the 
free space-t ime between slices is also searched. 

6. Linked Planar Arms with Rotary Joints. The second domain that we will 
explore consists of  two-link articulated planar arms. Each arm consists of  two 
links and two joints, about which the links may rotate. The base of  each arm is 
fixed in the plane, so the arms do not translate. The links are modeled as convex 
polygons. 

In addition to the arms, the environment contains stationary obstacles that are 
also modeled as convex polygons. The objective is to plan a collision-free path 
for an arm between specified start and goal configurations. The motions of the 
other arms are assumed to ha+e been planned already. As explained previously, 
this approach may be used to plan motions for several arms, by assigning priorities 
to the arms, and planning motions one arm at a time. 

6.1. Constructing the Configuration Space-Time. In the previous section we saw 
that for translational motions it is fairly easy to build the configuration space-time. 
One merely builds a standard configuration space at time zero, then translates 
the moving obstacles in configuration space in correspondence with the transla- 
tions of  the moving objects in real space. Unfortunately, there is no such simple 
technique available for building configuration space-t ime once rotations are 
permitted. The basic cause of  the difficulty stems from the nonlinearity of  the 
constraints imposed by obstacles in the environment On the rotational degrees 
of  freedom of a moving object. 

For rotating linked arms with fixed bases the basic motions performed are 
rotations of  various polygons about various rotation centers. I f  a given arm's 
joints are allowed to rotate in unison, then several of these rotations may be 
superimposed. For convenience, therefore, let us assume that only one joint of  
any arm is allowed to move at a time. For further convenience let us also assume 
that each polygon is convex. This assumption of convexity is not necessary, but 
it simplifies the computation and complexity. Given these assumptions, the basic 
motions are indeed rotations of  various convex polygons about various rotation 
centers. It is thus sufficient to concentrate on analyzing the interaction of  two 
convex polygons, each rotating about its particular rotation center. The constraints 
resulting from the interaction of two arms may be built up from the constraints 
of several such pairs of  polygons. In each pair, one of the two polygons is part 
of  the arm whose motion has already been determined, while the other polygon 
is part of the arm whose motion is currently being planned. 

6.2. Constraints Arising from Rotating Polygons. The task now is to derive the 
constraints imposed on one rotating polygon, the planning object, by the motion 
of another rotating polygon, the obstacle polygon. The situation is fairly analogous 
to the domain of translating planar polygons. The difference lies in the difficulty 
of  computing nonlinear time-varying constraints. 
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One approach would be to reduce the problem further. For instance, the planner 
could compute the collection of half-space constraints arising from each pairing 
of an edge on one object with a vertex on the other object. By intersecting and 
unioning these constraints appropriately (see Lozano-P6rez [14], Donald [7], 
and Canny [6]), the planner could determine the effective constraints imposed 
on one object by the motion of the other object. 

The difficulty with this approach lies in its complexity. By considering all pairs 
of edges and vertices, the planner would be expanding all possible constraints, 
even those subsumed by other constraints. As an example, the constraint imposed 
on a vertex by an edge on the near side of an obstacle subsumes the constraint 
imposed by an edge on the far side of the obstacle. In planning a path, the 
planner must test feasibility of the path against all possible constraints. This 
involves unnecessary work in the case that some constraints are subsumed by 
other constraints. Alternatively, the planner could first decide which constraints 
were active and which were subsumed by other constraints, and then only test 
path feasibility against the active constraints. Unfortunately, as the obstacle 
rotates, some active constraints become subsumed by other constraints, while 
some inactive constraints become active. Thus the planner would be forced to 
decide constantly which constraints were about to become active. 

Instead of expanding all the constraints and then deciding which are active, 
a slightly different approach is to consider only active constraints. As some of 
these expire and become subsumed by other constraints, the planner determines 
the newly activated constraints directly from "'le expiring constraints. This 
approach is based on the observation that fol ,onvex objects the conditions 
defining a constraint are purely local. In particular, the Validity of a constraint 
depends only on the edges and vertices at the point of contact (see also Donald 
[7]). Furthermore, constraints expire and become subsumed by newly activated 
constraints precisely at configurations for which several constraints agree, that 
is, intersect as hypersurfaces in configuration space. Geometrically, these con- 
straints represent the simultaneous contact of several vertices and edges, in the 
form of vertex-vertex contacts or edge-edge alignments. The conditions under 
which these events occur may be determined locally. Thus the planner can predict 
which constraints subsume previously active constraints directly from the pre- 
viously active constraints. The remainder of this section considers the types of 
conditions under wl~ich constraints may change, while later sections analyze the 
constraints themselves in more detail. 

In the current case we are dealing with the interaction of two polygons. Thus 
the type of constraints that the planner must consider are vertex-edge inter- 
actions. There are two types. One involves the interaction of an edge of the 
planning object with a vertex of an obstacle object. The other type involves the 
interaction of a vertex of the planning object with an edge of an obstacle object. 
(See Figure 9.) 

Notice that any such constraint locally defines a rotational direction of forbid- 
den angles. This direction is the direction along which a rotation of the planning 
object would result in an intersection with the obstacle polygon. The constraint 
itself represents the orientation at which the planning object just touches the 
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Obstacle 

Fig. 9. There are two basic types of vertex-edge contacts. 

obstacle polygon. The direction of forbidden angles is determined by those local 
orientations of  the planning object at which the planning object and the obstacle 
polygon overlap. 

In order to determine, for a particular configuration of the obstacle polygon, 
all orientations of  the planning object that are forbidden, and all orientations 
that are valid, the planner considers all active constraints not subsumed by other 
constraints. For each such constraint, the planner locally determines the rotational 
direction of forbidden orientations. The planner then merges the constraints 
based on orientation, and pairs up adjacent constraints that have opposing 
directions of  forbidden angles. For instance, in the example of  Figure 10 there 
are two active constraints. When these are merged, the resulting forbidden range 
of angles is an arc of  orientations, as shown. In general, even for convex objects, 
there may be more than two active constraints that define the range of forbidden 
orientations. Thus there may be more than one arc of legal orientations. 

For a particular orientation of the obstacle polygon there are a finite number  
of  orientations of  the planning object at which the two polygons touch but do 
not overlap. As the obstacle polygon rotates about its rotation center, the orienta- 
tions of  the planning object at which these contacts occur change continuously. 
The basic strategy in constructing the configuration space-t ime entails tracing 
these touching orientations as the obstacle polygon rotates. The resulting con- 
straint contours describe the boundaries of  the forbidden regions in space-time. 

Consider a specific constraint contour, arising from some vertex-edge or 
edge-vertex contact. As the obstacle polygon rotates, the point of  contact between 
the vertex and the edge moves along the edge. A number  of  events can occur at 
which the constraint contour changes character: 

1. The direction of  travel of  the contact along the edge may reverse sign. 
2. The direction of rotation of the planning object required to maintain contact 

may reverse sign. 
3. The contact may disappear,  as when the obstacle rotates out of  the reach of 

the planning object. 
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Obstacle 

Forbidd~ 

Free 
Fig. 10. This figure considers the constraints imposed by an obstacle polygon on the possible 
orientations of a xectangle rotating about a rotation center. The first two frames show the rectangle 
in two orientations that just touch the obstacle. The third frame shows the free range of motions 
possible. The last frame represents the range of forbidden and free orientations. 

4. The contact  may run off one end of  the edge, that  is, vertex-vertex contact  
may occur.  

5. The edge defining the constraint  may become aligned with one o f  the edges 
incident at the vertex defining the constraint,  that  is, edge-edge  al ignment 
may occur.  

The p lanner  analyzes the condit ions under  which these events occur. Of  
part icular  interest are the events in which contacts appear  or disappear,  and the 
events in which vertex-vertex contacts or edge-edge  alignments occur. At these 
orientations the constraint  contours  fundamenta l ly  change character,  e i ther  merg- 
ing with other  contours  or  splitting into several contours.  In other  words,  some 
constraints may expire, perhaps  becoming subsumed by newly activated con- 
straints. Thus,  analyzing the condit ions under  which the events listed above occur, 
and determining how the relevant constraints change during these events, directly 
solves the problem of  construct ing configuration space- t ime for rotating polygons.  
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To be more precise, in Section 6.5 we will derive the orientation constraint 
imposed on the planning object due to the interaction of an edge of the planning 
object with a vertex of the obstacle polygon, over the full range of orientations 
of the obstacle polygon. Similar constraints may be derived for all edge-vertex 
interactions. These constraints are derived independent of time. Each constraint 
simply describes the touching orientations of the planning object as a function 
of  the orientation of the obstacle polygon. In other words, if c~ denotes the 
orientation of the obstacle polygon, and fl the orientation of the planning object, 
then the constraint resulting from a particular edge-vertex interaction is some 
funct ion/3(a) .  Once a particular motion of  the obstacle polygon is known, this 
constraint function may be thought of as a function of time. Specifically, if 
varies as a function of time a (t), then the space-time constraint is/3(t) =/3 (a( t ) ) .  

We assume that all joint motions have piecewise constant velocities. Con- 
sequently, over each constant-velocity segment, a scaled subset of the graph of 
the constraint func t ion/3(a)  describes the relevant space-time contour. 

The planner augments each time-independent constraint function with those 
orientations of the obstacle polygon at which the constraint contour could change 
character, such as during vertex-vertex contact or edge-edge alignment. These 
conditions may also be determined as geometric conditions on a and/3, indepen- 
dent of time. Once a particular motion of the obstacle polygon is known, the 
planner can then predict the points in time at which a given constraint expires 
or becomes subsumed by another constraintl In this fashion the planner handles 
the transitions between different kinds of contacts. 

Summary of the Construction of Space-Time for Two Rotating Polygons. Let us 
summarize. The planner builds the boundary of  the forbidden regions in space- 
time. In order to understand this construction, let us consider this boundary. The 
boundary describes those orientations at which the planning object is just touching 
the obstacle polygon. The boundary is the union of smaller segments, each 
segment representing the interaction of  a particular vertex or edge on the planning 
object with a particular edge or vertex, respectively, on the obstacle polygon. 
The segments link up at points where the two objects have aligned edges or 
touching vertices. Each segment may be computed as a constraint function relating 
the orientations of the two objects at which the vertex-edge contact occurs. The 
structure of this constraint function is independent of time. However, its location 
in the space-time is determined by a particular motion of the obstacle polygon. 

The planner thus computes the constraint functions for all edge-vertex interac- 
tions independent of time. Given a particular motion of the obstacle polygon, 
the planner describes the boundary of forbidden space-time by segments of the 
graphs of these constraint-functions. In order to decide which segments are 
relevant, the planner begins with the edge-vertex contacts in effect at the beginning 
of the motion. For any active contact constraint, the planner follows the constraint 
until a vertex-vertex or edge-edge alignment occurs, or the contact breaks. At 
this point, the constraint may become inactive, while other constraints may 
become active. The other constraints that might become active are precisely those 
determined by the other edges or vertices at the alignment. Whether or not these 
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constraints become active may be determined locally. The details are discussed 
in Sections 6.4 and 6.5. 

The complete space-time boundary is constructed by repeatedly following 
constraint contours in this fashion. 

6.3. Example. The first row in Figure 11 displays two rotating triangles along 
with their rotation centers. The next three rows in Figure 11 show the construction 
of the forbidden regions representing the constraints imposed on the smaller 
triangle by a rotation of the larger triangle. For simplicity we approximated the 
constraint contours using bounding rectangles. However, the equations of the 
exact boundary contours are given in Section 6.5. These could be used by a 
planner for exact descriptions of the forbidden space-time. 

In order to explain Figure 11, consider the pair of frames labeled 1. In this 
pair of frames, the larger triangle performs some rotation. The smaller triangle 
is shown in two extreme orientations, at which it is just touching the larger 
triangle. The forbidden orientations of the smaller triangle during the motion of 
the larger triangle are all orientations between these two extreme orientations. 
They are represented in space-time by the rightmost rectangle constructed in the 
first frame. The horizontal portion of the rectangle represents the motion of the 
large triangle; the vertical portion represents the forbidden orientations of the 
small triangle. 

The pair of frames labeled 2 depicts another rotation of the large triangle, 
along with the associated constraint rectangle. 

Consider now the two pairs of frames labeled 3 and 4. The large triangle is 
shown performing the same motion in both frames. However, during this motion 
there are two distinct ranges of orientations that are forbidden for the small 
triangle. These two ranges are indicated by the two sets of extreme orientations 
shown in the frames, as well as the two rightmost constraint rectangles. 

Finally, the pairs of frames labeled 5 and 6 show the construction of further 
constraint rectangles over the remaining motion of the large triangle. 

6.4. Representing Constraints Arising from Edge- Vertex Interactions. In the next 
two sections we will consider the constraints arising from the interactions of pairs 
of edges and vertices. Notice that a vertex on an object describes a circle as the 
object rotates. Similarly, any edge of a rotating object defines a line rotating 
about some rotation center. The constraint defined by the interaction of a vertex 
and an edge may thus be represented by a circle and a rotating line. A particular 
contact of the vertex and the edge may be depicted by a specific point on the 
circle, and a specific orientation of the rotating line, for which the line passes 
through the point on the circle. 

In order to analyze edge-vertex constraints, it is thus sufficient to consider 
points moving on circles and lines rotating about rotation centers in such a 
fashion that the lines pass through the points. This representation makes computa- 
tion of the constraints easy. In particular, it allows a planner to determine how 
the rotation of the planning object must change in order that contact be maintained 



On Multiple Moving Objects 499 

0 
? 

_-j  
[ 

I 

_ - ]  

m 

2 

m 

m 

4 

_- I  

~b ( o r i e n t a t i o n  of sma l l  t r i ang le )  

0 ( o r i e n t a t i o n  of  la rge  t r i ang le )  

Fig. 11. Construction of the constraints imposed on the smaller triangle by a motion of the larger 
triangle. The larger triangle rotates by ~- about its rotation center. The constraints are approximated 
by rectangles. In an alternating fashion, the figures display the constraints constructed thus far, and 
the motion of the larger triangle over the most recently constructed constraint rectangle. The smaller 
triangle is displayed at the two extreme orientations of this constraint rectangle. 
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as the obstacle polygon rotates. This information defines the shape of the configur- 
ation space-time obstacle determined by the motion of the obstacle polygon. 
Local interior information at the edge determines which side of the obstacle 
contour in configuration space-time is forbidden. Additionally, by considering 
the orientations of the edges incident at the vertex involved in the edge-vertex 
interaction, the planner can predict the t imes at which edge-edge alignments 
occur. Similarly, the representation makes explicit the motion of the contact point 
along the line. By considering the length of the edge involved in the edge-vertex 
interaction, the planner can predict the times at which the contact moves off the 
end of the edge, that is the times at which vertex-vertex contacts occur. Finally, 
the representation makes explicit points on the circle and orientations of the line 
at which contact is impossible, thereby indicating orientations of the obstacle 
polygon at which contacts must vanish. Thus the circle-line representation, when 
augmented with local interior and incident edge information, provides the planner 
with a means for determining all the events at which constraints may change 
character. 

A final comment is in order. Suppose that edge-edge alignment or vertex-vertex 
contact occurs. At that point in time, there are up to four pairs of edge-vertex 
contacts in effect. The planner must decide which contacts, if any, remain active 
as the obstacle polygon continues to rotate. The decision for a particular contact 
pair depends on two derivatives. One derivative is the derivative of the motion 
of the contact point along the edge. The other derivative is essentially the 
instantaneous relative motion of the planning object to the motion of the obstacle 
polygon. The distance derivative allows the planner to decide whether a contact 
cannot possibly exist because the contact would have to occur outside the 
boundaries of the edge. The relative motion derivative allows the planner to 
decide whether a contact cannot possibly exist because it would force two object 
edges to pass through each other. (See Section 6.5 for details.) 

In fact, the exact values of the derivatives are not important. All that is required 
of the distance derivative is its sign. All that is required of the relative motion 
derivative is whether it is larger or smaller than unity. This information is readily 
available while computing the circle-line representation, and may be incorporated 
directly into the representation. In the next section we shall compute such a 
representation. 

6.5. Analyzing Constraints Arising from Edge-Vertex Interactions. As we have 
already noted, there are two types of edge-vertex interactions, determined by 
whether the vertex is part of the obstacle polygon or part of the planning object. 
In this section we will analyze the circle-line representation for one of these two 
types, namely, the case in which the vertex is part of the obstacle polygon and 
the edge is part of the planning object. The symmetric case, in which the vertex 
is part of the planning object and the edge is part of the obstacle polygon may 
be analyzed in a similar fashion. 

For the case we have chosen, the circle of the circle-line representation corre- 
sponds to the vertex of the obstacle polygon, while the line corresponds to the 
edge of the planning object whose motion is being planned. The canonical picture 
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Fig. 12. Canonical circle-line picture representing the interaction of a vertex and an edge. In this 
case the vertex belongs to the obstacle polygon, and the edge belongs to the object whose motion is 
being planned. The distance of the vei'tex from its rotation center is given by r. The distance of the 
edge from its rotation center is given by d. The separation of the two rotation centers is given by h. 
The orientation of the obstacle is measured in terms of a, while the orientation of the planning object 
is measured in terms of/3. 

for this circle-line representat ion is given by Figure 12. The two rotat ion centers 
are separated by a distance h, which we will assume is greater than zero. For  
convenience we will depict  the two rotat ion centers on a horizontal  line with the 
obstacle 's  rotat ion center to the left o f  the planning object 's  rotat ion center. The 
distance from the obstacle 's  rotat ion center to the vertex is r, while the normal  
distance f rom the planning object 's  rotat ion center to the line representing the 
edge is d. We will measure the orientation o f  the obstacle by the angle between 
the horizontal  and the line from the obstacle 's  rotat ion center to the vertex. 
Denote  this angle by a. Similarly, we will measure the orientation o f  the planning 
object by the angle between the horizontal  and the edge normal  pointing away 
from the planning object 's  rotat ion center. Denote  this angle  by/3.  

We are interested in determining the constraint  imposed on the p lanning object 
by the obstacle po lygon  over its range o f  possible orientations. It is impor tant  
to note that  we will derive this constraint  independent  o f  time, s imply as a 
geometric relation between ~ and/3. Specifically, we will determine the orientat ion 
o f  the p lanning object at which its edge just touches  the obstacle po lygon ' s  vertex, 
as a funct ion o f  the obstacle po lygon ' s  orientation. Denote  this funct ion by/3 (c~). 
This funct ion describes the geometr ic  dependence  o f /3  on c~. This dependence  
does not involve time. Once a part icular  mot ion of  the obstacle po lygon  is known,  
say as a funct ion o~(t) o f  time, the forbidden orientat ion/3 o f  the p lanning object 
may also be determined as a funct ion o f  time, simply by noting that 

/3(t) =/3(~(t)). 
Over any interval of  time, the p lanner  then uses the funct ion/3 (t) as a description 
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Fig. 13. In general, for a given orientation a, there are two values of J3 for which the line determined 
by /3 intersects the point on the circle determined by c~. One such orientation of fl was shown in 
Figure 12. The other orientation is shown in this figure. 

o f  the cons t ra in t  con tour  ar is ing f rom the in te rac t ion  of  the pa r t i cu la r  vertex on 
the obs tac le  po lygon  and  the pa r t i cu la r  edge on the p lann ing  ob jec t  over  the 
given t ime interval .  This con tour  is c o m b i n e d  with cons t ra in t  contours  ar is ing 
f rom other  ve r t ex -edge  contacts  in the m a n n e r  desc r ibed  in Sect ion 6.2. 

Re turn ing  now to our  analysis  of  the pa r t i cu la r  ve r t ex -edge  contac t  o f  F igure  
12, not ice  that  for  each value  o f  ~ there may  be a co r r e spond ing  va lue  o f /3  for  
which  the l ine represen t ing  the edge passes  th rough  the po in t  represen t ing  the 
vertex. In  general ,  o f  course ,  there  are two values  o f /3  (see Figure  13), and  in 
some cases no values.  In  any event,  the p r o b l e m  of  f inding the func t ion  /3(a)  
reduces  to de te rmin ing  how /3 varies as a varies f rom 0 to 2~r. In  general ,  the 
behav io r  d e p e n d s  on the relat ive values o f  h, r, and  d. We will cons ide r  the case 
for  which  h > r and  h + r > d > h - r. The o ther  cases are similar .  

Since d > h - r there  are values  o f  a for  which  no value  of/3 p roduces  a contac t  
be tween  the ver tex and  the line. Specif ical ly,  cons ider  the two poin ts  on the  circle 
that  are  exact ly  d i s tance  d away  from the p l ann ing  ob jec t ' s  ro ta t ion  center.  One 
o f  the two arcs on the circle that  connec t  these  two poin ts  can never  intersect  
the ro ta t ing  line, as all po in t s  on this arc are less than  d is tance  d away  from the 
p lann ing  ob jec t ' s  ro ta t ion  center.  Let 

_1( r2-l- h2- d2) 
ao=COS \ 2rh }' 

where  we take the va lue  o f  COS - 1  to lie be tween  0 and  ~r. The two poin ts  on the 
circle are thus given by  ao and  2 ~ r - a o .  The fo rb idden  arc is the arc  be tween  
these two poin ts  that  inc ludes  the po in t  a = 0. F o r  values o f  a in this range there  
is no so lu t ion  o f /3  in terms o f  a. (See Figure  14.) 
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( 
Fig. 14. This figure displays the orientations of t~ at which the vertex represented by cL is exactly 
distance d away from the right rotation center. If the vertex ties on the arc through the u-origin that 
connects these two orientations, then there is no orientation/3 for which the edge represented by/3 
intersects the vertex. 

Beginning at ce = ao there  is a single so lu t ion  o f / 3  in terms o f  c~ that  has 
mul t ip l ic i ty  two. This roo t  spli ts  into two dis t inct  roots  as a increases  f rom ao 
to 2~'-O~o, merg ing  aga in  at  ~ = 2 ~ r - a o .  Let us t race  the behav io r  o f  one  o f  
these two roots.  The b e h a v i o r  o f  the  o ther  roo t  is s imilar .  As a increases  f rom 
So, for  the  roo t  we are  t racing,  in i t i a l ly /3  increases  as well.  

Let us measure  the mo t ion  o f  the contac t  po in t  a long the" l ine represen t ing  the  
contac t  edge in terms o f  the  s igned d is tance  s be tween  the contac t  po in t  and  the 
po in t  on the  l ine that  is c losest  to the p l ann ing  ob jec t ' s  ro ta t ion  center ,  as shown 
in F igure  15. As ind ica t ed  in Sect ion 6.4, the  sign o f  the der iva t ive  o f  s with 
respect  to a a l lows the p l anne r  to dec ide  whe ther  a mo t ion  causes the contac t  
po in t  to move  b e y o n d  the endpo in t s  o f  the  edge.  

Let  us deno te  by  D the relat ive ro ta t ion  rates o f / 3  to ~, that  is D = d/3/da. 
The p l anne r  uses the  sign o f  D - 1  to dec ide  whe the r  edges might  t ry to pass  
th rough  each  o ther  af ter  an  e d g e - e d g e  a l ignmen t  has  occurred .  This is because  
the  sign o f  D - 1 de t e rmines  which o f  the two objects  is ro ta t ing more  quickly ,  
as a increases.  

Before t rac ing  th rough  the detai ls  of  one  of  these roots  let us wri te  down  
express ions  fo r /3  and  s in terms o f  a. The  p ic ture  to keep  in mind  is F igure  16. 

I f  we wri te  

then 

l=x/r2+h2-2rh cos c~, 

=cos  1( )+arotan r sin o rco .  o 
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Fig. 15. This figure shows how to measure the distance s of a point on the line representing the edge 
of contact. Distance is measured as the signed distance from the point on the line that is closest to 
the line's rotation center. 

a s s u m i n g  t h a t  l >  d. F u r t h e r m o r e ,  w e  h a v e  t h a t  

s = r s i n ( f l  - c~) - h s i n / 3 .  

O b s e r v e  t h a t  

12-- r 2 + h 2 - 2 r h  c o s  c~. 

T h u s ,  i m p l i c i t l y  d i f f e r e n t i a t i n g  w i t h  r e s p e c t  t o  a y i e l d s  

dl  rh 
d a  - l s i n  c~. 

Fig. 16. The canonical circle-line representation augmented with further notation. 



On Multiple Moving Objects 505 

From this we see that dl /da  changes sign exactly when a = 0 or a = 7r. Implicitly 
differentiating 

S 2 _]_ d 2 = 12, 

we see that 

ds 1 dl Sd = 

Since I > 0 and since s-> 0 for the root we are considering, it follows that ds /da  
and dl /da  change sign simultaneously. Thus we have determined the conditions 
under which the contact point changes its direction of motion along the edge. 
This event occurs whenever contact is possible and the vertex participating in 
the contact lies on the line passing through the two rotation centers. 

We must also decide how to compute D = d/3/da. Observe that 

r c o s ( f l - a ) = h  cos/3 + d. 

Hence, implicitly differentiating with respect to a, 

r( ~ -  l ) sin(/3 - a ) = h d~ sin 

Thus D =  1 exactly when /3=0  or /3 =~-, that is, exactly when the edge 
participating in the contact is perpendicular to the line passing through the two 
rotation centers. At these points the relative rotational motion of the two objects 
changes sign. When D > 1 the planning object is rotating faster than the obstacle 
object. When D < 1, it is rotating more slowly. 

Finally, notice also that 

dfl r s i n ( / 3 - ~ )  
( * 3  - -  = d~ r sin(~ - a ) - h sin /3 " 

Thus dfl/dc~ vanishes when fl = a or /3  = a + ~-. In other words, the derivative 
vanishes whenever the line representing the contact edge is tangent to the circle 
at the point of  contact. At these tangency points the motion of/3 changes direction. 
Said differently, at these tangency points local minima or maxima occur in the 
function/3 = / 3 ( a )  which represents the value of/3 at which contact occurs as a 
function of a. We will refer to the graph of this function as an a-/3 contour 
henceforth. 

This tangency information is useful for approximating the a- /3 constraint 
contours. For instance, one might wish to approximate  the contours conservatively 
using rectangles that completely enclose the forbidden regions in configuration 
space-t ime. Over a region in which/3 varies monotonically with a, an enclosing 
rectangle may be constructed directly from the start and end points of  the a - f l  
contours (see Figure 17). Knowing the points at which df l /da  vanishes, allows 
the planner to split the contours into such monotonic segments. 
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Enclosing Rectangle 

Contour 

Forbidden 
Obstacle 

~.~._\ Contour 

Fig. 17. Over regions in which the a - f l  contours are monotonic, the planner can easily construct a 
bounding rectangle that conservatively approximates the forbidden regions defined by the a - f l  
contours. The planner uses this approximation for simplicity. The constraints are, in fact, analytically 
representable. 

As an aside, notice that the denomina tor  of  the r ight-hand side o f  equat ion 
(*) is just the signed distance s. Thus this denomina tor  vanishes precisely at the 
orientations o f  a for which s is zero, namely,  at a = ao and a = 2 , - c r o .  This 
makes sense, for it says that the derivative d/3/da becomes u n b o u n d e d  precisely 
at those orientations o f  the obstacle polygon for which the planning object must 
break contact.  

Let us now trace through the contact  constraint  as a varies. 

1. The contact  constraint  first appears at a = s0. The orientation o f  the edge is 
given by t3 = rio, where 

lfd2+h 2- 
/30 -- . - c o s -  r2) .  

The value o f  s at this point  is, by construction,  zero. 
2. For  the root  we are tracing, as a increases f rom C~o, bo th /3  and s increase as 

well. Furthermore,  D is bigger than unity. The first relevant event occurs when 
/3 = , .  (See Figure 18.) At this point  a = cos - t ( (h  - d)/r) and s = x / r  2 -  (h - d )  2. 
The event that occurs is that  D - 1  changes f rom being positive to negative, 
that  is, at the point  we have D = 1. 

3. The next event that occurs is that the mot ion  of  the contact  point  along the 
line changes direction. In other words,  s, which was increasing, starts to 
decrease. This event occurs when a = , ,  fl=,+cos-l(d/(h+r)), and s =  
x/(h + r) 2 -  d 2. (See Figure 19.) 

4. The third event that occurs is that D changes sign, which happens  when the 
line representing the contact  edge is tangent  to the circle at the point  o f  contact.  
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e 

P 

Fig. 18. The relative rotation rates of the two objects portrayed by a and/3 are identical whenever 
/3 is 0 or 7r. This is the case whenever the edge defining the vertex-edge constraint is perpendicular 
to the line joining the two rotation centers. To either side of one of these orientations one object is 
rotating faster than the other object. Furthermore, the faster object on one side is the slower object 
on the other side. 

(See  F i g u r e  20.) T h e  s ign i f i cance  o f  this  e v e n t  is t h a t / 3  c h a n g e s  d i r ec t ion .  In  
o t h e r  w o r d s ,  w h e r e a s  /3 was  i n c r e a s i n g  wi th  a p rev ious ly ,  it n o w  d e c r e a s e s  
as c~ inc reases .  T h e  e v e n t  occu r s  fo r  a=~=~+cos - l ( (d - r ) / h )  a n d  s =  
x/h e - ( d  - r) 2. 

5. T h e  last  even t  t h a t  o c c u r s  is tha t  the  two  roots  r emerge .  This  occu r s  w h e n  
c~ = 2 r r - c ~ o ,  /3 = 2 r r - / 3 o ,  and  s = 0 .  As a i nc reases  b e y o n d  this po in t ,  t he  
c o n t a c t  c o n s t r a i n t  m u s t  d i s a p p e a r .  Th is  is b e c a u s e  the re  is no  o r i e n t a t i o n / 3  
fo r  w h i c h  the  l ine  r e p r e s e n t i n g  the  c o n t a c t  e d g e  can  m a k e  c o n t a c t  wi th  the  
p o i n t  on  the  c i rc le  r e p r e s e n t i n g  the  c o n t a c t  ve r t ex  at o r i e n t a t i o n  c~. 

6.6. Representing Multiple Joints. T h e  c i rc le - l ine  r e p r e s e n t a t i o n  p r o v i d e s  a 
s i m p l e  m e t h o d  fo r  d e s c r i b i n g  the  cons t r a in t s  a r i s ing  f r o m  the  i n t e r a c t i o n  o f  two  

Fig. 19. The direction of travel of the contact point along the edge changes direction whenever a is 
0 or 7r. This is the case whenever the contact point lies on the line joining the two rotation centers. 
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Fig. 20. The direction of rotation of/3 required to maintain contact as c~ increases changes direction 
whenever the edge defining the vertex-edge constraint is tangent to the circle at the point of contact. 

rotating polygons.  For  nonconvex  polygons the superposi t ion o f  several such 
representations determined from a convex decomposi t ion  o f  the polygons  pro- 
vides a two-dimensional  space- t ime description o f  the relevant constraints. As 
before, the constraints may be approximated  by bounding  rectangles. 

For  multilink arms, it is necessary to extend the dimension of  the configurat ion 
space- t ime by the addit ional  number  o f  joints. For  example, for a two-link arm 
in the presence o f  other moving arms, the configurat ion space- t ime is three- 
dimensional.  Our  objective now is to construct  the relevant constraints imposed 
on an arm by the motions  o f  other arms and by stationary obstacles. 

The basic approach  consists o f  reducing the dimensionali ty o f  the problem by 
comput ing  constraints as two-dimensional  slices. Consider  Figure 21, which 
portrays a typical two-link arm. For  each fixed orientat ion of  Link 1, th_e planner  
can construct  a two-dimensional  space- t ime for Link 2 that represents the con- 
straints imposed on Link 2 by the other rotating arms and by the stationary 

Link 2 

Base V 

Fig. 21. A two-link arm. The arm has two rotational degrees of freedom. The arm's base is fixed in 
the plane. 
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obstacles. During each such computation the base point about which Link 2 
rotates is held fixed at the orientation given by Link 1. Recall, we assumed that 
for each arm in the environment, only one joint is actually rotating at any time. 
Thus the approach previously outlined may be applied to compute this two- 
dimensional space-time. Staggering these two-dimensional slices produces an 
approximate representation of the complete three-dimensional configuration 
space-time. 

A few issues deserve comment. First, the planner discretizes the orientations 
of  Link 1, computing slices for the resulting finite number of  orientations. The 
representation of configuration space-time is thus only approximate, limited in 
resolution to the angular separation between slices. 

Second, it is possible to reduce the number of orientations of Link 1 for which 
it is necessary to compute space-time slices. Certainly, any orientation of Link 
1 for which there is a collision between Link 1 and any other arm or object in 
the environment, is an invalid configuration at the time of collision. All orienta- 
tions of Link 2 are automatically forbidden at that time. Thus it is only necessary 
to compute portions of  space-time slices over time intervals and at orientations 
of Link 1 that are collision-free. In order to determine these orientations it is 
sumcient to compute a two-dimensional configuration space-time for Link 1 that 
represents the constraints imposed on Link 1 by the other rotating arms and by 
the stationary obstacles. This space may be computed in the manner outlined 
previously. Slices are then computed for Link 2 for all the discretized orientations 
of  Link 1 that lie outside Link l 's constraint contours. 

Further optimizations are possible. For instance, one can determine orientations 
of  Link 1 for which all possible orientations of  Link 2 are guaranteed to be 
collision-free. This may be done in a conservative manner by approximating the 
swept volumes of rotating links using sectors of circles. 

6.7. Searching the Configuration Space-Time. The planner represents the free 
regions of  configuration space-time as a collection of rectangles in each of the 
slices. These free space rectangles are simply the complements of the constraint 
rectangles described earlier. Thus the free space rectangles are conservative 
representations of  free space, in the sense that they are subsets of  the actual free 
space. Searching for a collision-free path for a given two-link manipulator consists 
of determining a sequence of motions within and across slices that remains in 
free space and leads from the start to the goal configuration. Motions within a 
slice represent rotations of Joint 2 alone, while motions across slices represent 
rotations of Joint 1 alone. 

Most of the issues that arise in searching for a collision-free path in configur- 
ation space-time have already been alluded to. In particular, the path should 
never lead backward in time. Additionally, if there exist maximum velocity 
constraints on the joints then the path may have to maintain certain slope 
constraints as a spatial function of time. Finally, the search may wish to take 
into account the temporal or spatial cost of  proposed motions. 

A statement about the representation of  paths. Whereas for the planar case of 
translating objects we chose only to consider particular paths, namely, those that 
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connected vertices in the environment, in this case we shall choose to represent 
all paths implicitly. This is accomplished by regarding regions as descriptive of 
paths. A path is possible between two regions only if the regions connect. While 
searching, the planner does not construct explicit paths, but merely considers 
the connectivity between regions. The output of the search phase is thus an 
ordered list of  regions in which any two regions that are adjacent in the list are 
connected in the configuration space-time. A particular path may then be deter- 
mined by choosing any path that passes through the regions in the order specified 
and across the regions of  connectivity. 

Deciding whether two regions are connected involves both a spatial and a 
temporal decision. The distinction is necessary because of the prohibition on 
moving backward in time. Let us first consider the case of two regions in the 
same space-t ime slice. Consider Figure 22. In order that two regions be connected 
it is necessary that they are connected in the spatial dimension. In both Part A 
and Part B of Figure 22, R~ and R2, and R 2 and R 3 are  connected spatially, since 
each of the regions in each pair shares a common point in space-time. However, 
there is a path from region R1 to region R 3 only for the arrangement of Part A, 
not for that of  Part B. This is because any such path for Part B would require 
motion backward in time. 

In general, the temporal  decision regarding connectivity of  two regions depends 
on the particular partial sequence of regions in which the two regions find 
themselves during the search. Specifically, it is necessary to associate a minimum 
time with any partial sequence. The minimum time represents that value of time 
below which no space-t ime path may venture lest it be moving backward in time. 

Part A 

R3 

R21 
RI 

T 

Part B 

R3 

R! t 
y 

Fig. 22. There is a path from region R l to region R 3 only for the example of Part A. Any path from 
R 1 to R 3 in the example of Part B would require moving backward in time. 
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R2 

C!2 

I 
I 

 89 t t m  

RI 

t I 

Fig. 23. Regions R~ and R2, along with their intersection C12. The minimum and maximum time 
coordinates of points in Ct2 are given by tmin and tm~ x. 

Initially this value is set to zero. As the search phase expands a partial sequence 
it updates this value. 

Updating the minimum time value of a partial sequence is fairly straightforward. 
Suppose that region R1 is the current last region on a partial sequence, and 
suppose that the planner i s considering adding region R2 to the partial sequence. 
(See Figure 23.) Let C12 = R1 ~ R2. The planner first checks that C12 is nonvoid. 
This is effectively the spatial decision of connectivity. Now let train be the minimum 
time coordinate of  any point in C12, and let tma x be the maximum time coordinate 
of  any point in C~2. Then the new value of the minimum time associated with 
the new partial sequence is simply the maximum of the old minimum time value 
and tm~n. Furthermore, the new partial path is valid only if this new value of the 
minimum time is no greater than /max. 

The case of  transitions across space-t ime slices, that is, the case of  rotations 
in Joint 1 alone, is handled similarly. The only real difference is that the intersec- 
tion of two regions will in general not be a line segment, but some two-dimensional 
region. In our implemented planner, these regions are always rectangles. 

Let us briefly comment  on the case in which the joints have maximum velocity 
bounds. In this case, the intersection region Ca2 must be shrunk to account for 
points that are not reachable from the previous region of intersection. (See Figure 
24.) In some cases this may cause the region C~2 to become empty. One option 
is for the planner to discard the current partial sequence. Akernatively, the planner 
could slow down the other arms, thereby effectively dilating time and possibly 
enlarging the intersection region. Our implemented planner does not consider 
slowing down the other arms. 

Finally, in assigning temporal  costs to transitions the planner should keep track 
of both the minimum and maximum times required to pass from one region to 
another. Again, given a partial sequence and the previous and current intersection 
regions Col and C12, the planner can determine the minimum and maximum 
times required to move from Co~ to C~2. Any actual path will have a time cost 
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R2 

RO 

/ 
/ 

CO! 

CI2 
/ 

RI 

Fig. 24. The intersection region C~2 may be only partially reachable by motions from the previous 
intersection region C m if joint velocities are bounded from above. 

that lies within this range. Since the planner does not consider explicit paths, 
but only paths implicit in regions, it is not possible to assign cost more accurately. 
The planner must select an actual sequence of regions by comparing both the 
minimum and maximum costs of different proposed sequences. Spatial costs are 
handled identically. 

In fact, our planner does not first compute intersections regions that are too 
large, such as C12, and then explicitly shrink them. Instead, the planner computes 
the shrunken version of C12 directly, as the set of all points that lie on the 
boundary of the region R2 and are reachable from the previous intersection region 
C01. Thus every point in C12 is reachable from some point in C01. Col is computed 
similarly, as are all regions in any partial sequence of regions from the start 
configuration. It follows that the minimum and maximum bounds on the time 
required for any trajectory to reach the region C12 from the start configuration 
are given precisely by the minimum and maximum time coordinates of points in 
Ca2. In other words, since motions never move back in time, temporal costs alone 
may be determined directly from the time coordinates of points in a region. 
Spatial costs, however, must be computed as the sum of transition costs between 
pairs of regions. 

Our implementation considers only temporal costs, in an attempt to find the 
minimum time solution. The algorithm employs a best-first search (see Winston 
[25]) based on the minimum time required to reach a given region plus the 
estimated minimum time to reach the goal from the given region. Once a sequence 
of regions from the start to the goal has been found, an actual path is computed 
backward from the goal. By construction, every point in any region in this 
sequence is reachable from some point in the predecessor region. Thus the method 
is guaranteed to select a valid path from the sequence of regions found by the 
planner. 

6.8. Example. The beginning of the paper contained a sample problem involving 
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/ 
Start Goal 

Fig. 25. Start and goal configurations for two arms. The motion of the left arm is planned first. The 
motion of the right arm is planned given the motion of the left arm. 

three arms. In this section we consider a simpler problem involving two arms. 
The point of  this example is to display the configuration space-t ime representing 
the constraints imposed on one of the two arms by the motion of the other arm 
and by the stationary obstacles in the environment. 

Figure 25 shows the start and goal configurations of  the two arms. The planner 
first planned the motion of  the left arm, then that of  the right arm. While planning 
the motion of the left arm, the planner considered the stationary obstacles, but 
ignored the right arm. Once the motion of the left arm had been determined, the 
planner computed the configuration space-t ime of the right arm, given the 
stationary obstacles, and the motion of the left arm. The planner then determined 
a path for the right arm that safely avoided the obstacles and the left arm. The 
time required by the planner was 76 seconds. 

Figure 26 shows some snapshots of  the resulting motions. Figure 27 displays 
the construction of the space- t ime slice representing the constraints imposed on 
Link 2 of  the right arm at a fixed orientation of  Link 1. The constraints were 
defined by the motion of the left arm and by the stationary obstacles. Notice that 
each frame contains a space- t ime obstacle that is constant over time. This obstacle 
represents the constraint imposed by the stationary rectangle in real space. The 
remaining space-t ime obstacle varies with time, reflecting the time-varying con- 
straint imposed by the motion of the left arm. 

Finally, Figure 28 displays several slices of  the configuration space-t ime of 
the right arm. Each slice captures the constraints imposed on Link 2 of  the right 
arm at a fixed orientation of Link 1. There are several observations worth noting 
in Figure 28. Consider the three slices corresponding to Link 1 orientations of  
0, ~r/4, and ~r/2 radians. In the slice with 0t = 0 there appears a single space.-time 
obstacle that is constant over time. This obstacle represents the time-invariant 
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Configuration Space-Time Slices for Arm 2 

m 
Motion of A r m  1 

A r m  3 

Fig. 28. Several slices of the configuration space-time representing the constraints imposed on the 
right arm by the motion of the left arm and by the stationary obstacles in the environment. Each 
slice depicts the constraints imposed on Link 2 for a fixed orientation of Link 1. 
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constraint imposed on Link 2 by the large stationary rectangular obstacle in real 
space. The motion of the left arm (Arm 1) imposes no constraint on Link 2 of 
the right arm at this orientation of Link 1. 

The slice corresponding to 01 = ~-/4 is completely darkened, meaning that all 
orientations of  Link 2 are forbidden. This is because Link 1 of  the right arm, 
oriented at 01 = ~r/4, actually intersects the large rectangle. Thus there is no 
orientation of Link 2 for which the arm lies in free space. 

Finally, in the slice for 0~ = 7r/2, there appears  both a time-invariant space-t ime 
obstacle and a time-varying obstacle. The time-invariant obstacle arises, as before, 
as the constraint imposed by the large rectangle on Link 2, while the time-varying 
constraint arises as the constraint imposed by the motion of  the left arm. 

6.9. Complexity. Let n be the number  of  edges in the environment, let r be the 
number  of  space-t ime slices constructed, and let s be the number  of  time divisions 
over which other arms in the environment perform distinct motions. By this we 
mean that the time axis has been split into s intervals. The intervals are so chosen 
that over each interval each of the arms whose motions have already been 
determined performs at most a single uniform motion of one joint. Our planner 
constructs the configuration space-t ime constraints for a pair of  interacting convex 
polygons using an algorithm of time complexity O(rsn3). A simple variant of the 
algorithm would require time complexity O(rsn 2 log n). 

To see this, note that at most O(n 2) constraints can arise from vertex-edge 
interactions in any given slice over any given time interval. A priori this suggests 
that there could be O(n 4) constraint regions. However, while determining the 
forbidden regions of space-t ime,  the planner only considers active constraints. 
Specifically, the planner considers sets of  active constraints, one such set for each 
obstacle polygon in the environment. The planner sweeps a data-structure across 
space-t ime,  sweeping in the time direction, while maintaining active orientation 
constraints in the data-structure, ordered by orientation. Whenever a constraint 
changes character, the planner updates this data-structure, removing expiring 
constraints while adding newly activated constraints. This amounts to tracing 
along the constraint boundaries ,  as indicated at the end of Section 6.2. 

For any vertex-edge constraint, consider the conditions under which the 
constraint expires or becomes activated as a result of  interacting with other edges 
or vertices on the two objects defining the constraint. By convexity, these condi- 
tions are determined by the two edges abutting the vertex and the two vertices 
bounding the edge. There are thus four possible conditions, namely, the two 
vertex-vertex contacts and the two edge-edge alignments, under which a con- 
straint may expire or become activated as a consequence of object geometry. 

Furthermore, for any constraint there are only a constant number  of  conditions 
under which the constraint changes character purely by virtue of  the circle-line 
equations, such a s  reaching a local extremum in the a-/3 contour, or expiring 
because the edge or vertex rotates out of  reach. (See Section 6.5.) The constant 
depends on the exact type of  interaction, but is never more than six. This says 
that for each constraint the planner needs to consider no more than ten events 
at which the constraint changes character. Thus the planner constructs at most 
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O(rt 2) constraint regions per slice per time interval. Ordering in time the conditions 
under which active constraints change character requires time O ( r t  2 log n) per 
slice per time interval. Furthermore, by convexity of the objects, the sweep 
structure contains at most O(n) constraints at any given time. Updating the sweep 
data-structure can thus require O(log n) time whenever an update must be made. 
Since there are r slices and s time intervals per slice, this gives the overall time 
complexity of O(rsn 2 log n). 

In fact, our actual implementation requires O(n) time to perform an update 
of the sweep structure, creating O(n) constraint regions each time. Thus the time 
complexity is O(rsrl3), and the number of regions constructed is also O(rsn3). 
Notice that the O(n) constraint regions constructed at any update of the sweep 
data-structure all have the same endpoints along the time axis. 

In order to search the configuration space-time, our planner requires a rep- 
resentation of free space-time. However, the output of  the space-time construc- 
tion phase is a collection of rectangles representing forbidden regions of space- 
time. In fact, there a r e  O(sn 3) rectangles per slice, arranged in O(sn 2) columns 
of O(n) rectangles each. The rectangles in a column all have the same temporal 
endpoints. By taking complements of the forbidden rectangles, the planner 
constructs O(n) rectangles per column that represent free space-time. This 
construction has time complexity O(n log n). Thus the complete free space-time 
representation for a pair of interacting convex polygons consists of O(rsn 3) 
rectangles, constructed in time O(rsn 3 log n). 

The search of configuration space-time that we have implemented, assuming 
maximum velocity bounds, requires exponential time in the worst case. It is, 
however, possible to implement a polynomial-time search. To see this, observe 
that our planner's worst-case exponential search time is a direct consequence of 
the reachability conditions arising from maximum velocity bounds, as discussed 
in Section 6.7. Assuming maximum velocity bounds, the connectivity between 
free space regions depends on the order in which regions are traversed. This was 
the gist of  Section 6.7. Only part of a free space-time region may be reachable 
from a previous region. This partial reachability introduces a branching factor 
in our search that results in an exponential algorithm. 

As an alternative, suppose that the arms can perform motions requiring infinite 
velocities. In this case, the planner can represent the configuration space-time 
as a graph. The nodes of the graph correspond to the free space-time regions; 
the edges correspond to the connectivity between regions. If the graph contains 
v nodes and e edges, then the time complexity required to search the graph for 
some path from the start to the goal is O(max(v, e)). 

We could also search for the shortest path in the graph. Generally, a graph 
containing v nodes and e edges can be searched for the shortest path between 
two nodes using an algorithm of time complexity O((v + e) log v). In the case of 
dense graphs it is appropriate to use Dijkstra's algorithm, which has time com- 
plexity O(v2). In our case, v and e are themselves both O(rskn3), where k is the 
total number of convex polygons. 

This same polynomial-time search algorithm may be used even if the arm has 
maximum velocity bounds. During the search, the planner assumes no velocity 
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bounds. Once the search has found a pathfrom the start to the goal, the planner 
may have to slow down the motions of previous arms. Doing so scales time, 
thereby allowing the planner to satisfy the velocity constraints of the arm whose 
motions were just planned. Slowing down the other arms may also be done in 
polynomial time. We did not implement the planner in this form. 

6.10. Summary for Two-Link Articulated Planar Arms 

1. The constraints imposed on one rotating polygon by another rotating polygon 
are determined by tracing the orientations required to maintain contact between 
the two polygons. 

2. The constraint contours change character at critical orientations. These include 
vertex-vertex contacts and edge-edge alignments. 

3. Configuration space-time is represented as a series of space-time slices. Each 
slice represents the time-varying constraints imposed on Link 2 of the arm at 
a particular orientation of Link 1. 

4. Configuration space-time is searched via connecting free space regions. 

7. Summary. This paper has explored the motion-planning problem for multiple 
moving objects. Two domains were considered. The first domain consisted of 
translating planar objects. The second domain consisted of rotating two-link 
planar articulated arms. The approach taken consisted of assigning priorities to 
each of the moving objects. Motions were planned for the objects in sequence 
as determined by the prioritization. Thus the problem was reduced to several 
versions of the problem of planning for a single moving object in the presence 
of other moving objects and stationary obstacles. 

The problem of planning for a single moving object in the presence of other 
moving and stationary objects was solved by constructing a configuration space- 
time. The configuration space-time captured the constraints imposed on a moving 
object by its time-varying environment. A motion for the object was then found 
by searching for a path from the start to the goal configurations through the 
configuration space-time. 

In the case of translating planar objects, it was noted that the configuration 
space-time could be constructed by initially treating all the objects as stationary 
and constructing a stationary configuration space. The complete configuration 
space-time could then be obtained by translating the configuration space obstacles 
in correspondence with the translations of the real space obstacles. 

In the case of rotating arms, the configuration space-time was constructed as 
the union of the constraints resulting from the interactions of pairs of convex 
polygons rotating about various rotation centers. The constraints imposed on the 
orientation of one polygon by the motion of another rotating polygon were 
determined by explicitly examining the interactions of vertices and edges. For 
each possible type of vertex-edge interaction, the conditions under which contact 
could occur, and the conditions under which contact types could change, were 
analyzed. This analysis led to a representation that made explicit the constraint 
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contours in configuration space-time. Effectively, while constructing the configur- 
ation space-time, the planner would trace a particular vertex-edge contact until 
that contact encountered a contact change, such as a break or a vertex-vertex 
contact or edge-edge alignment. At the contact change, the representation allowed 
the planner to determine the new contacts that were possible. The planner would 
then examine these contacts, tracing the new constraint contours. 

In the case of translating planar objects, the configuration space-time was 
represented as a series of two-dimensional spatial slices, corresponding to the 
constraints imposed on the moving object at different values of time. In the case 
of rotating planar arms, the configuration space-time was represented as a series 
of two-dimensional space-time slices, corresponding to the constraints imposed 
on the arm's second link at different orientations of the arm's first link. 

Having constructed the configuration space-time, the planner would then 
search for a path from the start configuration to the goal. It was noted that such 
a search could never move backward in time. Furthermore, given maximal bounds 
on the objects' velocities, the planner was further required to observe slope 
restrictions on proposed paths. 
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