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Abstract-The industrial robot’s principal  advantage over traditional 
automation is programmability. Robots can perform  arbitrary sequences 
of pre-stored motions or of motions computed as functions  of sensory 
input. This paper reviews  requirements  for  and developments in 
robot programming  systems.  The key requirements for robot pro- 
gamming systems examined in the paper  are in the areas of sensing, 
world modeling, motion specification, flow of contrd, and  program- 
ming support Existing and  proposed robot programming systems 
fall into three  broad categories guiding systems in  which the user 
leads a robot through the motions to be performed, rohor-level pro- 
gramming systems in  which  the user writes a computer program specify- 
ing motion and  sensing,  and rusk-level programming systems  in which 
the user specifii operations by  their  desired effect  on objects. A 
representative  sample of s y s t e m s  in  each of these categories is surveyed 
in the paper. 

I.  INTRODUCTION 

T HE KEY characteristic of robots is versatility;  they  can 
be  applied to  a  large  variety  of  tasks without  significant 
redesign.  This  versatility  derives from  the  generality  of 

the  robot’s  physical  structure  and  control,  but  it  can  be  ex- 
ploited  only if the  robot  can be  programmed  easily.  In  some 
cases, the  lack  of  adequate  programming  tools  can  make  some 
tasks  impossible to  perform. In other cases, the  cost  of  pro- 
gramming  may  be  a  significant  fraction of the  total  cost  of  an 
application.  For  these  reasons,  robot  programming  systems 
play  a  crucial  role in robot  development.  This  paper  outlines 
some  key  requirements of robot  programming  and  reviews 
existing  and  proposed  approaches t o  meeting  these  requirements. 

A.  Approaches to R o b o t  Programming 
The earliest and  most  widespread  method  of  programming 

robots involves  manually  moving the  robot  to  each  desired 
position,  and  recording  the  internal  joint  coordinates  cor- 
responding to   that  position. In addition,  operations  such  as 
closing the gripper  or  activating  a welding gun  are  specified at  
some  of  these  positions.  The  resulting  “program”  is  a  sequence 
of vectors  of  joint  coordinates  plus  activation  signals  for 
external  equipment.  Such  a  program is executed  by  moving 
the  robot  through  the  specified  sequence of joint  coordinates 
and  issuing  the  indicated signals. This method of robot  pro- 
gramming is usually  known as teaching by showing; in  this 
paper we will use the less common,  but  more  descriptive, 
term guiding [ 321 .  

Robot  guiding is  a programming  method  which  is  simple to 
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use and to implement. Because guiding  can  be  implemented 
without a  general-purpose  computer,  it was in widespread 
use for  many  years  before  it was cost-effective t o  incorporate 
computers  into  industrial  robots.  Programming by guiding 
has some  important  limitations,  however,  particularly  regarding 
the use  of  sensors.  During  guiding,  the  programmer  specifies 
a  single  execution  sequence  for the  robot;  there  are  noloops, 
conditionals,  or  computations. This is adequate  for  some 
applications,  such as spot welding,  painting,  and  simple ma- 
terials  handling. In other  applications,  however,  such as 
mechanical  assembly  and  inspection,  one  needs t o  specify 
the desired  action  of the  robot  in  response  to  sensory  input, 
data  retrieval,  or  computation.  In  these  cases,  robot  pro- 
gramming  requires the capabilities of a  general-purpose  com- 
puter  programming  language. 

Some  robot  systems  provide  computer  programming  lan- 
guages with  commands  to access  sensors  and t o  specify  robot 
motions. We refer  to  these as explicit or robot-level languages. 
The  key  advantage of robot-level  languages is that  they  enable 
the  data  from  external  sensors,  such as vision and  force,  to  be 
used in modifying  the  robot’s  motions.  Through  sensing, 
robots  can  cope  with  a  greater  degree of uncertainty  in  the 
position of external  objects,  thereby  increasing  their  range of 
application.  The  key  drawback of robot-level  programming 
languages,  relative to guiding, is that  they  require  the  robot 
programmer  to  be  expert in computer  programming  and  in 
the design  of  sensor-based motion  strategies.  Hence,  robot- 
level languages  are not accessible to   the typical  worker on 
the  factory  floor. 

Many recent  approaches  to  robot  programming  seek to   pro-  
vide the  power of robot-level  languages  without  requiring 
programming  expertise.  One  appraoch is to extend  the basic 
philosophy  of  guiding to include  decision-making  based on 
sensing. Another  approach,  known as task-level programming, 
requires  specifying  goals  for  the  positions of objects,  rather 
than  the  motions of the  robot  needed  to achieve  those  goals. 
In particular,  a  task-level  specification is meant  to be  completely 
robot-independent; no positions  or  paths  that  depend on   the  
robot  geometry  or  kinematics  are  specified  by  the  user.  Task- 
level programming  systems  require  complete  geometric  models 
of the  environment  and of the  robot  as  input;  for  this  reason, 
they  are also  referred to as world-modezing systems. Task-level 
programming is still in the  research  stage,  in  contrast t o  guiding 
and robot-level  programming  which  have  reached the com- 
mercial  stage. 

B. Goals of this  Paper 

The goals of this  paper  are  twofold:  one,  to  identify  the 
requirements  for  advanced  robot  programming  systems,  the 
other  to describe  the  major  approaches to the design of these 
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Fig. 1. A representative  robot  application. 

systems.  The  paper is not meant  to be a  catalog of all existing 
robot  programming  systems. 

A  discussion of the  requirements  for  robot  programming 
languages is not possible  without  some  notion  of  what  the 
tasks to  be  programmed will be and  who  the  users  are.  The 
next  section will discuss one  task  which is likely to  be  repre- 
sentative of robot  tasks  in  the  near  future. We will use  this 
task to  motivate  some of the  detailed  requirements  later  in 
the  paper.  The  range of computer  sophistication  of  robot 
users is large,  ranging  from  factory  personnel  with no pro- 
gramming  experience to  Ph.D.'s  in  computer  science.  It  is  a 
fatal  mistake to  use  this  fact to  argue for  reducing  the  basic 
functionality  of  robot  programming  systems  to  that  accessible 
to  the least sophisticated  user.  Instead, we argue that  robot 
programming  languages  should  support  the  functional  require- 
ments of its  most  sophisticated  users.  The  sophisticated  users 
can  implement  special-purpose  interfaces, in the language 
itself, for  the less experienced  users.  This is the  approach 
taken  in  the design of computer  programming  languages;  it 
also  echoes  the design principles  discussed  in [ 96 1 . 

11. A ROBOT APPLICATION 

Fig. 1 illustrates a representative  robot  application.  The  task 
involves two  robots  cooperating  to  assemble  a  pump.  Parts 
arrive,  randomly  oriented  and  in  arbitrary  order,  on  two  moving 
conveyor  belts.  The  robot  system  performs  the  following 
functions: 

1) determine  the  position  and  orientation of the  parts,  using 

2) grasp the  parts on the moving  belts; 
3) place  each  part  on  a fixture,  add  it  to  the  assembly,  or 

put  it aside for  future  use,  depending  on  the  state of the 
assembly . 

a  vision system; 

The  following  sequence is one  segment of the  application. 
The  task is to  grasp  a  cover on  the moving  belt,  place it on  the 
pump  base,  and  insert  four  pins so as to align the  two  parts. 
Note  the  central  role  played  by  sensory  information. 

1) Identify, using  vision, the  (nonoverlapping)  parts  arriving 
on  one of the  belts,  a  pump  cover  in  this  case,  and  determine 
its  position  and  orientation  relative to  the  robot. During  this 
operation,  inspect  the  pump  cover  for  defects  such  as  missing 
holes  or  broken  tabs. 

2) Move ROBOT1 to the prespecified  grasp  point for  the 
cover,  relative to  the cover's  position  and  orientation  as  deter- 
mined by the vision  system.  Note  that if the  belt  continues 
moving  during the  operation,  the  grasp  point will need to  be 
updated  using  measurements of the belt's position. 

3 )  Grasp the cover  using  a  programmer-specified  gripping 
force. 

4)  Test the  measured  finger  opening  against  the  expected 
opening  at  the  grasp  point. If it is not  within  the  expected 
tolerance,  signal  an  error [61,  [ 1031.  This  condition  may 
indicate  that  the  vision  system  or  the  control  system  are 
malfunctioning. 

5) Place the cover on  the base, by moving to  an  approach 
position  above  the base and  moving  down  until  a  programmer- 
specified  upward  force is detected  by  the  wrist  force  sensor. 
During the  downward  motion,  rotate  the  hand so as to  null 
out  any  torques  exerted  on  the cover  because  of  misalignment 
of  the  cover  and  the  base.  Release  the  cover  and  record  its 
current  position  for  future  use. 

6 )  In  parallel  with the previous  steps,  move ROBOT2 to 
acquire  an  aligning  pin  from  the  feeder. Bring the pin t o  a 
point  above  the  position of the first hole  in  the  cover,  com- 
puted  from  the known position of the  hole  relative to the 
cover  and  the  position of the cover  recorded  above. 

7 )  Insert  the  pin.  One  strategy  for  this  operation  requires 
tilting  the  pin  slightly to increase  the  chances of the  tip of 
the pin  falling into  the  hole  [43],   [44].  If the  pin  does  not 
fall into  the  hole,  a  spiral  search  can be initiated  around  that 
point [ 61, [ 3 1 1 .  Once the  tip of the pin is seated  in  the  hole, 
the pin is straightened.  During  this  motion,  the  robot is 
instructed  to  push  down  with  a  prespecified  force, to  push 
in  the y direction (so as to  maintain  contact  with  the  side  of 
the  hole),  and  move so as to null  out  any  forces  in  the x 
direction [44] .  At  the  end of this  operation,  the  pin  position 
is tested t o  ascertain  that it is within  tolerance  relative to  the 
computed  hole  position. 

8) In  parallel  with the  insertion of the  pin  by ROBOT2, 
 ROBOT^ fetches  another  pin  and  proceeds  with  the  insertion 
when ROBOT2 is done.  This  cycle is repeated  until all the  pins 
are  inserted.  Appropriate  interlocks  must be maintained 
between  the  robots  to avoid  a  collision. 

This  application  makes use of four  types of sensors: 
1) Direct  position sensors. The  internal  sensors, e.g., 

potentiometers  or  incremental  encoders,  in  the  robot  joints 
and  in  the  conveyor  belts  are  used  to  determine  the  position 
of the  robot  and  the belt  at  any  instant of time. 

2) Vision sensors. The  camera  above  each  belt is used to  
determine  the  identity  and  position of parts  arriving on  the 
belt  and  to  inspect  them. 

3) Finger touch sensors. Sensors  in the fingers  are  used to  
control  the  magnitude of the  gripping  force  and t o  detect  the 
presence  or  absence of objects  between  the  fingers. 

4 )  Wrist force sensors. The  positioning  errors  in  the  robot, 
uncertainty  in  part  positions,  errors  in  grasping  position,  and 
part  tolerances all conspire to  make it impossible to  reliably 
position  parts  relative to  each  other  accurately  enough  for 
tight  tolerance  assembly.  It is possible,  however, t o  use the 
forces  generated as the assembly  progresses to  suggest  incre- 
mental  motions  that will achieve the desired  final state;  this 
isknownascompZiuntmotion,'e.g., [601,[791,[1011,[1021.  

Most  of this  application is possible today  with  commerically 
available robots  and vision  systems.  The  exceptions  are  in  the 
use of  sensing.  The  pin  insertion,  for  example,  would  be  done 
today  with  a  mechanical  compliance  device [ 1021  specially 
designed for  this  type of operation.  Techniques  for  imple- 

compliance achievable  with  mechanical  devices. 
This is also known as active  compliance  in contrast to passive 
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menting  compliant  motion via force  feedback  are  known, e.g., 
[ 7 3 ] ,  [ 751 ,  [ 7 9 ] ,  [88]  ; but  current  force  feedback  methods 
are not as  fast  or  as  robust  as  mechanical  compliance  devices. 
Current  commercial  vision  systems  would  also  impose  limita- 
tions  on  the  task, e.g., parts  must  not be touching.  Improved 
techniques  for  vision  and  compliance  are  key  areas of robotics 
research. 

111. REQUIREMENTS OF ROBOT PROGRAMMING 

The  task  described  above  illustrates  the  major  aspects of 
sophisticated  robot  programming:  sensing,  world  modeling, 
motion  specification,  and  flow of control.  This  section dis- 
cusses  each  of  these issues and  their  impact  on  robot 
programming. 

A .  Sensing 

The  vast  majority of current  industrial  robot  applications 
are  performed  using  position  control  alone  without  significant 
external  sensing.  Instead,  the  environment is engineered so as 
to  eliminate all significant  sources of uncertainty. All parts  are 
delivered  by  feeders,  for  example, so that  their  positions will 
be known  accurately  at  programming  time.  Special-purpose 
devices  are  designed to  compensate  for  uncertainty  in  each 
grasping or assembly  operation.  This  approach  requires  large 
investments  in  design  time  and  special-purpose  equipment 
for  each  new  application.  Because of the  magnitude  of  the 
investment,  the  range of profitable  applications is limited; 
because of the  special-purpose  nature of the  equipment,  the 
capability of the  system  to  respond  to changes in  the design 
of the  product  or  in  the  manufacturing  method is  negligible. 
Under  these  conditions,  much of the  potential  versatility  of 
robots is wasted. 

Sensing  enables robots  to  perform  tasks  in  the  presence  of 
significant  environmental  uncertainties  without  special-pur- 
pose  tooling.  Sensors  can  be  used to  identify  the  position  of 
parts,  to  inspect  parts,  to  detect  errors  during  manufacturing 
operations,  and  to  accomodate  to  unknown  surfaces.  Sensing 
places two key  requirements  on  robot  programming  systems. 
The  first  requirement is to  provide  general input  and  output 
mechanisms for  acquiring  sensory  data.  This  requirement  can 
be  met  simply  by  providing  the 1 /0  mechanisms  available  in 
most high-level computer  programming  languages,  although 
this  has  seldom  been  done.  The  second  requirement is t o  pro- 
vide  versatile control  mechanisms,  such as force  control,  for 
using  sensory  data to  determine  robot  motions.  This  need  to 
specify  parameters  for  sensor-based  motions  and to  specify 
alternate  actions  based  on  sensory  conditions is the  primary 
motivationfor  using  sophisticated robotprogramminglanguages. 

Sensors  are  used  for  different  purposes  in  robot  programs; 
each  purpose  has  a  separate  impact  on  the  system  design.  The 
principal  uses  of  sensing  in  robot  Programming  are  as  follows 

1)  initiating  and  terminating  motions, 
2 )  choosing  among  alternative  actions, 
3 )  obtaining  the  identity  and  position of objects  and  features 

4) complying to  external  constraints. 

The  most  common  use of sensory  data  in  existing  systems is 
to  initiate  and  terminate  motions. Most robot  programming 
systems  provide  mechanisms  for  waiting  for  an  external  binary 
signal  before  proceeding  with  execution of a  program.  This 
capability is used  primarily to  synchronize  robots  with  other 
machines.  One common  application of this  capability  arises 

of objects, 

when  acquiring  parts  from  feeders;  the  robot’s  grasping  motion 
is initiated  when  a  light  beam is interrupted by the arrival of  a 
new  part  at  the  feeder.  Another  application is that of locating 
an  imprecisely  known  surface  by  moving  towards  it  and  ter- 
minating  the  approach  motion  when  a  microswitch is tripped 
or  when  the value  of  a  force  sensor  exceeds a threshold.  This 
type of motion is known  as  a guarded move [ 1041  or stop on 
force [ 6 ] ,  [ 731. Guarded  moves  can be used to  identify 
points  on  the edges of an  imprecisely  located  object  such  as 
a  pallet.  The  contact  points  can  then  be  used  to  determine  the 
pallet’s position  relative to  the  robot  and  supply  offsets  for 
subsequent  pickup  motions.  Section IV-A illustrates a limited 
form of this  technique  available  within  some  existing  guiding 
systems.  General use of this  technique  requires  computing 
new  positions on  the basis of stored  values;  hence it is limited 
to  robot-level  languages. 

The  second  major use  of sensing is in  choosing  among  alter- 
native  actions  in  a  program.  One  example is deciding  whether 
to  place  an  object  in  a  fixture  or  a  disposal bin depending  on 
the  result of an  inspection  test.  Another, far more  common, 
example  arises  when  testing  whether  a  grasp  or  insert  action 
had  the  desired  effect  and  deciding  whether  to  take  corrective 
action.  This  type of error  checking  accounts  for  the  majority 
of the  statements  in  many  robot  programs.  Error  checking 
requires  the  ability  to  obtain  data  from  multiple  sensors,  such 
as visual, force,  and  position  sensors,  to  perform  computations 
on  the  data,  and  to  make decisions on  the  results. 

The  third  major  use of sensing  in robot  systems is in  obtaining 
the  identity  and  position of objects  or  features of objects. 
For  example  in  the  application  described earlier, a  vision 
module is used to  identify  and  locate  objects  amving  on  con- 
veyor  belts.  Because  vision systems  are  sizable  programs 
requiring  large  amounts of processing,  they  often  are  imple- 
mented  in  separate  processors.  The  robot  program  must  be 
able,  in  these  cases, to  interface  with  the  external  system  at 
the level of symbolic  data  rather  than at the level  of  “raw” 
sensory  data.  Similar  requirements arise in  interfacing to  
manufacturing  data bases which  may  indicate  the  identity 
of the  objects  in  different  positions of a  pallet,  for  example. 
From  these  considerations we can  conclude  that  robot  pro- 
gramming  systems  should  provide  general  input/output  inter- 
faces,  including  communications  channels  to  other  computers, 
not  just  a  few  binary  or  analog  channels as is the  rule  in  today’s 
robot  systems. 

Once the  data  from  a  sensor  or  database  module  are  obtained, 
some  computation  must be performed  on  the  module’s  output 
so as to  obtain  a  target  robot  position.  For  example,  existing 
commercial  vision  systems  can be used to  compute  the  position 
of the  center of area of an  object’s  outline  and  the  orientation 
of the  line  that  minimizes  the  second  moment.  These  measure- 
ments  are  obtained  relative to  the camera’s  coordinate  system. 
Before the  object  can be grasped,  these  data  must  be  related 
to  the  robot’s  coordinate  system  and  combined  with  informa- 
tion  about  the  relationship of the desired  grasp  point to   the  
measured  data  (see  Section 111-B). Again,  this  points  out  the 
interplay  between  the  requirements  for  obtaining  sensory 
data  and  for  processing  them. 

The  fourth  mode of sensory  interaction,  active  compliance, 
is necessary in  situations  requiring  continuous  motion  in 
response to  continuous  sensory  input.  Data  from  force, 
proximity,  or  visual  sensors  can be used to  modify  the  robot’s 
motion so as to maintain  or  achieve  a  desired  relationship 
with  other  objects.  The  forcecontrolled  motions  to  turn  a 
crank,  for  example,  require  that  the  target  position  of  the 
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robot  from  instant to instant be  determined  from  the  direction 
and  magnitude of the  forces  acting  on  the  robot  hand, e.g., 
[601, [ 761.  Other  examples  are  welding  on  an  incompletely 
known  or  moving  surface,  and  inserting  a peg in  a  hole  when 
the  position  uncertainty is greater  than  the  clearance  between 
the  parts.  Compliant  motion is an  operation  specific  to  ro- 
botics; it requires  special  mechanisms  in  a  robot  programming 
system. 

There  are  several  techniques  for  specifying  compliant  motions, 
for  a  review  see [ 621. One  method  models  the  robot  as  a  spring 
whose  stiffness  along  each of the  six  motion  freedoms  can  be 
set [ 351, [83].  This  method  ensures  that  a  linear  relationship 
is maintained  between  the  force  which is sensed  and  the dis- 
placements  from  a  nominal  position  along  each of the  motion 
freedoms. A motion  specification of this  type  requires  the 
following  information: 

1) A coordinate  frame  in  which  the  force  sensor  reading 
are to  be  resolved,  known as the constraint  frame. Some 
common  alternatives  are:  a  frame  attached to the  robot  hand, 
a  fixed  frame  in  the  room,  or  a  frame  attached  to  the  object 
being  manipulated. 

2) The  desired  position  trajectory of the  robot. This 
specifies the  robot’s  nominal  position as a  function of time. 

3) Stiffnesses for  each of the  motion  freedoms  relative to 
the  constraint  frame.  For  example, a high stiffness  for  trans- 
lation  along  the  x-axis  means  that  the  robot will allow  only 
small  deviations  from  the  position  specified  in  the  trajectory, 
even if high  forces  are  felt  in  the x direction. A low  stiffness, 
on  the  other  hand,  means  that  a  small  force  can  cause  a sig- 
nificant  deviation  from  the  position  specified by the  trajectory. 

The  specification of a  compliant  motion  for  inserting  a peg 
in  a  hole  [62] is as follows:  The  constraint  frame will be 
located  at  the  center of the peg’s bottom  surface,  with  its z- 
axis  aligned  with the axis of the peg.  The  insertion motion 
will be  a  linear  displacement  in  the  negative z direction,  along 
the  hole  axis, to a  position  slightly  below  the  expected  final 
destination  of  the  peg. 

The  stiffnesses  are  specified  by  a  matrix  relating  the  Cartesian 
position  parameters  of  the  robot’s  end  effector to  the  force 
sensor inputs 

f = K A  

where f is a  6 X 1 vector of forces  and  torques, K is a 6 X 6 
matrix of stiffnesses,  and A is a  6 X 1  vector of deviations  of 
the  robot  from  its  planned  path. While inserting  a peg in  a 
hole, we wish the  constraint  frame  to  follow  a  trajectory 
straight  down  the  middle of the  hole,  but  complying  with 
forces  along  the  x-  and  y-axes  and  with  torques  about  the 
x-  and  y-axes.  The  stiffness  matrix K for  this  task  would 
be  a  diagonal  matrix 

K = d i a g ( k o , k o , k l , k o , k o , k l )  

where ko indicates  low  stiffness  and k l  a high stiffness.’ 
The  complexity of specifying  the  details of a  compliant 

motion  argues  for  introducing  special-purpose  syntactic 
mechanisms into  robot languages.  Several  such  mechanisms 
have  been  proposed  for  different  compliant motion  types 
[671,  1751,  [761, [831. 

One  key  difference  between  the  first  three  sensor  inter- 

’ Unfortunately,  the numerical choices  for  stiffnesses are dictated  by 
detailed considerations of characteristics of  the  environment and of  
the  control  system [ 101 1 ,  13 5 1 .  

action  mechanisms  and  active  compliance is extensibility. 
The  first  three  methods  allow  new  sensors  and  modules t o  
be  added  or  changed  by  the  user,  since  the  semantics  of  the 
sensor is determined  only  by  the  user  program.  Active  com- 
pliance,  on  the  other  hand,  requires  much  more  integration 
between  the  sensor  and  the  motion  control  subsystem;  a  new 
type  of  sensor  may  require  a  significant  system  extension. 
Ideally,  a  user’s view of compliant  motion  could  be  imple- 
mented  in  terms of lower  level  procedures in  the  same  robot 
language.  Sophisticated  users  could  then  modify  this  imple- 
mentation  to  suit new  applications,  new  sensors,  or new 
motion  algorithms.  In  practice  efficiency  considerations  have 
ruled  out  this  possibility  since  compliant  motion  algorithms 
must  be  executed  hundreds of times  a ~ e c o n d . ~  This is not  a 
fundamental  restriction,  however,  and  increasing  computer 
power,  together  with  sophisticated  compilation  techniques, 
may  allow  future  systems  to  provide  this  desirable  capability. 

In summary, we have  stressed  the  need  for  versatile  input/ 
output  and  computation  mechanisms  to  support  sensing  in 
robot  programming  systems.  The  most  natural  approach  for 
providing  these  capabilities is by  adopting  a  modern  hgh-level 
computer language as the basis for  a  robot  programming  lan- 
guage. We have  identified  one  sensor-based  mechanism; 
namely,  compliant  motion,  that  requires  specific  language 
mechanisms  beyond  those of traditional  computer  languages. 

In  addition  to  the  direct  mechanisms  needed to support 
sensing  within robot  programming  languages,  there  are  mech- 
anisms  needed  due to  indirect  effects of the reliance on sensing 
for  robot  programming.  Some of these  effects  are  as  follows: 

1)  Target  positions  are  not  known  at  programming  time; 
they  may  be  obtained  from  an  external  database  or  vision 
sensor  or  simply  be  defined  by  hitting  something. 

2) The  actual  path  to be  followed is not  known  at  pro- 
gramming  time;  it  may be determined  by  the  history  of  sen- 
sory  inputs. 

3) The  sequence of motions is not  known  at  programming 
time;  the  result of  sensing  operations will determine  the  actual 
execution  sequence. 

These  effects of sensing  have  significant  impact on  the 
structure of robot  programming  systems.  The  remainder of 
this  section  explores  these  additional  requirements. 

B. World  Modeling 

Tasks that  do  not involve  sensing  can be specified  as  a 
sequence of  desired robot  configurations;  there is no  need 
to represent  the  geometrical  structure of the  environment  in 
terms of objects. When the  environment is not  known a priori, 
however,  some  mechanism  must be provided for  representing 
the  positions of objects  and  their  features,  such  as  surfaces 
and  holes.  Some  of  these  positions  are  fixed  throughout  the 
task,  others  must be determined  from  sensory  information, 
and  others  bear  a  fixed  relationship  with  respect to variable 
positions.  Grasping  an  object,  for  example,  requires  specifying 
the desired  position of the  robot’s  gripper  relative to   the 
object’s  position.  At  execution  time,  the  actual  object  position 
is determined  using  a  vision  system  or  on-line  database.  The 
desired  position  for  the  gripper  can  be  determined  by  com- 
posing the  relative  grasp  position  and  the  absolute  object 
position;  this  gripper  position  must  then be transformed  to  a 

3Reference [ 2 7 ]  describes a  robot  system  architecutre  that  enables 
different  sensors to  be  interfaced  into  the  motion  control  subsystem 
from  the user language level;  see also 1751 for  a  different  proposal. 
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WORLD 

Fig. 2. World model  with  coordinate frames. 

robot  configuration.  A  robot  programming  system  should 
facilitate  this  type of computation  on  object  positions  and 
robot  configurations. 

The  most  common  representation  for  object  positions  in 
robotics  and  graphics is the  homogeneous  transform,  repre- 
sented by a 4 X 4 matrix [ 751.  A  homogeneous  transform 
matrix  expresses  the  relation  of  one  coordinate  frame  to 
another by  combining  a  rotation  of  the  axes  and  a  translation 
of the origin. Two  transforms  can  be  composed by multiplying 
the  corresponding  matrices.  The  inverse of a  transform  which 
relates  frame A to  frame B is a  transform  which  relates B to  A .  
Coordinate  frames  can  be  associated  with  objects  and  features 
of interest  in  a  task,  including  the  robot  gripper  or  tool. 
Transforms  can  then  be  used  to  express  their  positions  with 
respect to  one  another. 

A simple  world  model,  with  indicated  coordinate  frames,  is 
sh’own in  Fig. 2 .  The  task is to  visually  locate  the  bracket  on 
the  table,  grasp  it,  and  insert  the  pin,  held  in  a  stationary 
fixture,  into  the bracket’s  hole. A similar  task  has  been 
analyzed  in [ 331 ,  [ 931.  

The  meaning of the various  transforms  indicated  in  Fig. 2 
are as follows. Cam is the  transform  relating  the  camera 
frame  to  the WORLD frame. Grasp is the  transform  relating 
the desired  position of the gripper’s  frame to  the bracket’s 
frame.  Let Bracket be  the  unknown  transform  that  relates  the 
bracket  frame  to WORLD. We will be  able to  obtain  from  the 
vision  system the value  of B k t ,  a  transform  relating  the  bracket’s 
frame  to  the camera’s  frame.4 HoZe is a  transform  relating  the 
hole’s  frame to  that of the  bracket.  The  value of Hole is 
known  from  the  design of the  bracket. Pin relates  the  frame 
of  the pin to  that of the  fixture. Fixture, in  turn,  relates  the 
fixture’s  frame  to WORLD. Z relates  the  frame of the  robot 
base to  WORLD. Our  goal is to  determine  the  transform 
relating  the  endeffector’s  (gripper’s)  frame E relative to   the 
robot’s  base.  Given E and Z, the  robot’s  joint  angles  can  be 
determined  (see,  for  example, [ 75 I ). 

The  first  step of the  task is determining  the  value of Bracket, 
which is simply Cam Bkt .  The  desired  gripper  position for  
grasping the  bracket is 

Z E = Bracket  Grasp. 

Since Cam is relative t o  WORLD,   Bkt  relative to  Cam, and 
Grasp relative to  B k t ,  the  composition gives us the desired 
gripper  position  relative  to WORLD, i.e., 2 E .  At the  target 

position  we  want  the  location of the  hole  relative to  WORLD 
to  be  equal to  that of the  pin; this relationship  can  be  expressed 
as 

Bracket  Hole  =Fixture Pin. 

From  this we can see that 

Bracket = Fixture Pin Hole-‘.  

Hence,  the  new  gripper  location is 

Z E = Fixture Pin Hole-’  Grasp. 

The use of coordinate  frames  to  represent  positions  has  two 
drawbacks.  One  drawback is that  a  coordinate  frame,  in  gen- 
eral,  does  not  specify  a  robot  configuration  uniquely.  There 
may  be  several robot  configurations  that  place  the  endeffector 
in  a  specified  frame.  For a robot  with  six  independent  motion 
freedoms,  there  are  usually  on  the  order  of  eight  robot  con- 
figurations to  place the  gripper  at  a  specified  frame.  Some 
frames  within  the  robot’s  workspace  may be reached  by  an 
infinite  number of configurations,  however.  Furthermore, 
for  robots  with  more  than  six  motion  freedoms,  the  typical 
coordinate  frames  in  the  workspace will  be achievable  by  an 
infinite  number of configurations.  The  different  configurations 
that achieve  a  frame  specification  may not be  equivalent;  some 
configurations,  for  example,  may give rise to  a collision  while 
others  may  not.  This  indeterminacy  needs  to  be  settled  at 
programming  time,  which  may  be  difficult  for  frames  deter- 
mined  from  sensory  data. 

Another,  dual,  drawback of coordinate  frames  is  that  they 
may  overspecify  a  configuration. When grasping  a  symmetric 
object  such  as  a  cylindrical  pin,  for  example,  it  may  not  be 
necessary to  specify the  orientation of the  gripper  around  the 
symmetry axis. A  coordinate  frame will always  specify  this 
orientation, however.  Thus if the vision system  describes the 
pin’s  position  as  a  coordinate  frame  and  the  grasping  position 
is specified  likewise,  the  computed  grasp  position will specify 
the gripper’s  orientation  relative to  the pin’s  axis. In some 
cases this wiU result  in  a  wasted  alignment  motion;  in  the 
worst  case, the  specified  frame  may  not be reachable  because 
of  physical  limits  on  joint  travel of the  robot.  Another use  of 
partially  specified  object  positions  occurs in the  interpretation 
of  sensory  data. When the  robot  makes  contact  with  an  object, 
it  acquires a constraint  on  the  position of that  object.  This 
information  does  not  uniquely  specify  the  object’s  position, 
but  several  such  measurements  can be used to  update  the 
robot’s  estimate of the object’s  positions [ 6 ] .  This type of 
computation  requires  representing  partially  constrained 
positions  or,  equivalently,  constraints  on  the  position  param- 
eters [ 9 4 1 ,  [ 141. 

Despite  these  drawbacks,  coordinate  frames  are  likely to  
continue  being  the  primary  representation of positions in 
robot programs.  Therefore, a robot programming  system 
should  support  the  representation of coordinate  frames  and 
computations  on  frames via transforms.  But  this is not  all; 
a  world  model  also  should  provide  mechanisms  for  describing 
the  constraints  that  exist  between  the  positions.  The  simplest 
case of  this  requirement  arises  in  managing  the  various  features 
on  a rigid  object. If the  object is moved,  then  the  positions  of 
all its  features  are  changed  in  a  predictable  way.  The  respons- 
ibility  for  updating all of  these  data  should  not  be  left  with 
the  programmer;  the  programming  system  should  provide 
mechanisms  for  indicating  the  relationships  between  positions 
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BLOCK 2 

BLOCK I 

Fig. 3.  Symbolic  specification  of  positions. 

so that  updates  can  be  carried  automatically.  Several  existing 
languages  provide  mechanisms for  this, e.g., AL [671  and 
LM [48]. 

Beyond  representation  and  computation  on  frames,  robot 
systems  must  provide  powerful  mechanisms  for  acquiring 
frames. A significant  component of the  specification  of  a 
robot  task is the specification  of the positions  of  objects  and 
features. Many of the  required  frames,  such  as  the  position 
of the  hole relative to  the  bracket  frame  in  the  example  above, 
can  be  obtained  from  drawings  of  the  part. This process is 
extremely  tedious  and  error  prone,  however.  Several  methods 
for  obtaining  these  data have been  proposed: 

1)  using the  robot  to  define  coordinate  frames; 
2) using  geometric  models  from  Computer-Aided Design 

(CAD)  databases; 
3 )  using  vision  systems. 

The  first  of  these  methods  is  the  most  common. A robot’s 
endeffector  defines  a  known  coordinate  frame,  therefore 
guiding the  robot  to a  desired  position  provides the  transform 
needed to  define  the  position.  Relative  positions  can  be 
determined  from  two  absolute  positions.  Two  drawbacks  of 
this  simple  approach  are:  some of the desired coordinate 
frames  are  inaccessible to   the gripper,  also,  the  orientation 
accuracy  achievable  by  guiding and visual alignment is  limited.’ 
These  problems  can be alleviated  by  computing  transforms 
from  some  number of points  with  known  relationships t o  each 
other, e.g., the origin  of the  frame  and  points  on  two  of  the 
axes.  Indicating  points is  easier and  more reliable than aligning 
coordinate  systems.  Several  systems  implement  this  approach, 
e.g., AL [331,  [671  and VAL [881,  [981. 

A second  method of acquiring  positions,  which is likely t o  
grow  in  importance, is the use of databases  from  CAD  systems. 
CAD  systems  offer  significant  advantages  for  analysis,  docu- 
mentation,  and  management  of  engineering  changes.  Therefore, 
they  are  becoming  increasingly  common  throughout  industry. 
CAD databases  are  a  natural  source  for the  geometric  data 
needed in  robot  programs.  The  descriptions  of  objects  in  a 
CAD  database  may  not  be in the  form  convenient  for  the 
robot  programmer,  however.  The  desired  object  features  may 
not  be  explicitly  represented, e.g., a  point  in  the  middle of a 
parametrically  defined  surface.  Furthermore,  positions  specific 
to  the  robot  task,  such as grasp  points,  are  not  represented a t  
all, and  must  still  be  specified.  Therefore,  the  effective  use  of 
CAD  databases  requires  a high-level interface  for  specifying  the 
desired  positions.  Pointing on a  graphics  screen  is  one  pos- 
sibility,  but is suffers  from  the  two-dimensional  restrictions  of 

graphics [ 21. Another  method [ 1 1,  [801 is t o  describe  posi- 
tions  by  sets  of  symbolic  spatial  relationships  that  hold  between 
objects  in  each  position. For example,  the  positions of Block 1 
in Fig. 3 must  satisfy  the  following  relationships: 

(f3 Against f l )  and (f4 Against f2). 

One  advantage of using  symbolic  spatial  relationships is that  
the  positions  they  denote  are  not  limited to   the accuracy of 
a  light-pen or  of a robot,  but  that of the  model.  Another 
advantage  of  this  method is that families of positions  such as 
those on a  surface  or  along  an  edge  can be expressed.  Further- 
more,  people easily understand  these  relationships.  One  small 
drawback  of  symbolic  relations is that  the  specifications  are 
less concise  than  specifications  of  coordinate  frames. 

Another  potentially  important  method of acquiring  posi- 
tions is the  use of vision. For  example,  two  cameras  can 
simultaneously  track  a  point of light  from  a  laser  pointer  and 
the  system  can  compute  the  position of the  point by triangu- 
lation [ 371.  One disadvantage of this  method  and  of  methods 
based on  CAD  models is that  there is no  guarantee  that  the 
specified  point  can  be  reached  without  collisions. 

We have  focused on  the  representation of single  positions; 
this  reflects  the  emphasis in current  robot  systems  on  end- 
point  specification of motions. In many  applications,  this 
emphasis is  misplaced. For  example,  in  arc-welding,  grinding, 
glue  application,  and  many  other  applications,  the  robot is 
called upon  to  follow  a  complex  path.  Currently  these  paths 
are  specified as a  sequence of positions.  The  next  section 
discusses alternative  methods of describing motions which 
require  representing  surfaces  and  volumes. A  large  repertoire 
of representational  and  computational  tools is already avail- 
able  in  CAD  systems  and  Numerically  Controlled  (NC)  ma- 
chining  systems, e.g., [21 l .  

In summary,  the  data  manipulated by robot  programs  are 
primarily  geometric.  Therefore,  robot  programming  systems 
have  a requirement t o  provide  suitable  data  input,  data  repre- 
sentation,  and  computational  capabilities  for  geometric  data. 
Of these  three,  data  input is the  most  amenable  to  solutions 
that  exploit  the  capabilities of robot  systems, e.g., the avail- 
ability  of the  robot  and  its sensors. 

C. Motion  Specification 
The  most obvious aspect of robot  programming is motion 

specification.  The  solution  appears  similarly  obvious:  guiding. 
But,  guiding is sufficient  only  when all the desired  positions 
and  motions  are  known  at  programming  time. We have  post- 
poned  a  discussion of motion  specification  until  after  a dis- 
cussion  of  sensing  and  modeling to emphasize the  broader. 
range  of  conditions  under  which  robot  motion  must  be  speci- 
fied in sensor-based  applications. 

Heretofore,  we  have  assumed  that  a  robot  motion is specified 
by its  final  position,  be  it in absolute  coordinates  or  relative 
to some  object.  In  many cases, this is not  sufficient;  a  path  for 
the  robot  must also  be  specified. A simple  example of this 
requirement  arises  when  grasping  parts:  the  robot  cannot 
approach  the grasp point  from  arbitrary  directions;  it  must 
typically  approach  from  above  or  risk  colliding  with  the  part. 

5A common  assumption is that  since  the accuracy of the  robot  limits 
Similarly,  when  bringing the part to  add  to a  subassembly, 

execution.  the same accuracy is sufficient during task sDecification. This the approach path must be specified‘ Paths  are 
assumption  neglects  the  effect  of  the  robot’s Limited repeatability,  how- commonly  specified  by  indicating  a  sequence of intermediate 
ever. Errom in achieving the  specified  position, h e n  compounded  with positions,  known  as via points, that  the  robot  should  traverse 
the  specification errors, might cause the operation t o  fail. Further- 
more,  if  the  location is used as the basis for relative locations,  the between the and positions. 
propagation of errors can make reliable execution  impossible. The  shape of the  path  between via points is chosen  from 
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among  some basic repertoire of path  shapes  implemented  by 
the  robot  control  system.  Three  types of paths  are  imple- 
mented in current  systems:  uncoordinated  joint  motions, 
straight  lines  in the  joint  coordinate  space,  and  straight  lines 
in  Cartesian  space.  Each of these  represents  a  different  tradeoff 
between  speed of execution  and  “natural”  behavior.  They  are 
each  suitable to  some applications  more  than  others.  Robot 
systems  should  support  a wide  range  of  such motion regimes. 

One  important  issue in motion  specification  arises  due  to 
the  nonuniqueness of the  mapping  from  Cartesian  to  joint 
coordinates.  The  system  must  provide  some  well-defined 
mechanism  for  choosing  among  the  alternative  solutions. 
In  some  cases,  the  user  needs  to  identify  which  solution is 
appropriate. VAL provides  a  set  of  configuration  commands 
that  allow  the  user  to  choose  one of the  up  to  eight joint 
solutions  available  at  some  Cartesian  positions.  This  mech- 
anism is useful,  but  limited.  In  particular, it cannot  be  ex- 
tended  to  redundant  robots  with  infinite families of solutions 
or   to  specify the behavior  at  a  kinematic  singularity. 

Some  applications,  such as arc-welding or  spray-painting, 
can  require  very  fine  control  of  the  robot’s speed along  a 
path,  as well as of the shape of  the  path [ 9 1 ,   [ 7 5 ] .  This  type 
of  specification is supported by providing  explicit trajectory 
control  commands in the  programming  system.  One  simple  set 
of commands  could  specify  speed  and  acceleration  bounds on 
the  trajectory. AL provides  for  additional  specifications  such 
as the  total  time of the  trajectory. Given  a wide  range  of 
constraints,  it is  very  likely that  the  set  of  constraints  for 
particular  trajectories will  be inconsistent.  The  programming 
system  should  either  provide  a  well-defined  semantics  for 
treating  inconsistent  constraints6  or  make  it  impossible  to 
specify  inconsistent  constraints.  Trajectory  constraints  also 
should  be  applicable  to  trajectories  whose  path  is not  known 
at  programming  time,  for  example,  compliant  motions. 

The  choice of via points  for  a  task  depends on the  geometry 
of the  parts,  the  geometry of the  robot,  the  shape  of  the  paths 
the  robot  follows  between  positions,  and  the  placement of 
the  motion  in  the  robot  workspace. When the  environment is 
not  known  completely  at  programming  time,  the via points 
must  be  specified  very  conservatively.  This  can  result in un- 
necessarily  long  motions. 

An  additional  drawback of motions  specified by sequences 
of robot  configurations is that  the via points  are  chosen, 
typically,  without  regards  for the  dynamics  of  the  robot as 
it  moves  along  the  path. If the  robot is to  go  through  the via 
points  very  accurately,  the  resulting  motion  may have t o  be 
very  slow.  This is unfortunate,  since  it is unlikely  that  the 
programmer  meant  the via points exactZy. Some  robot sys- 
tems  assume  that via points  are  not  meant  exactly unless told 
otherwise.  The  system  then  splines  the  motion  between  path 
segments t o  achieve  a  fast, smooth  motion,  but  one  that  does 
not pass through  the via points [751 .  The  trouble is that  the 
path is then essentially  unconstrained  near  the via points; 
furthermore,  the  actual  path  followed  depends on the speed 
of the  motion. 

A  possible  remedy  for  both of these  problems is to  specify 
the  motion by  a set of constraints  between  features  of  the 
robot  and  features of objects in the  environment.  The  exe- 
cution  system  can  then  choose  the  “best”  motion  that  satisfies 

these  constraints,  or  signal an error if no  motion  is  possible. 
This general  capability is beyond  the  state of the  art  in  tra- 
jectory  planning,  but  a  simple  form has been  implemented. 
The  user  specifies  a  nominal  Cartesian  path  for  the  robot  plus 
some  allowed  deviation  from  the  path;  the  trajectory  planner 
then  plans  a  joint  space  trajectory  that  satisfies  the  constraints 
[951 .  

Another  drawback  of  traditional  motion  specification is the 
awkwardness of specifying  complex  paths  accurately as se- 
quences of positions. More compact  descriptions of the desired 
path  usually  exist. An approach  followed  in NC machining 
is to describe the curve as the  intersection of two  mathematical 
surfaces. A recent  robot  language, MCL 1581, has  been  defined 
as an  extension t o  APT, the  standard  NC  language.  The  goal 
of MCL is to  capitalize on the  geometric  databases  and  compu- 
tational  tools  developed  within  existing  APT  systems  for 
specifying  robot  motions.  This  approach is particularly 
attractive  for  domains,  such as aircraft  manufacture,  in  which 
many of the  parts  are  numerically  machined. 

Another very  general  approach to  trajectory  specification is 
via user-supplied  procedures  parameterized  by  time.  Paul [ 741, 
[ 7 5 ]  refers to  this  as functionally  defined motion. The  pro- 
gramming  system  executes  the  function  to  obtain  position 
goals.  This  method  can be used,  for  example,  to  follow  a 
surface  obtained  from  CAD  data,  turn  a  crank,  and  throw 
objects.  The  limiting  factor in this  approach is the  speed  at 
which the  function  can be  evaluated; in existing robot  systems, 
no method  exists  for  executing  user  procedures  at  servo  rates. 

A  special case of functionally  defined  motion is motion 
specified  as  a function of sensor values. One  example  is  in 
compliant  motion  specifications,  where  some  degrees of 
freedom  are  controlled  to  satisfy  force  conditions.  Another 
example is a motion  defined  relative to a  moving  conveyor 
belt.  Both  of  these cases are  common  enough  that  special- 
purpose  mechanisms have been  provided in  programming 
systems.  There  are  significant  advantages t o  having  these 
mechanisms  implemented  using  a  common basic mechanism. 

In  summary,  the view of motion  specification as simply 
specifying  a  sequence of positions  or  robot  configurations is 
too limiting. Mechanisms for  geometric  specification of 
curves and  functionally  defined  motion  should  also  be  pro- 
vided.  No  existing  systems  provide  these  mechanisms  with 
any  generality. 

D. Flow  of  Control 
In  the  absence of any  form of sensing,  a  fixed  sequence of 

operations is the  only possible type of robot  program.  This 
model is not  powerful  enough  to  encompass  sensing,  however. 
In general, the program  for  a  sensor-based  robot  must  choose 
among  alternative  actions on the basis  of its  internal  model  of 
the  task  and  the  data  from  its  sensors.  The  task  of  Section 11, 
for  example,  may  go  through  a  very  complex  sequence of states, 
because the  parts  are  amving in random  order  and  because 
the  execution  of  the  various  phases of the  operation  is  over- 
lapped.  In  each  state,  the  task  program  must  specify  the 
appropriate  action  for  each  robot.  The  programming  system 
must  provide  capabilities  for  making  these  control  decisions. 

The  major  sources  of  information on which  control  decisions 
can  be  based  are:  sensors,  control signals, and  the  world  model. 
The  simplest  use of this  information is t o  include  a  test  at  fixed 
Places in  the  Program  to  decide  which  action  should  be  taken 

6 A  special case occurs  when  the computed path  goes  through a next,  e&,  “If  (i < j )   t hen  Signal X else Moveto Y.” One 
kinematic It s h p w i b l e  in to satisfy trajectory important  application  where  this  type of control is suitable 
constraints  such as speed of the  end-effector at the  singularity. is error  detection  and  correction. 
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Robot  operations  are  subject  to  large  uncertainties  in  the 
initial  state of the world  and  in the  effect of the  actions. As 
a  result,  the  bulk of robot  programming is devoted to  error 
detection  and  correction.  Much of this  testing  consists of 
comparing  the  actual  result of an  operation  with  the  expected 
results.  One  common  example is testing  the  finger  opening 
after  a  grasp  operation to see if it differs  from  the  expected 
value,  indicating  either  that  the  part is missing or  a  different 
part is there.  This  type of test  can  be  easily  handled  with 
traditional IF-THEN tests  after  completion  of  the  operation. 
This  test is so common  that  robot languages  such  as VAL and 
WAVE [74] have  made  it  part of the  semantics of the grasp 
command. 

Many robot  applications  also  have  other  requirements  that 
do  not fall naturally  within  the  scope  of  the IF-THEN control 
structure.  Robot  programs  often  must  interact  with  people 
or  machines,  such as feeders, belts, NC machines,  and  other 
robots.  These  external  processes  are  executing  in  parallel  and 
asynchronously;  therefore,  it is not possible to  predict  exactly 
when  events of interest  to  the  robot  program  may  occur. 
In the  task of Section 11, for  example,  the arrival  of a  part 
within the field  of  view of one of the cameras  calls for  imme- 
diate  action:  either  one of the  robots  must be interrupted so 
as to  acquire  the  part,  or  the  belt  must be stopped  until  a 
robot can  be interrupted.  The  previous  operations  may  then 
be  resumed.  Other  examples  occur  in  detecting  collisions or  
part  slippage  from  the  fingers;  monitor  processes  can be 
created to  continuously  monitor  sensors,  but  they  must be 
able to  interrupt  the  controlling  process  and  issue  robot 
commands  without  endangering  ongoing  tasks. 

It is  possible to  use the signal  lines  supported  by  most  robot 
systems  to  coordinate  multiple  robots  and  machines.  For 
example,  in  the  sample  task,  the  insertion of the pins into  the 
pump cover  (steps 6 through 8, Section 11) requires  that 
ROBOTl and ROBOT2 be coordinated so as to  minimize the 
duration of the  operation while avoiding  interference  among 
the  robots. If we let ROBOTl  be in  charge, we can  coordinate 
the  operation  using  the  following  signal lines: 

1) GET-PIN?: ROBOT2 asks if it is safe to  get  a  new  pin. 
2) OK-TO-GET: ROBOT 1 says  it is OK. 
3)  INSERT?: ROBOT2 asks if it is safe to  proceed  to  insert 

4) OK-TO-INSERT: ROBOT1 says it is OK. 
5) DONE : ROBOT 1 says  it is al l  over. 

the  pin. 

The  basic  operation of the  control programs  could be  as follows: 

ROBOTl  ROBOT2 
Wait for COVER-ARRIVED 3: 
Signal  OK-TOGET 

Call  PlaceCover-in-Fixture 
i : =  1 

Wait for INSERT-PIN? 
Signal  OK-TO-INSERT 
if (i < np) then do 

[Call  Get-Pin-1 
i : = i +  11 4: 

else do 
[Signal  DONE 
Goto 21 

if (i < np) then do 
Wait for  GET-PIN? 

[Signal  OK-TOGET 
i : =  i +  11 

Call  Insert-Pin-1 
Goto 1 
. . .  

If signal DONE Goto 4 
Signal  GET-PIN? 

Call  Get-Pin-2 
Signal  INSERT-PIN? 
Wait for OK-TO-INSERT 
Call  Insert-Pin-2 
Goto 3 

Wait  for  OK-TO-GET 

. . .  

This illustration of how  a  simple  coordination  task  could  be 
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done  with  only  binary  signals  also  serves  to  illustrate  the 
limitations of the  method. 

1)  The  programs  are  asymmetric;  one  robot is the  master 
of the  operation. If the cover  can  arrive  on  either  belt  and  be 
retrieved  by  either  robot,  then  either  an  additional  signal  line 
is needed to  indicate  which  robot will be the  master  or  both 
robot  systems  must be subordinated  to  a  third  controller. 

2) If one of the  robots  finds a defective  pin,  there is no 
way for  it  to  cause  the  other  robot  to  insert  an  additional  pin 
while it goes to  dispose of the  defective  one.  The  program 
must  allocate  new  signal lines for  this  purpose.  In  general,  a 
large  number of  signals  may be needed. 

3)  Because  one  robot  does  not  know  the  position  of  the 
other  one, it is necessary to  coordinate  them on the basis  of 
very conservative  criteria,  e.g.,  being  engaged in  getting  a  pin 
or  inserting  a  pin. This will result  in  slow  execution  unless 
the  tasks  are  subdivided very finely  and  tests  performed  at 
each  division,  which is cumbersome. 

4) The  position of the  pump cover  and the pin-feeder  must 
be known by each  process  independently. No information 
obtained  during  the  execution of the  task by one  robot  can 
be used  by the  other  robot;  it  must  discover  the  information 
independently. 

The  difficulties  outlined  above  are  the  due to  limited  com- 
munication  between  the  processes.  Signal  lines  are  a  simple, 
but  limited,  method of transferring  information  among  the 
processes. In practice,  sophisticated  tasks  require  efficient 
means  for  coordination  and  for  sharing  the  world  model 
(including  the  state of the  robots)  between  processes. 

The  issue of coordination  between  cooperating  and  com- 
peting  asynchronous  processes is one of the  most  active 
research  areas  in  Computer  Science. Many  language  mech- 
anisms  have  been  proposed  for  process  synchronization, 
among  these  are:  semaphores [ 171,  events,  conditional  critical 
regions [ 391,  monitors  and  queues [ 11 1 ,  and  communicating 
sequential  processes [40].  Robot  systems  should  build  upon 
these  developments,  perhaps by using  a  language  such as 
Concurrent  Pascal [ 11 ] or  Ada [42]  as a base language.  A 
few  existing  robot  languages have adopted  some of these 
mechanisms, e.g., AL and TEACH [81] ,   [821.  Even the 
most  sophisticated  developments  in  computer  languages  do 
not  address all the  robot  coordination  problems,  however. 

When the  interaction  among  robots is subject to  critical 
real-time  constraints,  the  paradigm of nearly independent 
control  with  periodic  synchronization is inadequate. An 
example  occurs  when  multiple  robots  must  cooperate  phys- 
ically, e.g., in  lifting  an  object  too  heavy  for  any  one.  Slight 
deviations  from  a  pre-planned  position  trajectory  would  cause 
one  of  the  robots  to bear all the weight,  leading to  disaster. 
What  is needed,  instead, is cooperative  control of both  robots 
based on  the  force being  exerted  on  both  robots  by  the  load 
[ 45 I ,  [ 601, [ 681.  The  programming  system  should  provide  a 
mechanism  for  specifying  the  behavior of systems  more  com- 
plex than  a  single  robot.  Another  example of the  need  of  this 
kind of coordination is in the  programming  and  control  of 
multifingered  grippers [ 841. 

In summary,  existing  robot  programming  systems  are  based 
on  the view  of a  robot  system as a  single robot weakly  linked 
to  other machines.  In  practice,  many  machines  including 
sensors,  special  grippers,  feeders,  conveyors,  factory  control 
computers,  and  several  robots  may  be  cooperating  during  a 
task.  Furthermore,  the  interactions  between  them  may be 
highly  dynamic, e.g., to  maintain  a  force  between  them,  or 
may  require  extensive  sharing of information. No existing 
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robot  programming  system  adequately  deals  with  all of these 
interactions.  In  fact, no existing  computer  language is adequate 
to deal  with  this  kind  of  parallelism  and  real-time  constraints. 

E. Programming  Support 
Robot  applications  do  not  occur in a  vacuum.  Robot  pro- 

grams  often  must  access  external  manufacturing  data,  ask  users 
for  data  or  corrective  action,  and  produce  statistical  reports. 
These  functions  are  typical  of  most  computer  applications  and 
are  supported  by all computer  programming  systems. Many 
robot  systems  neglect to  support  them,  however.  In  principle, 
the  exercise of these  functions  can  be  separated  from  the 
specification  of the  task itself but,  in  practice,  they  are  inti- 
mately  intertwined. A sophisticated  robot  programming  sys- 
tem  must  first  be  a  sophisticated  programming  system.  Again, 
this requirement  can be readily  achieved  by  embedding the 
robot  programming  system  within an existing  programming 
system [ 751.  Alternatively,  care  must  be  taken  in  the design 
of new  robot  programming  systems  not  to  overlook  the 
“mundane”  programming  functions. 

A similar situation  exists  with  respect t o  program  develop- 
ment.  Robot  program  development is often  ignored  in  the 
design of robot  systems  and,  consequently,  complex  robot 
programs  can  be  very  difficult  to  debug.  The  development 
of robot  programs has several characteristics  which  merit 
special  treatment. 

1)  Robot programs have complex  side-effects  and  their 
execution  time is usually  long,  hence  it is not  always  feasible 
to re-initialize the program  upon  failure.  Robot  programming 
systems  should  allow  programs  to  be  modified  on-line  and 
immediately  restarted. 

2)  Sensory  information  and  real-time  interactions  are  not 
usually  repeatable.  One  useful debugging tool  for  sensor- 
based  programs  provides the ability to  record  the  sensor 
outputs,  together  with  program  traces. 

3 )  Complex  geometry  and  motions  are  difficult t o  visualize; 
simulators  can  play  an  important  role in debugging, for  example, 
see [ 3 8 1 ,   [ 6 5 ] ,   [ 9 1 1 .  

These  are  not  minor  considerations,  they  are  central  to 
increased  usefulness of robot  programming  systems. 

Most existing  robot  systems  are  stand-alone,  meant  to  be 
used directly  by  a  single  user  without  the  mediation  of  com- 
puters.  This  design  made  perfect  sense  when  robots  were  not 
controlled  by  general-purpose  computers;  today  it  makes  little 
sense. A robot  system  should  support  a high-speed command 
interface  to  other  computers.  Therefore, if a  user  wants t o  
develop  an  alternate  interface,  he  need  not  be  limited  by  the 
performance of the  robot  system’s  user  interface. On the  other 
hand,  the  user  can  take  advantage of the  control  system  and 
kinematics  calculations  in  the  existing  system.  This  design 
would  also  facilitate  the  coordination of multiple  robots  and 
make  sophisticated  applications  easier  to  develop. 

Iv. SURVEY OF ROBOT PROGRAMMING SYSTEMS 

In  this  section, we survey  several  existing  and  proposed robot 
Programming  systems.  An  additional  survey of robot  pro- 
gramming  systems  can  be  found in [ 71.  

A.  Guiding 
All robot  programming  systems  support  some  form of 

guiding. The  simplest  form of guiding is to  record a  sequence 
of robot  positions  that  can  then  be  “played  back”;  we  call 

this basic guiding. In  robot-level  systems,  guiding  is  used t o  
define  positions while the sequencing is specified  in  a  program. 

The  differences  among basic guiding  systems  are  a)  in  the 
way  the  positions  are  specified  and  b) the repertoire  of  motions 
between  positions.  The  most  common ways of  specifying 
positions  are:  by  specifying  incremental  motions on a teach- 
pendant, and  by  moving  the  robot  through  the  motions, 
either  directly  or via a  master-slave  linkage. 

The  incremental  motions  specified via the  teach-pendant  can 
be  interpreted  as:  independent  motion of each  joint  between 
positions,  straight  lines in the  joint-coordinate  space,  or 
straight  lines in Cartesian  space  relative to  some  coordinate 
system, e.g., the  robot’s base or  the  robot’s  end-effector. 
When using the  teach-pendant,  only  a  few  positions  are u s u d y  
recorded, on command  from  the  instructor.  The  path  of  the 
robot is then  interpolated  between  these  positions  using  one 
of the  three  types of motion  listed  above. 

When moving the  robot  through  the  motions  directly,  the 
complete  trajectory  can  be  recorded as a series of closely 
spaced  positions on a  fixed  time  base.  The  latter  method is 
used primarily in spray-painting,  where  it  is  important  to 
duplicate  the  input  trajectory  precisely. 

The  primary  advantage of guiding is its  immediacy:  what 
you  see is what  you  get. In many  cases,  however,  it is ex- 
tremely  cumbersome, as when  the  same  position  (or  a  simple 
variation)  must  be  repeated at  different  points  in  a  task  or 
when  fine  positioning is needed.  Furthermore, we have 
indicated  repeatedly  the  importance of sensing  in  robotics 
and  the  limitations of guiding in the  context of sensing. 
Another  important  limitation pf basic guiding  is in expressing 
control  structures,  which  inherently  require  testing  and 
describing  alternate  sequences. 

1 )  Extended  Guiding: The  limitations of basic guiding  with 
respect t o  sensing  and  control  can  be  abated,  though  not  com- 
pletely  abolished, by extensions  short of a  full  programming 
language. For  example,  one of the  most  common uses of 
sensors  in  robot  programs is to  determine  the  location of 
some  object  to  be  manipulated.  After  the  object is located, 
subsequent  motions  are  made  relative to   the object’s  coordinate 
frame.  This  capability  can  be  accomodated  within  the  guiding 
paradigm if taught  motions  can  be  interpreted as relative t o  
some  coordinate  frame  that  may be modified at  execution 
time.  These  coordinate  frames  can  be  determined,  for  example, 
by  having the  robot  move  until a touch  sensor on the  end- 
effector  encounters  an  object.  This is known asguarded  motion 
or  a search. This  capability is part of some  commercial  robot 
systems, e.g., ASEA [ 3 ] ,  Cincinatti  Milacron [ 4 1 ] ,  and IBM 
[321,  1921. This approach  could be extended to   the case 
when the  coordinate  frames  are  obtained  from  a vision system. 

Some  guiding  systems  also  provide  simple  control  structures. 
For  example,  the  instructions  in  the  taught  sequence  are given 
numbers.  Then, on the basis of tests  on  external o r  internal 
binary  signals,  control  can  be  transferred to different  points 
in the  taught  sequence.  The  ASEA  and  Cincinatti Milacron 
guiding  systems,  for  example,  both  support  conditional 
branching.  These  systems also support a  simple  form of 
procedures.  The  procedures  can  be  used  to  carry  out  common 
operations  performed  at  different  times  in  the  taught  sequence, 
such as common  machining  operations  applied  to  palletized 
parts.  The  programmer  can  exploit  these  facilities  to  produce 
more  compact  programs.  These  control  structure  capabilities 
are  limited,  however,  primarily  because  guiding  systems  do 
not  support  explicit  computation. 

To illustrate  the  capabilities of extended  guiding  systems, 



830 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7,  JULY 1983 

L- 
INPUT PALLET 

PICKUP OPERATION 
( D E T A I L )  

TARGET CONTACT 

TARGET GRASP 

Fig. 4. Palletizing  task. 

we present a simple  task  programmed in  the ASEA  robot’s 
guiding  system.’  The  task is illustrated  in  Fig. 4 ;  it  consists 
of picking a series of parts of different  heights  from a pallet, 
moving  them  to a drilling  machine,  and  placing them  on a 
different  pallet.  The  resulting  program  has  the  following 
structure: 

I.No. 
10 
20 
30 
40 
50 
60 
100 
110 
130 
140 
160 
170 
200 
210 
220 
23 0 
240 

Instruction 
OUTPUT ON 17 
PATTERN 
TEST  JUMP 17 
JUMP 170 
OUTPUT OFF 17 

MOD 

MOD 

MOD 

OUTPUT  ON 17 
MOD 

MOD 

. . .  

. .  . 

. . .  
. . .  

. . .  

Remarks 
Flag ON indicates do pickup 
Beginning  of procedure 
Skip  next  instruction if flag is on 

Next  time  do  put  down 
Pickup  operation  (see  below) 
End of common  code for pickup 
Positioning  for fust pickup 
Execute  procedure 
Positioning  for  second  pickup 
Execute  procedure 
Machining  and put  down  operation 
Next  time do  pickup 
End of common  code  for put down 
Position  for  first  put  down 
Execute  procedure 
Position  for  second  put  down 

Note  that  the MOD operation is used with  two  meanings:  1)  to 
indicate  the  end of a common  section of the PATTERN, and 
2)  to  indicate  where  the  common  section  is to be  executed. 
The  sequence  of  instructions  exected  would  be:  10,  20,  30, 
50, 60 ,  * * * ,  100, . * * ,  130, 30,  40,  170;.*,  200;**230, 
30, 50, * . 

The  key to  the  pickup  operation is that we can  use a search 
to locate  the  top  surface of the  part, so we need not  know  the 
heights  exactly.  The  fingers  are  initially  closed  and the  robot 
starts  out in position  P1,  which is above  the  highest  part  and 
vertically  above  P2,  which is at  the  height of the  shortest 

ASEA manual [ 31. 
’This program is based on two program  fragments  included  in the 

part  (see  Fig. 4). Note  that  the  parts  are  not  in  the  work- 
space  during  the  programming  sequence. 

The  pickup  sequence  could  be  programmed as follows: 
1)  Move vertically  down  towards P2 until  contact is felt 

2)  Open  the  fiigers  (steps 5, 6). We have neglected t o  raise 

3)  Move down  the  distance  between P2 and P3 relative to  

4) Close the fingers  (steps  10, 1  1 ). 

(steps  1-4). 

the  arm  before  opening  the  fingers  for  simplicity. 

the  actual  location  where  contact was detected  (steps  7-9). 

Here is the  sequence: 

1. 

2. 
3. 

4. 

5 .  

6. 

7. 
8. 
9. 

10. 

11. 

Programmer  action 
Position  vertically to P2. 

Select  speed to P2. 
Key code  for  search  and 
vertical  operation 

PTPF 

Set  grip  opening  and 
select  waiting  time. 

GRIPPERS 

Position to P3. 

PTPL 
Select  time  for  motion. 

Set  grip  opening  and 
select  waiting  time. 

GRIPPERS 

Remarks 
Manual motion to the  end  position of 

search. 

This  code  indicates that the  motion 
that  follows  is a search in vertical 
direction. 

program. 
Insert  positioning  command to P2 in 

Specify  finger  opening 

Insert  command to actuate  grippers 
(open). 

Grasping  position  (relative to P2). 

Coordinated  joint  motion,  relative to 
the  position  after  the  search. 

Specify  finger  closing 

Insert  command to actuate  grippers 
(close). 

The  putdown  sequence  would  be  programmed  in a similar 
fashion. 

2)  Off-Line  Guiding: Traditional  guiding  requires  that  the 
workspace  for  the  task, all the tooling,  and  any  parts  be avail- 
able  during  program  development. If the  task  involves a single 
large or expensive  part,  such as an  airplane,  ship  or  auto- 
mobile, it may  be  impractical to wait until a completed  part 
is available  before  starting  the  programming;  this  could  delay 
the  complete  manufacturing  process.  Alternatively,  the  task 
environment  may  be  in  space  or  underwater.  In  these  cases, 
a mockup  of  the  task  may  be  built,  but a more  attractive 
alternative is  available  when a CAD model of the  task  exists. 
In  this  case,  the  task  model  together  with a robot  model  can 
be  used to define the  program by off-line  guiding. In  this 
method,  the  system  simulates  the  motions of the  robot  in  re- 
sponse to a program  or to guiding input  from a teach-pendant. 
Off-line  guiding  offers the  additional  advantages  of  safety  and 
versatility.  In  particular,  it is possible to  experiment  with 
different  arrangements of the  robot relative to  the  task so as 
to  find  one  that,  for  example,  minimizes  task  execution  time 
[381. 

B. Robot-Level  Programming 
In  Section I11 we  discussed a number  of  important  functional 

issues in   the design of robot  programming  systems.  The  design 
of  robot-level  languages, by virtue  of  its  heritage  in  the  design 
of  computer languages,  has  inherited  many of the  controversies 
of that  notoriously  controversial  field. A few  of  these  con- 
troversial  issues  are  important in robot  programming: 

1)  Compiler versus  interpreter. Language  systems  that 
compile high-level languages into a lower  level  language  can 
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achieve  great  efficiency of execution as well as  early  detection 
of some classes of programming  errors.  Interpreters, on  the 
other  hand,  provide  enhanced  interactive  environments,  in- 
cluding  debugging,  and  are  more  readily  extensible.  These 
human  factors  issues  have  tended to  dominate;  most  robot 
language  systems  are interpreter  based.  Performance  limita- 
tions of interpreters  have  sometimes  interfered  with  achieving 
some  useful  capabilities,  such as functionally  defined  motions. 

2) New versus old. Is it better  to design a  new  language or 
extend  an old one?  A new one can be tailored to  the need of 
the new  domain. An old  one is likely to  be more  complete, 
to  have  an  established  user  group,  and to  have  supporting 
software  packages. In practice,  few  designers  can  avoid  the 
temptation of starting de novo; therefore,  most  robot  lan- 
guages are  “new”  languages.  There  are,  in  addition,  difficulties 
in  acquiring  sources  for  existing  language  systems.  One 
advantage of interpreters  in  this  regard is that  they  are  smaller 
than  compilers  and,  therefore,  easier  to  build. 

In  the  remainder of the  section, we examine  some  represen- 
tative  robot-level  programming  systems,  in  roughly  chrono- 
logical  order.  The  languages  have  been  chosen t o  span  a  wide 
range of approaches to  robot-level  programming. We use 
examples to  illustrate  the  “style” of the languages;  a  detailed 
review  of  all  these  languages is beyond  the  scope of this  paper. 
We close the  section  with  a brief mention of some of the 
many  other  robot-level  programming  systems  that  have  been 
developed  in the past ten years. 

1 )  MHI 1960-1961: The f i t  robot-level  programming 
language, MHI, was  developed  for one of the earliest computer- 
controlled  robots,  the MH-1 at MIT [ 181. As opposed  to  its 
contemporary  the  Unimate, which was not  controlled  by a 
general-purpose  computer  and  used  no  external  sensors, 
MH-I  was equipped  with  several  binary  touch  sensors  through- 
out  its  hand,  an  array  of  pressure  sensors  between  the  fingers, 
and  photodiodes  on  the  bottom of the  fingers.  The  availability 
of  sensors  fundamentaly  affected  the  mode of programming 
developed for  the MH-1. 

MHI (Mechanical  Hand Interpreter)  ran  on  an  interpreter 
implemented  on  the TX-0 computer.  The  programming  style 
in MHI was framed  primarily  around  guarded  moves, i.e., 
moving  until  a  sensory  condition was detected.  The  language 
primitives  were: 

1 j “move”:  indicates a direction  and  a  speed; 
2 j “until”:  test  a  sensor  for  some  specified  condition; 
3) “ifgoto”:  branch  to  a  program  label if some  condition is 

4) “ifcontinue”:  branch  to  continue  action if some  condition 
detected; 

holds. 

A  sample  program,  taken  from [ 181,  foliows: 

a, move  x for 120 ; Move  along x with  speed 120 
until s l  10 re1  lo1 ; until sense  organ 1 

; indicates  a  decrease  of 10, relative 
; to the value at start of this step 
; (condition 1) 

until s l  206  lo1 abs stp ; or until sense  organ 1 indicates 
; 206  or  less  absolute,  then stop. 
; (condition 2) 

ifgoto f l ,  b : if condition 1 alone is fulfilled 

ifgoto t f2 
; go to sequence  b 
; if at least  condition  2 is  fulfded 
; go to sequence  c 

ifcontinue t, a ; in all other  cases  continue  sequence  a 

831 

MHI did not  support  arithmetic  or  any  other  control  structure 
beyond  sensor  monitoring.  The  language,  still, is  surprisingly 
“modern”  and  powerful.  It was to  be many  years  before  a 
more  general  language was implemented. 

2) WAVE 1970-1 975: The WAVE [741 system,  developed 
at  Stanford, was the earliest system  designed  as  a  general- 
purpose  robot  programming  language. WAVE was a “new” 
language,  whose syntax was modeled  after  the  assembly 
language of the PDP-10. WAVE ran  off-line  as  an  assembler 
on  a PDP-10  and  produced  a  trajectory file  which  was  exe- 
cuted  on-line  by a dedicated  PDP-6.  The  philosophy  in WAVE 
was that  motions  could  be  pre-planned  and  that  only  small 
deviations  from  these  motions  would  happen  during  execution. 
This decision was motivated by the  computation-intensive 
algorithms  employed by WAVE for  trajectory  planning  and 
dynamic  compensation.  Better  algorithms  and  faster  com- 
puters  have  removed  this  rationale  from  the  design  of  robot 
systems  today. 

In  spite of WAVE’S low-level syntax,  the  system provided an 
extensive  repertoire of high-level  functions. WAVE pioneered 
several important  mechanisms  in  robot  programming  systems; 
among  these  were 

1 j the  description of positions by the  Cartesian  coordinates 

2) the  coordination of joint  motions  to achieve continuity 

3 )  The  specification of compliance  in  Cartesian  coordinates. 

The  following  program  in WAVE, from [74], serves t o  pick up 
a  pin  and  insert  it  into  a  hole: 

of the  end-effector ( x ,  y ,  z,  and  three  Euler  angles); 

in  velocities  and  accelerations. 

TRANS  PIN . . . 
TRANS HOLE.. . 
ASSIGN TRIES  2 
MOVE  PIN 

PICKUP: 
CLOSE 1 
SKIPE 2 

JUMP  OK 
OPEN 5 

SOJG  TRIES,  PICKUP 

WAIT  NO  PIN 
JUMP  PICKUP 

CHANGE Z,  -1, NIL, 0,O 

OK: 
MOVE  HOLE 
STOP FV, NIL 

SKIPE  23 
JUMP  NOHOLE 
FREE  2, X, Y 

SPIN  2, X, Y 
STOP FV, NIL 

CHANGE, 2, - 1, NIL, 0, 0 

CHANGE 2, -2, NIL, 0, 0 

NOHOLE: 
WAIT  NO  HOLE 

Location of  pin 
Location of hole 
Number  of  pickup attempts 

; Move to PIN.  MOVE first moves in +Z, 
then to a  point above  PIN,  then -Z. 

; Pickup  pin 
; Skip  next instruction if  Error  2  occurs 
; (Error 2:  fingers  closed beyond arg 
; to CLOSE) 
; Error  did  not  occur, goto OK 
; Error  did  occur,  open  the  fingers 
; Move down  one  inch 
; Decrement  TRIES,  if not negative 
;jump to PICKUP 
; Print “NO  PIN” and  wait for operator 
; Try  again  when  operator  types 

PROCEED 

; Move  above  hole 
;Stop on 50 02. 
; Try to go  down  one  inch 
; Error  23,  failed to stop 
; Error  did not occur (pin  hit surface) 
; Proceed  with  insertion  by  complying 
; with  forces  along  x  and y 
; Also  comply  with  torques  about  x  and  y 
;Stop on 50 oz. 
; Make the insertion 

; Failed 
Note  the use of compliance  and  guarded  moves to  achieve 
robustness  in  the  presence of uncertainty  and  for  error  recovery. 
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WAVE’S syntax was difficult,  but  the  language  supported a 
significant  set  of  robot  functions,  many of which still are  not 
available in  commercial  robot  systems. 

3)  MINI 1972-1  976: MINI [go],  developed  at MIT,  was 
not a “new”  language,  rather  it was an  extension to   an existing 
LISP  system  by  means of a few  functions.  The  functions 
served as an  interface to a real-time  process  running on a 
separate  machine.  LISP  has  little  syntax;  it is a large  collection 
of  procedures  with  common  calling  conventions,  with  no 
distinction  between  user  and  system  code.  The  robot  control 
functions of MINI simply  expanded  the  repertoire  of  functions 
available to the LISP programmer. Users could  expand  the 
basic syntax  and  semantics of the basic robot  interface  at 
will, subject  to  the  limitations of the  control  system.  The 
principal  limitation  of MINI was the  fact  that  the  robot  joints 
were  controlled  independently.  The  robot  used  with MINI 
was Cartesian,  which  minimized  the  drawbacks  of  uncoordi- 
nated  point-to-point  motions. 

The  principal  attraction of “The  Little  Robot  System” [ 441, 
(901  in  which MINI ran was the availability of a highquality 
6-degree-of-freedom  force-sensing wrist [44]  , [ 661  which 
enabled  sensitive  force control  of  the  robot.  Previous  force- 
control  systems  either  set  the  gains  in  the  servos  to  control 
compliance [43] ,   o r  used the  error signals in  the  servos  of 
the electric  joint  motors  to  estimate  the  forces  at  the  hand 
[ 7 3 ] .  In  either  case,  the  resulting  force  sensitivity was on   the  
order of pounds; MIM’s sensitivity was more than an  order 
of magnitude  better  (approximately 1 oz). 

The basic functions  in MINI set  position  or  force  goals  for 
each  of the degrees of freedom  (SETM),  reading  the  position 
and  force  sensors  (GETM),  and  waiting  for  some  condition t o  
occur  (WAIT). We will illustrate  the use of MINI using a set 
of simple  procedures  developed by Inoue  [44].  The  central 
piece  of a peg-in-hole  program  would be rendered  as  follows 
in MINI: 
(DEFUN  MOVE-ABOVE (P OFFSET) 

(X = (X-LOCATION  P)) 
(Y = (Y-LOCATION P)) 
(Z = (PLUS  (Z-LOCATION  P) OFFSET)) 
(WAIT ’ (AND ( ? X )  (?Y) (?Z)))) 

; set x, y, z gods and  wait till they  are  reached 

(DEFUN  INSERT  (HOLE) 
(MOVE-ABOVE  HOLE  0.25) 

(SETQ  ZTARGET  (DIFFERENCE  (GETM  ZPOS)  1.0)) 
; define a target 1 inch  below  current  position 

; move  down until a contact force is  met  or until 
; the  position  target is met. 

(WAIT ’ (OR (?FZ) (SEQ  (GETM  ZPOS)  ZTARGETI)) 
(COND ((SEQ (GETM  ZPOS)  ZTARGET) 

; if  the  position  goal was met, i.e. no  surface  encountered 
; comply  with  lateral  forces 
(FX = 0) (FY = 0) 
; and  push  down  until  enough  resistance is met. 

(WAIT ’ (FZ))) 
(T; if a surface was encountered 
(ERROR  INSERT)))) 

(FZ = LANDING-FORCE) 

(FZ = INSERTION-FORCE) 

MINI did  not have any  of  the  geometric  and  control  opera- 
tions  of WAVE built  in,  but  most of these  could  easily  be 
implemented  as  LISP  procedures.  The  primary  functional 
difference  between  the  two  systems  lay  in  the  more  sophisti- 
cated  trajectory  planning  facilities  of WAVE. The  compen- 
sating  advantage  of MINI was that it did  not  require  any  pre- 
planning; the programs  could  use  arbitrary LISP computations 
to  decide  on  motions in response to  sensory  input. 

4/ AL 1974-Present: AL (241,  [67] is an ambitious 

attempt to develop a high-level language that  provides  all  the 
capabilities  required  for  robot  programming  as well as the 
programmizlg features of modem high-level languages, such  as 
ALGOL  and Pascal. AL was designed to  support  robot-level 
and task-level  specification.  The  robot  level  has  been  completed 
and will be discussed  here; the  task level development will be 
discussed in Section IV-C. 

AL, like WAVE and MINI, runs  on  two  machines.  One  ma- 
chine is responsible  for  compiling  the AL input  into a lower 
level language that is interpreted  by a real-time  control  machine. 
An  interpreter  for  the AL language  has  been  completed,  as 
well [5 ] .  AL was  designed to  provide  four  major  kinds  of 
capabilities: 

1) The  manipulation  capabilities  provided  by  the WAVE 
system:  Cartesian  specification  of  motions,  trajectory  planning, 
and  compliance. 

2) The  capabilities  of a real-time  language: concurrent  exe- 
cution  of  processes,  synchronization,  and  on-conditions. 

3) The  data  and  control  structures of an ALGOL-like 
language,  including  data types  for  geometric  calculations, 
e.g., vectors,  rotations,  and  coordinate  frames. 

4)  Support  for  world  modeling, especially the  AFFIXMENT 
mechanism  for  modeling  attachments  between  frames  including 
temporary  ones  such as formed  by  grasping. 

An AL program for   the peg-in-hole  task is: 

BEGIN “insert peg into hole” 
FRAME peg-bottom, peg-grasp, hole-bottom,  hole-top; 
{The coordinates  frames  represent  actual  positions of object  features, 

peg-bottom + FRAME(nilrot,  VECTOR(20,  30,O)*inches); 
hole-bottom + FRAME(nilrot,  VECTOR(25,  35, O)*inches); 
{Grasping  position  relative to peg-bottom } 
peg-grasp t FRAME(ROT(xhat,  180*degrees)  ,3*zhat*inches); 
tries t 2; 
grasped + FALSE; 
{ The top of the  hole is defined to have a fued relation to the bottom } 
AFFIX  hole-top to hole-bottom  RIGIDLY 

not hand  positions } 

AT TRANS(nilrot,  3*zhat*inches); 

OPEN bhand  TO  peg-diameter + l*inches; 
{Initiate the motion to the peg, note the  destination  frame } 
MOVE  bamn  TO peg-bottom * peg-grasp; 
WHILE  NOT  grasped  AND i < tnes DO 

BEGIN “Attempt grasp” 
CLOSE bhand TO 0 * inches; 
IF bhand < peg_diameter/2 

THEN  BEGIN “No  object in grasp” 
OPEN bhand  TO  peg-diameter + 1 * inches; 
MOVE  barm  TO @ - 1 * inches; { @ indicates  current  location } 
END 

i + i +  1; 
END 

ELSE  grasped +- TRUE; 

IF NOT  grasped  THEN  ABORT (“Failed to grasp  the  peg”); 

{Establish a fixed  relation  between arm  and  peg. } 
AFFIX  peg-bottom  TO barm RIGIDLY; 
{Note  that we  move the  peg-bottom, not barm } 
MOVE peg-bottom  TO  hole-top; 

{Test if a hole is below us } 
MOVE  barm  TO €9- 1 * inches 

ON FORCE(zhat) > 10 * ounces DO ABORT(“No  Hole’’); 

{Exert downward  force,  while  complying to side forces } 
MOVE peg-bottom to hole-bottom DIRECTLY 

WITH  FORCE-FRAME = station IN  WORLD 
WITH FORCE(zhat) = - 10 * ounces 
WITH  FORCE (fiat) = 0 * ounces 
WITH  FORCE (yhat) = 0 * ounces 
SLOWLY; 

END “insert peg in hole” 
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AL is probably  the  most  complete  robot  programming  system 
yet  developed;  it was the first  robot  language to be a  sophisti- 
cated  computer  language as well as a robot  control  language. 
AL has  been  a  significant  influence  on  most  later  robot  lan- 
guages. 

5 )  VAL 1975-Present: VAL [89],  [ 9 8 ]  is the  robot  lan- 
guage  used in the  industrial  robots  of  Unimation  Inc.,  especially 
the PUMA  series. If was  designed to provide  a  subset  of the 
capabilities  of WAVE on a  stand-alone  mini-computer. VAL 
is an  interpreter;  improved  trajectory  calculation  methods 
have enabled  it t o  forego  any  off-line  trajectory  calculation 
phase.  This  has  improved  the  ease of interaction  with  the 
language.  The basic capabilities of the VAL language  are  as 
follows: 

point-to-point,  joint-interpolated,  and  Cartesian  motions 
(including  approach  and  deproach  motions); 
specification  and  manipulation of Cartesian  coordinate 
frames,  including  the  specification of locations  relative 
to  arbitrary  frames; 
integer  variables  and  arithmetic,  conditional  branching, 
and  procedures; 
setting  and  testing  binary signal lines and  the  ability  to 
monitor  these  lines  and  execute  a  procedure  when  an 
event is detected. 

VAL’s support of sensing is limited to  binary signal lines. 
These  lines  can  be  used  for  synchronization  and also for 
limited  sensory  interaction as shown  earlier. VAL‘s support 
of on-line  frame  computation is limited to  composition  of 
constant  coordinate  frames  and  fixed  translation  offsets  on 
existing  frames.  It  does  support  relative  motion;  this,  together 
with  the  ability  to  halt  a  motion in response to  a  signal, pro- 
vides the mechanisms  needed  for  guarded  moves.  The basic 
VAL also  has  been extended  to  interact  with  an  industrial 
vision  system [ 3 0 ]  by  acquiring  the  coordinate  frame  of  a 
part  in  the field of view. 

As a computer  language, VAL is rudimentary;  it  most 
resembles the  computer language Basic. VAL only  supports 
integer  variables, not  floating-point  numbers  or  character 
strings. VAL does  not  support  arithmetic on position  data. 
VAL does  not  support  any  kind of data  aggregate  such as 
arrays  or  lists  and,  although  it  supports  procedures,  they  may 
not  take  any  arguments. 

A sample VAL program  for  the  peg-in-hole  task  is  shown 
below. VAL does  not  support  compliant  motion, so this 
operation  assumes  either  that  the  clearance  between  the peg 
and  hole is greater  than  the  robot’s  accuracy  or  that  a passive 
compliance  device is mounted  on  the  robot’s  endeffector 
[ 1021. This limits  the  comparisons  that  can  be  made to  other, 
more  general,  languages.  In the  example, we assume that a 
separate  processor  is  monitoring  a  force  sensor  and  communi- 
cating  with VAL via signal lines.  In  particular,  signal  line 3 goes 
high if the 2 component  of  force  exceeds  a  preset  threshold. 

SETI 

REMARK 

10 GRASP 
REMARK 
GOT0 

REMARK 

20 OPEN1 
DRAW 

TRIES = 2 

If the hand  closes to less than 100 mm,  go to statement 

100,20 
Otherwise  continue at statement 30. 
30 

Open  the  fingers,  displace  down  along  world Z axis 

5 00 
0, 0, -200 

labelled  20. 

and try again. 

SETI  TRIES = TRIES - 1 
IF TRIES  GE 0 THEN 10 
TYPE NOPIN 
STOP 
REMARK Move 300mm  above  HOLE  following  a  straight  line. 

30 APPROS  HOLE, 300 
REMARK Monitor simal line 3  and call procedure  ENDIT to 

STOP theprogram 
REMARK if the signal is activated  during the next  motion. 
REACT1  3,  ENDIT 
APPROS  HOLE,  200 
REMARK Did not feel  force, so continue to HOLE. 
MOVES  HOLE 

VAL has  been  designed  primarily  for  operations  involving 
predefined  robot  positions,  hence  its  limited  support  of  com- 
putation,  data  structures,  and  sensing. A new  version of the 
system, VAL-2, is under  development  which  incorporates 
more  support  for  computation  and  communication  with 
external  processes. 
6) AML 1977-Present: AML [ 961 is the  robot language 

used in IBM’s robot  products. AML, like AL, is  an  attempt  at 
developing  a  complete  “new”  programming  language for 
robotics  that is  also  a  full-fledged interpreted  computer  lan- 
guage.  The  design  philosophy of AML is somewhat  different 
from  that of AL, however. Where AL focuses on providing 
a  rich  set of built-in high-level primitives  for  robot  operations, 
AML has  focused  on  providing  a  systems  environmertt  where 
different  user  robot  programming  interfaces  may  be  built. 
For  example,  extended  guiding [ 921  and  visioninterfaces [ 501 
can  be  programmed  within  the AML language  itself.  This 
approach is  similar to  that  followed  in MINI. 

AML supports  operations on data  aggregates,  which  can  be 
used to  implement  operations on vectors,  rotations,  and 
coordinate  frames,  although  these  data  types  are  part  of  recent 
releases  of the language. AML also  supports  joint-space  tra- 
jectory  planning  subject to position  and  velocity  constraints, 
absolute  and  relative  motions,  and  sensor  monitoring  that  can 
interrupt  motions.  Recent AML releases support Cartesian 
motion  and  frame  affixment,  but  not  general  compliant 
motion,8  or  multiple  processes. An AML program for peg-in- 
hole  might  be: 

PICKUP:  SUBR  (PART-DATA,  TRIES); 
MOVE(GRIPPER, DIAMETER(PART-DATA)+O.2); 
MOVE(< 1,2, 3>, XYZ-POSITION(PART-DATA)+<O, 0, l>); 
TRY-PICKUP(PART-DATA,  TRIES); 
END; 

TRY-PICKUP:  SUBR(PART-DATA,  TRIES); 
IF TRIES  LT 1 THEN RETURN(’N0 PART’); 

IF GRASP(DIAMETER(PART-DATA)) = ’NO  PART’ 

END; 

DMOVE(3,  -1.0); 

THEN  TRY-PICKUP(PART-DATA,  TRIES - 1); 

GRASP:  SUBR(DIAMETER, F); 
FMONS:  NEW  APPLY($MONITOR,  PINCH-FORCE(F)); 
MOVE(GRIPPER, 0, FMONS); 
RETURN ( IF QPOSITION(GRIPPER)  LE  DIAMETER/Z 

THEN  ’NO  PART’ 
ELSE  ’PART’); 

END; 

INSERT:  SUBR(PART-DATA,  HOLE); 
FMONS:  NEW  APPLY  ($MONITOR, 

TIP-FORCE(LAND1NG-FORCE)); 

in AML. by using its sensor 1 / 0  operations. For highspeed  motions, 
*Compliant motions at low-speed  could be written as user  programs 

the real-time  control  process  would  have to be extended. 
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MOVE(< 1, 2, 3>, HOLE+<O, 0, .25>); 

IF QMONITOR(FM0NS) = 1 

MOVE(3,  HOLE(3) + PART-LENGTH(PART-DATA)); 
END; 

DMOVE(3, -1.0, FMONS); 

THEN  RETURN(’N0 HOLE’); 

PART-IN-HOLE:  SUBR(PART-DATA,  HOLE); 
PICKUP (PARTDATA, 2.); 
INSERT  (PART-DATA,  HOLE); 
END; 

This  example  has  shown  the  implementation of low-level 
routines  such  as GRASP, that  are  available  as  primitives  in 
AL and VAL. In  general,  such  routines  would be incorporated 
into  a  programming  library  available  to  users  and  would  be 
indistinguishable  from  built-in  routines.  The  important  point 
is that  such programs  can  be  written  in  the  language, 

The AML language  design  has  adopted  many  decisions  from 
the designs of the LISP  and APL  programming  languages. 
AML, like  LISP,  does  not  make  distinctions  between  system 
and  user  programs. Also AML provides  a  versatile  uniform 
data  aggregate,  similar to  LISP’s  lists,  whose  storage is managed 
by the  system. AML, like APL and  LISP,  provides  uniform 
facilities for  manipulating  aggregates  and  for  mapping  opera- 
tions  over  the  aggregates. 

The  languages, WAVE, MINI, AL,  VAL, and AML are well 
within  the  mold of traditional  procedural  languages,  both  in 
syntax  and  the  semantics of all except  a  few of their  opera- 
tions.  The  next  three  languages we consider  have  departed 
from  the  main  line of computer  programming  languages  in 
more  significant  ways. 

7)  TEACH 19 75-1 978: The TEACH language [ 81 1 ,  [ 821 
was developed  as  part  of the PACS system  at  Bendix  Corpora- 
tion.  The PACS system  addressed  two  important  issues  that 
have  received  little  attention in other  robot  programming 
systems:  the  issue of  parallel  execution of multiple  tasks  with 
multiple  devices,  including  a  variety of sensors;  and  the  issue 
of defining  robot-independent  programs.  In  addressing  these 
issues TEACH introduced  several  key  innovations;  among  these 
are the following: 

1) Programs  are  composed of partially  ordered  sequences  of 
statements  that  can be executed  sequentially  or  in  parallel. 

2 )  The  system  supports  very  flexible  mapping  between  the 
logical  devices,  e.g.,  robots  and  fixtures,  specified in  the  pro- 
gram and  the  physical  devices  that  carry  them  out. 

3)  All motions  are  specified  relative  to  local  coordinate 
frames, so as to  enable  simple  relocation of the  motion  sequence. 

These  features  are  especially  important  in  the  context  of 
systems  with  multiple  robots  and  sensors,  which  are  likely to  
be common  in  future  applications.  Few  attempts  have  been 
made  to deal  with the  organization  and  coordination  problems 
of complex  tasks  with  multiple  devices,  not all  of them  robots. 
Ruoff [ 821 reports  that even the facilities of TEACH proved 
inadequate  in  coping  with very complex  applications  and 
argues  for  the use of  model-based  programming  tools. 

8) PAL 1978-Present: PAL [93] is very  different  in  con- 
ception  from  the  languages we have  considered  thus  far. PAL 
programs  consist  primarily of a sequence of homogeneous 
coordinate  equations  involving  the  locations of objects  and  of 
the  robot’s  endeffector.  Some of the  transforms  in  these 
equations, e.g., those  specifying  the  relative  location  of  a  fea- 
ture  to an  object’s  frame,  are  defined  explicitely  in  the  pro- 
gram.  Other  coordinate  frames  are  defined  implicitly  by  the 
equations;  leading  the  robot  through  an  execution of the  task 
establishes  relations  among  these  frames.  Solving  for  the 
implicitly  defined  frames  completes  the  program. 

PAL programs  manipulate basic coordinate  frames  that 
define  the  position of key robot  features: z represents  the 
base of  the  robot relative to  the  world, T6 represents  the  end 
of  the  sixth  (last)  robot  link  relative  to Z ,  and E represents 
the  position  of  the  end-effector  tool  relative  to ~ 6 .  Motions 
of the  tool  with  respect  to  the  robot base are  accomplished 
by  specifying  the  value of z + T6 + E,  where  +indicates 
composition of transforms. So, the  example, z + ~6 + E = 
CAM + BKT + GRASP specifies  that  the  end-effector  should 
be placed  at  the  grasp  position  on  the  bracket  whose  position 
is known  relative to  a  camera, as discussed  in  Section 111-B. 

The MOV <exp>  command in PAL indicates  that  the 
“generalized”  robot  tool  frame, ARM + TOL, is to  be moved 
to  <exp>.  For simple  motions of the  end-effector  relative 
to  the  robot base, ARM is Z + T6 and TOL is E. We can  rewrite 
ARM to  indicate  that  the  motion  happens  relative to another 
object, e.g., the  example  above  can be rewritten  to be 

-BKT-CAM+Z+T6+E=GRASP.  

In  this  case ARM can  be  set to  the  transform expression 

- BKT - CAM + Z + T6. 

MOV  GRASP will then  indicate  that  the  end-effector is to  be 
placed on  the grasp  frame of the  bracket, as determined  by 
the  camera.  Similarly,  placing  the  pin  in  the  bracket’s  hole 
can  be  viewed as redefining  the  tool  frame of the  robot  to be 
at  the  hole.  This  can be expressed as 

- FIXTURE + Z + T6 + E - GRASP + HOLE = PIN. 

By Setting ARM to - FIXTURE + Z + T6 and TOL t o  E - GRASP + 
HOLE, MOV  PIN will have the desired  effect. Of course,  the 
purpose of setting ARM and  TOL is to  simplify the  expression 
of related  motions  in  the  same  coordinate  frame. 

PAL is still under  development;  the  system  described  in [ 931 
deals  only  with  position  data  obtained  from the user  rather  than 
the  robot. Much  of the  development of PAL has  been  devoted 
to  the  natural use  of  guiding to  define  the  coordinate  frames. 
Extensions to  this  systems  to  deal  with  sensory  information 
are  suggested in [ 751.  The  basic  idea is that sensory informa- 
tion  serves to  define  the  actual  value of some  coordinate  frame 
in the  coordinate  equations. 

9 )  MCL 1979-Present: MCL [58] is an  extension  of  the 
APT  language  for  Numerically  Controlled  machining to  
encompass  robot  control,  including  the  following  capabilities: 

1 )  data  types, e.g., strings,  booleans, reals, and  frames; 
2 )  control  structures  for  conditional  execution,  iterative 

3)  real-time input  and  output; 
4 )  vision  interface,  including  the  ability  to  define  a  shape to  

execution,  and  multiprocessing; 

be located  in  the visual field. 

Extending APT  provides  some  ease of interfacing  with  existing 
machining  facilities  including  interfaces to  existing  geometric 
databases. By retaining APT compatibility, MCL can  also 
hope  to draw on the  existing  body of skilled  APT  part  pro- 
grammers. On the  other  hand,  the APT syntax, which was 
designed  nearly 30  years  ago, is not likely to  gain  wide  accep- 
tance  outside of the NC-machining  community. 

10)  Additional Systems: Many other  robot language sys- 
tems  are  reported in the  literature,  among  these  are  the 
following: 

1) ML [ 1041 is a  low-level robot language  developed  at IBM, 
with  operations  comparable  to  those of a  computer  assembly 
language.  The motion  commands  specified  joint  motions  for 
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an  (almost)  Cartesian  robot.  The  language  provided  support 
for  guarded  moves by means of SENSOR commands  that 
enabled  sensor  monitors;  when  a  monitor was activated  by  a 
sensor  value  outside of the  specified  range, all  active  motions 
were terminated. ML supported  two  parallel  robot  tasks  and 
provided  for  simple  synchronization  between  the  tasks. 

2) EMILY [ 191 was an  off-line  assembler  for  the ML 
language.  It  raised  the  syntax of ML to  a level  comparable 
to  Fortran. 

3 )  MAPLE [ 161 was an interpreted  AL-like  language,  also 
developed  at IBM. The  actual  manipulation  operations  were 
carried  out  by  using  the  capabilities of the ML system  described 
earlier. MAPLE never  recieved  significant  use. 

4) SIGLA [85 ] ,  developed  at  Olivetti  for  the SIGMA 
robots,  supports  a basic  set of joint  motion  instructions, 
testing of binary signals, and  conditional  tests.  It is compar- 
able to   the ML language  in  syntactic level. SIGLA supports 
pseudoparallel  execution of multiple  tasks  and  some  simple 
force  control. 

5) MAL [ 281, developed  at Milan Polytechnic,  Italy, is a 
Basic-like language  for  controlling  multiple  Cartesian  robots. 
The  language supports  multiple  tasks  and  task  synchronization 
by means of semaphores. 

6) LAMA-S [ 201, developed  at  IRIA,  France, is a  VAL-like 
language  with support  for  on-line  computations,  for  arrays, 
and  for  pseudoparallel  execution of tasks. 

7 )  LM [48], developed a t  IMAG,  Grenoble,  France, is a 
language that provides  most of the  manipulation facilities 
of AL in  a  minicomputer  implementation. LM also supports 
affixment,  but  not  multiprocessing. LM is being  used  as the 
programming  language  for  a  recently  announced  industrial 
robot  produced  by  Scemi,  Inc. 

8) RAIL [ 251,  developed  at  AUTOMATIX  Inc,  contains  a 
large  subset of PASCAL,  including  computations  on  a  variety 
of data  types,  as well as high-level  program control mechanisms. 
RAIL supports  interfaces to  binary  vision  and  robot  welding 
systems.  The  language  has a flexible way of defining  and 
accessing input  or  output lines, either as single or  multiple 
bit  numbers. RAIL statements  are  translated  into  an  inter- 
mediate  representation  which  can be executed  efficiently 
while  enabling  interactive  debugging. RAIL is syntactically 
more  sophisticated  than VAL; it is comparable  to AML and 
LM. RAIL does  not  support  multiprocessing  or  affixment. 

9 )  HELP, developed  at  General  Electric  for  their robot 
products,  including  the  Allegro  robot [ 261.  The  language is 
Pascal-like  and  supports  concurrent  processes to  control  the 
two  arms  in  the  Allegro  system.  It is comparable  in  level  to 
RAIL and AML. 

This is not a complete  list,  new  languages  are  being  developed 
every  year,  but  it is representative of the  state of the  art. 

C. Task-Level  Programming 

Robot-level  languages  describe  tasks  by  carefully  specifying 
the  robot  actions  needed  to  carry  them  out.  The  goal  of task- 
level programming  systems [ 721,  on  the  other  hand, is to  enable 
task  specification to  be in  terms of operations  on  the objects 
in  the  task.  The  peg-in-hole  task,  for  example,  would  be 
described  as: INSERT  PEG IN HOLE, instead of the  sequence 
of robot  motions  needed  to  accomplish  the  insertion. 

A task  planner transforms  the  task-level  specifications  into 
robot-level  specifications.  To  do  this  transformation,  the 
task  planner  must  have  a  description of the  objects  being 
manipulated,  the  task  environment,  the  robot  carrying  out 
the  task,  the  initial  state of the  environment,  and  the  desired 

(AUBUC)-  D 

Fig. 5.  Models  obtained  by  set  operations on primitive  volumes. 

final  state.  The  output of the  task  planner is a  robot-level 
program to  achieve the desired  final state when  executed  in 
the  specified  initial  state. If the  synthesized  program is to  
reliably  achieve  its  goal, the  planner  must  take  advantage of 
any  capabilities  for  compliant  motion,  guarded  motion,  and 
error  checking.  Hence  the  task  planner  must  synthesize  a 
sensor-based  robot-level  program. 

Task-level  programming is still a  subject  of  research;  many 
unsolved  problems  remain.  The  approach,  however, is a 
natural  outgrowth of ongoing  research  and  development  in 
CAD/CAM  and  in  artificial  intelligence. 

Task  planning  can be divided into  three  phases:  modeling, 
task  specification,  and  robot-program  synthesis.  These  phases 
are  not  computationally  independent,  but  they  provide  a 
convenient  conceptual  division of the  problem. 

I )  World Modezing: The  world  model  for a task  must 
contain  the  following  information: 

1)  geometric  descriptions of all objects  and  robots  in  the 

2)  physical  description of all objects, e.g., mass  and  inertia; 
3)  kinematic  descriptions of all linkages; 
4) descriptions of robot  characteristics, e.g., joint  limits, 

task  environment; 

acceleration  bounds,  and  sensor  capabilities. 

Models  of  task  states  also  must  include  the  positions of  all 
objects  and  linkages  in  the  world  model.  Moreover,  the  model 
must  specify  the  uncertainty  associated  with  each of the 
positions.  The  role  that  each of these  items  plays  in  the  syn- 
thesis  of robot  programs will  be discussed in  the  remainder of 
the  section.  But  first, we will explore  the  nature of  each  of 
the  descriptions  and  how  they  may be obtained. 

The  geometric  description of objects is the  principal  compo- 
nent of the world  model.  The  major  sources of geometric 
models  are CAD systems,  although  computer vision may 
eventually  become  a  major  source of models [ 81.  There  are 
three  major  types of commercial CAD systems,  differing  on 
their  representations of solid  objects: 

1) line-objects  are  represented by the lines and  curves 

2) surface-objects  are  represented as a set of surfaces; 
3 )  solid-objects  are  represented  as  combinations of  primitive 

needed to  draw  them; 

solids. 

Line  systems  and  some  surface  systems  do  not  represent all 
the  geometric  information  needed  for  task  planning.  A list 
of edge  descriptions,  for  example, is not  sufficient  to  describe 
a  unique  polyhedron, e.g., [ 591. In  general,  a  solid  modeling 
system is required  to  obtain  a  complete  description.  In  solid 
modelers,  models  are  constructed  by  performing  set  operations 
on  a  few  types of primitive  volumes.  The  objects  depicted  in 
Fig. 5,  for  example,  can be described as the  union  of  two 
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solid  cylinders A and B, a  solid  cube C, and  a  hollow  cylinder 
D. The  descriptions of the primitive  and  compound  objects 
vary greatly  among  existing  systems.  For  surveys  of  geometric 
modeling  systems  see  [41, [ 101,  [go]. 

The legal motions of an  object  are  constrained  by  the 
presence of other  objects  in  the  environment  and  the  form of 
the  constraints  depend  in  detail  on  the  shapes of the  objects. 
This is the  fundamental  reason  why  a  task  planner  needs 
geometric  descriptions of objects.  There  are  additional  con- 
straints  on  motion  imposed  by  the  kinematic  structure of the 
robot  itself. If the  robot is turning  a  crank  or  opening  a  valve, 
then  the  kinematics of the  crank  and  the valve impose  additional 
restrictions  on  the  robot’s  motion.  The  kinematic  models 
provide  the  task  planner  with  the  information  required t o  plan 
robot  motions  that  are  consistent  with  external  constraints. 
Examples  of  kinematic  models  and  their  use in  planning  robot 
motions  can  be  found  in  [60]. 

The  bulk of the  information  in  a  world  model  remains 
unchanged  throughout  the  execution of a  task.  The  kinematic 
descriptions of  linkages  are  an  exception,  however. As a  result 
of the  robot’s  operation,  new  linkages  may be created  and  old 
linkages  destroyed.  For  example,  inserting  a  pin  into  a  hole 
creates  a  new  linkage  with  one  rotational  and  one  translational 
degree  of  freedom.  Similarly, the  effect of inserting  the  pin 
might  be to  restrict  the  motion of one  plate  relative to  another, 
thus removing one degree of freedom  from  a  previously  existing 
linkage.  The  task  planner  must be appraised of these  changes, 
either  by  having  the  user  specify  linkage  changes  with  each 
new  task  state,  or  by  having  the  planner  deduce  the  new  link- 
ages from  the  task  state  description. 

In  planning  robot  operations,  many of the physical  charac- 
teristics of objects  play  important  roles.  The  mass  and  inertia 
of parts,  for  example, will determine  how  fast  they  can  be 
moved or  how  much  force  can  be  applied  to  them  before  they 
fall  over. Also, the  coefficient of friction  between  a peg and 
a  hole  affects  the  jamming  conditions  during  insertion  (see, 
e.g., [ 71 I ,  [ 1021).  Hence,  the  world  model  must  include  a 
description  of  these  characteristics. 

The  feasible  operations of a  robot  are  not  sufficiently  char- 
acterized  by  its  geometrical,  kinematical,  and  physical  descrip- 
tions. We have  repeatedly  stressed  the  importance of a  robot’s 
sensing  capabilities:  touch,  force,  and  vision.  For  task  planning 
purposes,  vision  allows  obtaining  the  position of an  object  to 
some  specified  accuracy,  at  execution  time.  Force  sensing 
allows  performing  guarded  and  compliant  motions.  Touch 
information  could  serve  in  both  capacities,  but  its  use  remains 
largely  unexplored  [36]. In  addition to  sensing,  there  are 
many  individual  characteristics of robots  that  must  be  described 
in  the  world  model:  velocity  and  acceleration  bounds,  position- 
ing  accuracy of each of the  joints,  and  workspace  bounds,  for 
example. 

Much  of the  complexity  in  a world  model  arises from  model- 
ing the  robot,  which is done  once.  Geometric,  kinematic,  and 
physical  models of other  objects  must  be  provided  for  each 
new task, however.  The  underlying  assumption  in  task-level 
languages is that  this  information  would  have  been  developed 
as part of the design of these  objects. If this  assumption  does 
not  hold,  the  modeling  effort  required  for  a  task-level  specifi- 
cation,  using  current  modeling  methods,  might  dwarf  the  effort 
needed to  generate  a  robot-level  program to  carry out  the  task. 

2) Task Specification: Tasks  can be specified to  the  task 
planner  as  a  sequence of models of the world  state  at  several 
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Fig. 6. Task description as a sequence of model  states. 

steps  during  execution  of  the  task. An assembly of several 
parts, for  example,  might be specified by a  sequence of models 
as each  part is added to the assembly.  Fig.  6  illustrates one 
possible  sequence of models  for  a  simple  task. All of the 
models in the  task  specification  share  the  descriptions of 
the  robot’s  environment  and of the  objects  being  manipulated; 
the  steps  in  the  sequence  differ  only  in  the  positions  of  the 
objects.  Hence,  a  task  specification is, at  first  approximation, 
a  model  of  the  robot’s  world  together  with a sequence of 
changes in  the  positions of the  model  components. 

A  model  state is given by the  positions of all the  objects  in 
the  environment.  Hence,  tasks  may be defined,  in  principle, 
by sequences of states of the world  model.  The  sequence  of 
model  states  needed  to  fully  specify  a  task  depends  on  the 
capabilities of the  task  planner.  The  ultimate  task  planner 
might  need  only  a  description of the initial and  final  states of 
the  task.  This  has  been  the  goal of much of the  research  on 
automatic  problem solving  within artificial intelligence  (see, 
e.g., [70] ) .  These  problem  solving  systems  typically do  not 
specify  the  detailed  robot  motions  necessary  to  achieve  an 
operation.’  These  systems  typically  produce  a  plan  where 
the  primitive  commands  are of the  form: PICKUPfA) and 
MOVETOIp) without  specifying  the  robot  path  or  any  sensory 
operations.  In  contrast  to  these  systems,  task  planners  need 
significant  information  about  intermediate  states,  but  they  can 
be  expected to  produce  a  much  more  detailed  robot  program. 

The  positions  needed  to  specify  a  model  state  are  essentially 
similar to  those  needed  to  specify  positions  to  robot-level 
systems.  The  option of using the  robot to specify  positions 
is not  open,  however.  The  other  techniques  described  in 
Section 111-B are  still  applicable.  The use of symbolic  spatial 
relationships is particularly  attractive  for  high-level  task 
specifications. 

We have  indicated  that  model  states  are  simply  sets  of 
positions  and  task  specifications  are  sequences of models. 
Therefore, given a  method  such as symbolic  spatial  relation- 
ships  for  specifying  positions, we should be able  to  specify 
tasks.  This  approach  has  several  important  limitations,  how- 
ever. We noted earlier that  a  set of positions  may  overspecify 
a  state.  A  typical  example [ 2 3 ]  of this  difficulty arises with 
symmetric  objects,  for  example  a  round peg in  a  round  hole. 
The  specific  orientation of the peg around  its  axis  given  in  a 
model is irrelevant to  the  task. This problem  can  be  solved 
by  treating  the  symbolic  spatial  relationships  themselves  as 
specifying  the  state,  since  these  relationships  can  express 
families of positions.  Another,  more  fundamental,  limitation 
is that  geometric  and  kinematic  models of an  operation’s 

mechanisms to carry out the plan in the real world. 
’The  most  prominent  exception is STRIPS [69] ,  which  included 
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final  state  are  not  always  a  complete  specification of the 
desired  operation.  One  example of this is the  need  to  specify 
how  hard to  tighten  a  bolt  during  an  assembly. In general, 
a  complete  description of a  task  may  need t o  include  param- 
eters of the  operations  used  to  reach  one  task  state  from 
another. 

The  alternative to  task  specification by a  sequence of model 
states is specification  by  a  sequence of operations.  Thus  instead 
of building  a  model of an  object  in  its  desired  position,  we  can 
describe  the  operation by which  it  can  be  achieved.  The 
description  should still be object-oriented,  not  robot-oriented; 
for  example,  the  target  torque  for  tightening  a  bolt  should  be 
specified  relative to  the bolt  and  not  the  robot  joints.  Opera- 
tions will also include a goal statement involving  spatial 
relationships  between  objects.  The  spatial  relationships given 
in  the  goal  not  only  specify  positions,  they  also  indicate  the 
physical  relationships  between  objects  that  should  be  achieved 
by  the  operation.  Specifying  that  two  surfaces  are Against each 
other,  for  example,  should  produce  a  compliant  motion  that 
moves  until  the  contact is actually  detected,  not  a  motion  to 
the  position  where  contact is supposed to  occur.  For  these 
reasons,  existing  proposals  for  task-level  programming  lan- 
guages have adopted  an  operation-centered  approach  to  task 
specification [ 5 1 ] ,   [ 5 2 ] ,  [55]. 

The  task  specified as a  sequence of model  states  in  Fig.  6 
can be specified by the following  symbolic  operations,  assuming 
that  the  model  includes  names  for  objects  and  object  features: 

PLACE  BEARING1 SO (SHAFT  FITS  BEARING1.HOLE) AND 
(BEARING1.BOTTOM  AGAINST  SHAFT'.LIP) 

PLACE  SPACER SO (SHAFT  FITS  SPACER.HOLE) AND 
(SPACER.BOTTOM  AGAINST  BEARING1.TOP) 

PLACE  BEARING SO (SHAFT  FITS  BEARING2.HOLE) AND 
(BEARING2.BOTTOM  AGAINST  SPACER.TOP) 

PLACE  WASHER SO (SHAFT  FITS WASHER.HOLE) AND 
(WASHER.BOTTOM  AGAINST  BEARING2.TOP) 

SCREW-IN NUT ON SHAFT  TO  (TORQUE = to) 

The  first  step  in  the  task  planning  process is transforming 
the  symbolic  spatial  relationships  among  object  features  in 
the SO clauses  above to  equations on the  position  parameters 
of objects  in  the  model.  These  equations  must  then  be  simpli- 
fied  as  far as possible to  determine  the legal  ranges  of  positions 
of all objects [ 11,   [78] ,   [94] .  The  symbolic  form of the 
relationships is used  during  program  synthesis also. 

We have  mentioned  that  the  actual  positions of objects  at 
task  execution  time will differ  from  those  in  the  model;  among 
the  principal  sources of error  are  part  variation,  robot  position 
errors,  and  modeling  errors.  Robot  programs  must  tolerate 
some  degree of uncertainty if they  are to  be  useful,  but  pro- 
grams that  guarantee  success  under  worst  case  error  assump- 
tions  are  difficult  to  write  and  slow  to  execute.  Hence,  the 
task  planner  must use expectations  on  the  uncertainty  to 
choose  motion  and  sensing  strategies  that  are  efficient  and 
robust  [44]. If the  uncertainty is too large to  guarantee 
success, then  additional  sensory  capabilities  or  fixtures  may 
be  used to  limit  the  uncertainty [ 1.11, [ 941.  For  this  reason, 
estimated  uncertainties  are  a  key  part of task  specification. 

It is not desirable to  specify  uncertainties  numerically  for 
each  position of each  state.  For rigid objects,  a  more  attractive 
alternative is to  specify  the  initial  uncertainty of each  object 
and  use the  task  planner  to  update  the  uncertainty as opera- 
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Fig. 7. Two equivalent  obstacle  avoidance  problems. 

tions  are  performed.  For  linkages,  information on  uncertainty 
at  each of the  joints can  be  used to  estimate  the  position  un- 
certainty of each of the  links  and of  grasped  objects  1121, 
[941. 

3) Robo t  Program  Synthesis: The  synthesis of a  robot 
program  from  a  task  specification is the  crucial  phase of  task 
planning.  The  major  steps  involved  in  this  phase  are  grasp 
planning,  motion  planning,  and  plan  checking.  The  output 
of the  synthesis  phase is a  program  composed of grasp  com- 
mands,  several  kinds of motion  specifications,  sensor  com- 
mands,  and  error  tests.  This  program is in  a  robot-level  lan- 
guage  for  a  particular  robot  and is suitable  for  repeated 
execution  without  replanning. 

Grasping is a  key  operation  in  robot  programs  since  it  affects 
all subsequent  motions.  The  grasp  planner  must  choose  where 
to  grasp  objects so that  no  collisions will result  when  grasping 
or  moving  them  [491,  [521,  [531,  [631,  [1051.  Inaddition, 
the grasp  planner  must  choose  grasp  positions so that  the 
grasped  objects  are stable in  the  gripper  [81,  [341,  1731. In 
particular,  the  grasp  must  be  able to  withstand  the  forces 
generated  during  motion  and  contact  with  other  objects. 
Furthermore,  the grasp  operation  should be planned so that 
it  reduces,  or  at least does  not  increase,  any  uncertainty  in 
the  position of the  object  to be  grasped [ 6  1 1 .  

Once the  object is grasped,  the  task  planner  must  synthesize 
motions  that will achieve the desired  goal of the  operation 
reliably. We have  seen that  robot  programs  involve  three 
basic  kinds  of  motions: free,  guarded, and compliant. Motions 
during  an  assembly  operation,  for  example,  may  have up  to  
four  submotions:  a  guarded  departure  from  the  current 
position,  a  free  motion  towards  the  destination  position  of 
the  task  step,  a  guarded  approach  to  contact  at  the  destination, 
and  a  compliant  motion  to achieve the goal  position. 

During  free motion,  the  principal  goal is to  reach  the  desti- 
nation  without  collision;  therefore,  planning  free  motions is 
a  problem  in  obstacle  avoidance. Many  obstacle-avoidance 
algorithms  exist  but  none of them  are  both  general  and  efficient. 
The  type  of  algorithm  that  has  received  the  most  attention  are 
those  that  build  an  explicit  description of the  constraints  on 
motion  and  search  for  connected  regions  satisfying  those 
cmstraints;  see, e.g., [131,  I151,  [461,  [531,  1561,  [861, 
[87] ,   [97] .   A simple  example of this  kind  of  technique is 
illustrated  in  Fig. 7. A moving  polygon A = UiAi, with dis- 
tinguished  point U A ,  must  translate  among  obstacle  polygons 
Bi. This problem is equivalent to  the  problem  in  which UA 
translates  among  transformed  objects C~,J .  Each Ci,i represents 
the  forbidden  positions of UA arising  because  of  potential 
collisions  between Ai and Bi. Any  curve that  does  not overlap 
any  of  the Cki is a  safe  path  for A among  the Bi. Extensions 
of this  approach  can be used to  plan the  paths of Cartesian 
robots  1531,  [56l. 

Compliant  motions  are  designed to  maintain  contact  among 
objects  even  in  the  presence of uncertainty  in  the  location of 
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Fig. 8. Ambiguous  results of a  guarded motion under  uncertainty. 

the  objects;  see  [62]  for  a  review.  The  basic  idea  is  that  the 
robot can  only  control  its  position  along  the  tangent  to  a 
surface”  without  violating  the  constraints  imposed  by  the 
surface.  In  the  direction  normal  to  the  surface,  the  robot  can 
only  control  forces if it is to  guarantee  contact  with  the  sur- 
face.  The  planning of compliant  motions,  therefore,  requires 
models  that  enable  one to deduce  the  directions  which  require 
force  control  and  those  that  require  position  control.  This 
planning is most  complicated  when  the  robot  interacts  with 
other mechanisms [ 601. 

Compliant  motions  assume  that  the  robot  is  already  in  con- 
tact  with  an  object;  guarded  motions  are  used to achieve the 
initial  contact  with  an  object [ 1041.  A  guarded  motion  in 
the presence  of  uncertainty,  however,  does  not  allow  the 
program to  determine  completely  the  relative  position  of  the 
objects,  several  outcomes  may be possible as a  result of the 
motion  (see  Fig. 8). A  strategy,  composed of compliant 
motions,  guarded  motions,  and  sensing  must  be  synthesized 
to  reliably  achieve the  specified  goal.  In  particular,  for  the 
example  in Fig. 8, the  strategy  must  guarantee  that  the  desired 
final state is achieved no  matter which of the possible  states 
actually is reached [ 141 ,   [47 ] ,   [52 ] ,   [56 ] ,   [94 ] .  

Most of the  difficulty  in  doing  motion  synthesis  stems  from 
the  need t o  operate  under  uncertainty  in  the  positions  of  the 
objects  and of the  robot.  These  individual  uncertainties  can  be 
modeled  and  their  combined  effect  on  positions  computed. 
The  requirements  for  successful  completion of task  steps  can 
be  used t o  choose  the  strategy  for  execution, e.g., an  insertion 
with  large  clearance  may  be  achieved by a  positioning  motion, 
while one  with  little  clearance  might  require  a  guarded  motion 
to  find  the  surface  followed  by  a  compliant  motion [ 141, 
[ 741.  In  general,  the  uncertainty  in  the  position of objects 
may  be too large to  guarantee  that  some  motion  plan  will 
succeed.  In  these  cases,  noncontact  sensing  such  as  vision  may 
be used  at  run-time  to  reduce  the  uncertainty.  The  task 
planner  must  decide  when  such  information  is  likely  to  be 
useful, given that  the  sensory  information  also  will  be  subject 
to  error. This phase of task  planning has been  dubbed plan 
checking; it is treated  in  detail  in [ 141. 

Task  planning, as described  above,  assumes that  the  actual 
state of the world will differ  from  the  world  model,  but  only 
within  known  bounds.  This will not always  be the case 
however;  objects  may  be  outside  the  bounds of estimated 
uncertainty,  objects  may be  of the wrong type,  or  objects 

may  be  absent  altogether.  In  these  cases  and  many  others, 
the  synthesized  programs will not have the  expected  result; 
the  synthesized  program  should  detect  the  failure  and  either 
correct it or  discontinue  the  operation.  Error  detection  will 
avoid  possible  damage to  the  robot  and  other  parts of the 
environment.  Hence,  an  important  part of robot  program 
synthesis  should be the  inclusion of sensory  tests  for  error 
detection.  Error  detection  and  correction  in  robot  programs 
is a very difficult  problem,  but  one  for  which  very  little 
research is available [ 141, [ 291, [ 521. 

4)  Task-Level  Systems: A number of task-level  language 
systems  have  been  proposed,  but  no  complete  system  has  been 
implemented. We saw  above  that  many  fundamental  problems 
remain  unsolved  in  this  area;  languages  have  served  primarily 
as a  focus of research,  rather  than as usable  systems. 

The  Stanford Hand-Eye system [ 221  was the  first of the  task- 
level  system  proposals.  A  subset of this  proposal was imple- 
mented,  namely Move-Instance [ 731,  a  program  that  chose 
stable  grasping  positions  on  polyhedra  and  planned  a  motion to  
approach  and  move  the  object.  The  planning  did  not  involve 
obstacle  avoidance  (except  for  the  table  surface)  or  the  plan- 
ning  of  sensory  operations. 

The initial definition of AL [24]  called for  the  ability  to 
specify  models  in AL and  to allow  specification of operations 
in  terms of these  models. This has been the  subject of some 
research [ 51, [ 941,  but  the  results  have  not  been  incorporated 
into  the  existing AL system.  Some  additional  work  within  the 
context of Stanford’s  Acronym  system [12]  has  dealt  with 
planning  grasp  positions  [751,  but AL has  been  viewed as the 
target  language  rather  than  the  user  language. 

Taylor [ 941  discusses  an  approach  to  the  synthesis of sensor- 
based AL programs  from  task-level  specifications.  Taylor’s 
method relies on  representing  prototypical  motion  strategies 
for  particular  tasks as parameterized  robot  programs,  known 
as procedure  skeletons. A skeleton  has all the  motions,  error 
tests,  and  computations  needed  to  carry  out  a  task,  but  many 
of the  parameters  needed  to  specify  motions  and  tests  remain 
to  be  specified.  The  applicability of a  particular  skeleton t o  a 
task  depends  on  the presence of certain  features  in  the  model 
and  the values of parameters  such  as  clearances  and  uncer- 
tainties.  Choices  among  alternative  strategies  for  a  single 
operation  are  made by first  computing  the  values  of a set  of 
parameters  specific to  the  task,  such as the  magnitude  of  un- 
certainty  region  for  the peg in peg-in-hole  insertion,  and  then 
using  these  parameters to  choose  the  “best,” e.g., fastest, 
strategy.  Having  chosen  a  strategy,  the  planner  computes  the 
additional  parameters  needed  to  specify  the  strategy  motions, 
such  as  grasp  positions  and  approach  positions.  A  program  is 
produced by inserting  these  parameters  into  the  procedure 
skeleton  that  implements  the  chosen  strategy. 

The  approach  to  strategy  synthesis  based  on  procedure 
skeletons  assumes  that  task  geometry  for  common  subtasks 
is predictable  and  can be divided into  a manageable  number 
of classes  each  requiring  a  different  skeleton.  This  assumption 
is needed  because the  sequence of motions  in  the  skeleton wiU 
only  be  consistent  with  a  particular class  of geometries.  The 
assumption  does  not  seem  to  be  true  in  general. As an  example, 
consider  the  tasks  shown  in  Fig. 9. A program  for  task A 
could  perhaps be used to  accomplish  tasks B and C, but  it 
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be  slow  when  compared to mechanical  means  of  reducing 
uncertainty. 

Both of these  problems  are  receiving  significant  attention 
today. When they  are effectively  overcome, the  need  for  good 
robot  programming  tools will be  acute. 

(a) 0 )  (C) The  main  goal of this paper  has  been to assess the  state  of  the 
Fig. 9 .  Similar peg-in-hole tasks which require different  strategies. art  in  robot  programming  compared  with  the  requirements  of 

sophisticated  robot  tasks.  Our  conclusion  is  that  all  of  the 

trasts to an  approach  which derives the  strategy  directly  from 
consideration  of  the  task  description [ 561.  In  advanced  sys- 
tems,  both  types  of  approaches  are  likely  to  play  a  role. 

The LAMA system was designed at MIT [521 ,  [551 as a 
task-level  language, but  only  partially  implemented. LAMA 
formulated  the  relationship of task  specification,  obstacle 
avoidance,  grasping,  skeleton-based  strategy  synthesis,  and 
error  detection  within  one  system. More recent  work  at 
MIT  has  explored issues in  task  planning  in  more  detail  outside 
of the  context of any  particular  system [ 13  1, [ 141,  [531, 
[571, [601, [611. 

AUTOPASS, a t  IBM [ 5 1  ] , defined  the  syntax  and  semantics 
of  a  task-level  language  and  an approach  to  its  implementation. 
A subset  of the  most general operation,  the PLACE statement, 
was implemented.  The  major  part of the  implementation  effort 
focused on a  method  for  planning  collision-free  paths  for 
Cartesian  robots  among  polyhedral  obstacles [ 561, [ 1001 . 

RAPT [77]  is an  implemented  system  for  transforming 
symbolic  specifications of geometric  goals,  together  with  a 
program  which  specifies  the  directions of the  motions  but  not 
their  length,  into  a  sequence of end-effector  positions. RAPT’S 
emphasis  has  been  primarily on  task  specification;  it  does 
not deal  with  obstacle  avoidance,  automatic  grasping,  or 
sensory  operations. 

Some  robot-level  language  systems have proposed  extensions 
to  allow  some task-level specifications. LM-GEO [471 is an  
implemented  extension  to LM [48]  which  incorporates  sym- 
bolic  specifications of destinations.  The  specification of 
ROBEX [ 9 9 ]  includes  the  ability  to  automatically  plan 
collision-free motions  and  to  generate  programs  that  use 
sensory  information  available  during  execution. A full-blown 
ROBEX, including  these  capabilities,  has  not  been  imple- 
mented. 

The deficiencies of existing  methods  for  geometric  reasoning 
and  sensory  planning have prevented  implementation  of  a 
complete  task-level  robot  programming  system.  There  has, 
however,  been  significant  progress  towards  solving the basic 
problems  in  task  planning;  see [ 541  for  a  review. 

V. DISCUSSION AND CONCLUSIONS 
Existing  robot  programming  systems  have  focused  primarily 

on the  specification of sequences of robot  configurations. 
This  is only a  small  aspect of robot  programming,  however. 
The  central  problem of robot  programming is that of speci- 
fying  robot  operations so that  they  can  operate  reliably  in 
the  presence of uncertainty  and  error.  This  has  long  been 
recognized in research  labs,  but  until  very  recently has found 
little  acceptance  in  industrial  situations.  Some  key  reasons 
for  this  difference  in  viewpoint  are: 

1)  the lack of reliable  and  affordable  sensors,  especially 
those  already  integrated  into  the  control  and  programming 
systems  of  a  robot; 

2) existing  techniques  for  sensory  processing  have  tended t o  

existing  robot  systems  fall  short of meeting the  requirements 
we can  identify  today. 

The  crucial  problem  in  the  development of robot  program- 
ming  languages is our  lack of understanding of the basic 
issues  in robot  programming.  The  question  of  what basic 
set of operations  a  robot  system  should  support  remains 
unanswered.  Initially, the  only  operation available was joint 
motion. More recently,  Cartesian  motion,  sensing,  and, 
especially,  compliance have been  recognized as important 
capabilities  for  robot  systems.  In  future  systems,  a  whole 
range of additional  operations  and  capabilities  are to  be 
expected: 

1)  Increasing  integration o f  sensing  and  motion: More 
efficient  and  complete  implementations of compliant  motions 
are  a  key  priority. 

2 )  Complete  object  models as a  source o f   da ta   fo r  sensor 
interfaces  and  trajectory  planning: Existing  partial  models 
of objects  are  inadequate  for  most  sensing  tasks;  they  are 
also  limited  as  a  source  of  path  constraints.  Surface  and  volume 
models,  together  with  appropriate  computational  tools,  should 
also open  the  way  for  more  natural  and  concise  robot  programs. 

3 )  Versatile  trajectow  specifications: Current  systems  over- 
specify  trajectories  and  ignore  dynamic  constraints on  motion. 
Furthermore,  they severely  restrict the  vocabulary of path 
shapes  available to  users. A mechanism  such  as  functionally 
defined  motion  can  make  it  easy  to  increase  the  repertoire  of 
trajectories  available to the user. 

4 )  Coordination  of  multiple  parallel tasks: Current  robot 
systems have almost  completely  ignored  this  problem,  but 
increasing  use  of  robots  with  more  thansix  degrees  of  freedom, 
grippers  with  twelve  or  more  degrees of freedom,  multiple 
special-purpose  robots  with  two  or  three  degrees  of  freedom, 
and  multiple  sensors will make  the  need  for  coordination 
mechanisms  severe. 

5) The IIO, control,  and  synchronization  capabilities o f  
general-purpose  computer  programming Ianguages: A key 
problem  in  the  development of robot languages  has  been the 
reluctance,  on  the  part of users  and  researchers  alike, to  
accept  that  a  robot  programming  language  must  be  a  sophisti- 
cated  computer  language.  The  evidence  seems to   point   to   the 
conclusion  that  a  robot  language  should  be  a superset of  an 
established  computer  programming  language,  not  a  subset. 

The  developments  should  be  matched  with  continuing  efforts 
at  raising the level of robot  programming  towards  the  task 
level. By automating  many of the  routine  programming  func- 
tions,  we  can  simplify  the  programming  process  and  thereby 
expand  the  range  of  applications  available to  robot systems. 

One  problem  that  has plagued robot  programming  research 
has  been the significant  “barriers to  entry”  to  experimen-tal 
research in robot  programming. Because robot  control sys- 
tems  on available robots  are  designed  to  be  stand  alone,  every 
research  group  has to reimplement  a  robot  control  system 
from  the  ground  up. This is a  difficult  and  expensive  operation. 
It is t o  be  hoped  that  commercial  robots of the  future will be 
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designed  with a view  towards  interfacing to other computers, 
rather than as  stand-alone  systems. This should  greatly  stimu- 
late development  of the sophisticated  robot  programming 
systems that we will surely  need in the future. 
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