
Informat ion Retrieval C.A. Montgomery
and Language Processing Editor

Attribute Based File
Organization in a Paged
Memory Environment
James B. Rothnie Jr. and Tomas Lozano
Massachusetts Institute of Technology

The high cost of page accessing implies a need for
for more careful data organization in a paged memory
than is typical of most inverted file and similar
approaches to multi-key retrieval. This article analyses
that cost and proposes a method called multiple key
hashing which attempts to minimize it. Since this
approach is not always preferable to inversion, a
combined method is described. The exact specifications
of this combination for a file with given data and traffic
characteristics is formulated as a mathematical
program. The proposed heuristic solution to this
program can often improve on a simple inversion
technique by a factor of 2 or 3.

Key Words and Phrases: file organization, paging,
retrieval algorithm, inverted file, multiple key hashing

CR Categories: 3.70, 3.73, 3.74, 3.79

1. Introduction

A large class of information retrieval problems in
attribute based files involves the accession of all records
in a file which have the values of a specific set of at-
tributes in common. Traditionally, such problems have
been handled by inverted file structures, multilist file
structures or some mixture of the two. The various pos-
sibilities have been described by Lefkovitz [1], Hsiao

Copyright @ 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Cambridge Project
under Contract DAHC15 69 C 034 of the Advanced Research
Projects Agency. The M1T Civil Engineering Systems Laboratory
also provided ~ support for this work. Authors' current addresses
are: T. Lozano: Artificial Intelligence Laboratory, MIT, Cam-
bridge, MA 02139; J. B. Rothnie Jr.: 7058 Darnell Dr., Fayette-
ville, NC 28304.

and Harary [2], and others. The fundamental property
of these approaches is that it is possible to generate the
set of addresses of all records having a particular value
for a given attribute without accessing any records
which do not have this property.

For the purpose of this article, the distinctions be-
tween traditional methods are unimportant and the
inverted file structure will be assumed as a model for the
class of techniques. Informally, the inverted file struc-
ture consists of two parts: the main file and the direc-
tories. The main file contains all of the records in the
file. The set of directories contains one member for
each inverted attribute in the file. The directory for at-
tribute i contains all of the unique values which that
attribute takes on in the file. Associated with each of
these values is a list of addresses of the records in which
attribute i has the given value.

A typical formulation of the inverted file approach
makes no at tempt to organize records in the main file
according to expected usage. The implicit assumption
is that references to main file addresses are homogeneous
in cost, and hence, given the address of a record, the
cost of retrieving the record is independent of the
address value. The assumption is accurate for a truly
random access device such as a core memory. However,
few practical applications involve main files which can
reside entirely in core. In fact, the more typical situa-
tion is one in which only a small fraction of the main
file can be core resident at a time. The rest of the file
must be located on a secondary storage device char-
acterized by a much longer access time than core. Thus
the assumption of cost homogeneity should usually be
replaced by a cost function in which a sequence of local
accesses is far cheaper than a sequence of scattered
references.

This paper will assume a paged memory environ-
ment. In such a memory, the set of addresses is par-
titioned into fixed size subsets called pages. I f we let C1
be the cost of an initial access of a word on a given
page and C2 be the cost of an access of a word on the
same page, which occurs while the page is still in core,
then C1 >> Ca • Physically, this is because data is trans-
mitted f rom secondary storage to core in pages. On the
initial access, the cost of retrieving the page f rom
secondary storage must be borne, while on subsequent
accesses to the same page this cost will not be incurred.

Typically, Ct is approximately three orders of
magnitude larger than Ca. In MULTICS [3], a time
sharing system available at M.I.T., for example, the
cpu time charge to users for each new page access is
about 3 msec, while core references cost only 1-2
~sec. For this reason the number of page accesses
which occur during the performance of a retrieval
operation is a reasonable surrogate of the total cost.
Throughout the remainder of this paper it will be
assumed that the performance measure which retrieval
algorithms are attempting to minimize is the total
number of page accesses required to complete an opera-

63 Communications February 1974
of Volume 17
the ACM Number 2

Fig. 1. Bounds on expected page accesses.

70

6o

5o

~0

3o

20

10

,

/ , LTPPER B UNI)
np-6

L0WEI B 0 ~

Z/So
np~2

BOUND
t1~=20

I] PPER BOU
np,,~

, ~ I..OI~R IOIIND

l o 20 30 go 50 60 70

Kij . For each element of Ae , say aF, , a record contains
exactly one keyword in which the first element is aF~ •

Each record, r, is associated with a unique integer
called its address. In the formal system of Hsiao and
Harary, addresses were simply identifiers for records
and the set of addresses had no other structure. In this
paper, however, the set of addresses is parti t ioned by
the set of pages.

In this paper it will be assumed that users designate
the records of interest by specifying a keyword which
must be an element of any selected record. This is a
special case of Hsiao and Hara ry ' s formulation in
which records were designated by descriptions, that is,
combinations of keywords~ (The technique described
in this paper can be readily generalized to this type of
request, but the analysis of the technique becomes much
more difficult.) The operator R maps a keyword Kii
into the set of records which contain that keyword,
and the operator I maps Kij into the set of addresses of
records in R(K~i). Finally, the operator P maps a set of
addresses into the set of pages on which they occur.
That is, P(I(K~i)) is the set of pages on which records
containing Kij occur.

tion. The assumption is useful because it leads to
reasonably tractable expressions for the performance of
the techniques of interest.

This paper is concerned with structuring the main
file in such a way that accesses will be minimized with
respect to a probabilistic statement of anticipated
retrieval requests. The discussion begins with a for-
malized description of the file structure. This is followed
by an analytic consideration of the need for structuring
the main file. Next, a structuring methodology is pre-
sented and a retrieval algorithm is described which
combines the methodology with the inverted approach.
Finally, the problem of specifying the various pa-
rameters in this technique is formulated as a mathe-
matical program which minimizes page accessing for a
limited class of retrieval requests. A heuristic solution of
this program produces results which can often improve
on a simple inversion technique by a factor of 2 or 3.

2. File Structure

The file structure used in this article will be a modi-
fication of the model suggested by Hsiao and Harary
[2]. In this formulation afile is defined as a named set of
records. The file F is associated with a set of attributes
AF. Each record in F is a set of ordered pairs of the
form (aFi,v~) where aF~ is an element of AF and v i is a
value. An ordered pair of this type is called a keyword.
A keyword of the form (aF~,vj) will be designated

64

3. The Need for Structuring

The next step in this discussion is to explain the
need for structuring by computing the expected number
of page accesses which will occur for files of various
sizes subjected to various numbers of record retrievals.

Figure 1 shows the results of several such computa-
tions. File size, np, is the number of pages on which
records in the file are located, nrr is the number of record
retrievals f rom the mainfile. Assuming that these ac-
cesses are randomly distributed over the address space,
enp is the expected number of page accesses which
will occur in retrieving nrr records f rom a file ofnp pages.
The two curves shown for each file size represent upper
and lower bounds on enp The upper bound was
computed by assuming that no two record retrievals
will be drawn from the same page (until all pages have
been accessed). The lower bound is based on the as-
sumption that the probabili ty of a retrieval f rom a
given page is not reduced by the fact that there have
been previous retrievals f rom the page. Note that these
curves are bounds on expected page accesses and not
on actual page accesses. The upper bound will be ap-
proached as the number of records per page approaches
1, while the lower bound will be approached as the
number of records per page approaches infinity.

Consider, for example, a file containing 64 pages,
each with 100 records. Suppose that a user's retrieval
request, Ki j , has been processed through the directory
of attribute AFi and results in the need to access 20
records in the main file. I f records are randomly dis-
tributed over the entire address space, then a lower

Communications February 1974
of Volume 17
the ACM Number 2

bound on expected page accesses is 17.3 and an upper
bound is 20.

This is the performance which can be expected if
records are randomly distributed over the entire address
space. That is, there is an equal probabili ty that a given
record containing Ki3 will occur on any page of the
address space.

Now suppose that the file has been organized so that
there are only four pages with a nonzero probabili ty of
containing a record satisfying Ki i . In that case, it is
clear that the number of page accesses required to
process the request is upper bounded at 4. In such
circumstances, we say that the "effective" size of the
file is 4 relative to the particular user's request.

The effective size of a file is defined relative to a
keyword Ko' . The term refers to the total number of
pages for which the probability of finding a record
which satisfies Kij is greater than zero. S(Kij) is defined
as the set of such pages and the cardinality, #(S(Ki~)),
is the effective size. In this article, the qualifying records
are assumed to be randomly distributed over S(Kij).

A new interpretation of Figure 1 will indicate the
importance of effective size. Let np represent not the
full size of a file but the effective size relative to a de-
scription, that is, #(S(K~)) . The reader should observe
the strong impact of reduced effective size on retrieval
cost. Again, note the difference between the curves for
np = 64 and np = 4. The smaller effective size im-
proves performance (i.e. reduces page accesses) by a
factor of 4. We will now consider a methodology for
organizing the main file in such a way that its effective
size will be reduced relative to keywords expected to
occur in user requests.

4. Reducing Effective Size--Multiple Key Hashing

The desired shrinkage of effective size can be ac-
complished by a variation on the look-up technique,
termed hashing or scatter storage. This method will be
called multiple key hashing or mkh. (A related scheme
was proposed in a different context by Gustafson [4].)

In multiple key hashing some chosen set of at-
tributes called the mkh set is selected as the basis for the
main file organization. I f ae i is an element of that set,
it will be associated with a hashing function, h~, which
maps the values which ae can take on into integers
called subtile indices.

Every record in the file F can be mapped into an
object called its characteristic tuple. A characteristic
tuple is a tuple (ordered set) of the form (hi(v1),
h2(v2) , . . . , hm(vm)) where the attributes a~ i through
ae,,, are elements of the mkh set and vl through v,~ are
the values which those attributes take on in the record
of interest. A set of records every member of which
maps into the same characteristic tuple is called a
cluster. The cluster is the organizational unit of multiple
key hashing; members of the same cluster are stored on

65

the same page of the address space. I By selecting ap-
propriate hi functions, one can limit the total number of
clusters on which records containing a particular
keyword will be found. Since clusters are stored on a
single page, this technique also limits the effective size
of the file relative to that keyword.

Clearly, then, the selection of hashing functions is a
key problem. For the purposes of this paper, a hashing
function h~ has two important characteristics. First is
the distribution of records over the subtile indices which
it defines. Since pages are of a fixed size, hashing func-
tions should be chosen in such a way that this distribu-
tion is approximately uniform. (For a discussion of
what constitutes a reasonable approximation of uni-
formity see [5].) Since the uniformity objective is also
important in single key hashing, the problem has been
given a great deal of attention (for example, see [6]) and
will not be further considered here.

The second significant characteristic of a hashing
function, h l , is the number of subtile indices in its
range, that is, the number of subtile indices into which
it maps the values of av~ . This parameter will be called
nfilei. From the definition of a characteristic tuple it is
clear that the number of characteristic tuples is
IITL1 nfilei where m is the number of attributes in the
mkh set. Since there is a one-to-one correspondence
between clusters and characteristic tuples, the number of
clusters, nc, is defined by the relation:

nc = f l ntilei. (1)

As we will see, the values of ntilei have a fundamental
impact on the effective size of a file relative to a key-
word. An important problem in mkh is the selection of
good ntile~ values. As the next paragraphs will indicate,
these values are limited by a tight constraint.

The mkh technique partitions the set of records in a
file into logical groups called clusters, such that all the
elements of a given cluster have certain characteristics
in common. An early premise of this paper is that
physical memory is partit ioned into groups of addresses
called pages, and that a reasonable objective of a search
algorithm is to minimize the number of pages accessed
in retrieving the records containing some keyword. To
attain this objective two conditions must be satisfied:
1. Records must be allocated to pages in such a way
that a small number of pages will contain records sat-
isfying the keyword.
2. There must exist some mechanism for determining
which pages contain these records without accessing
other pages.

I f all of the members of a cluster are stored on the
same page, then both these conditions can be fulfilled.

i The exact number of elements in each cluster is a function of
the distribution of values in the file. Hence this parameter cannot
be precisely controlled by the file designer, and it is not possible to
guarantee that all elements of a cluster will appear on the same
page. The goal in designing hashing functions is to approximate
this desired situation.

Communications February 1974
of Volume 17
the ACM Number 2

For the objective function of this article the organi-
zation of records within a page is irrelevant. To sim-
plify the analysis we have assumed that the cost of
accessing one record in a page is the same as accessing
all records. Hence, there is no benefit to be gained by
allocating more than one cluster to a page. If we assign
exactly one cluster to a page, then:

n p = nc (2)

and from eq. (1):

n p = f i nfilei. (3)
i =1

This relation would be exactly correct if the nfile~'s
could take on noninteger values. However, since these
variables must be integers the relation should be ex-
pressed as:

np ~ f i nfilei. (4)
i =1

A discussion in Section 6 will describe an algorithm for
assigning nfile values which meet this approximate
constraint. For the remainder of the paper, the relation
will be expressed as an equality.

The value of mkh in reducing effective size can be
seen by considering, a keyword Kii (or(arovj)). The
effective size of the file relative to that description is
(np/nfilei). This is the number of clusters in which the
subtile index for attribute ar~ is h~(vj). A large t#lel
value can therefore substantially reduce the page
accessing which will occur relative to K~s •

Fig. 2. File

%1 %2 %3

1 1 1
9 1 2

I 5 t
9 1 3

1 2 1

2 3
5 2 3
9 2 3

t 3 2
5 3 t
9 3 1

9 3 2

14 1 1
11~ 1 2

12 1 4
20 I 3

12 2 2

12 2 3
I~ 2
14 2

12 3 1
14 3 1
20 3 2

1~ 3 3
20 3 4

organized by multiple key hashing.
Charac~erlstic Page

Tuple Number

(i,1,1) I

(1,I,2) 2

(t ,2,1) 3

(i ,2,2) 4

(1 , 3 , t) 5

(1,3,2) 6

(2 , i , t) ?

(2 ,1 ,2) 8

(2,2,1) 9

(2 ,2 ,2) 10

(2 ,3 ,1) 11

(2 ,3 ,2) 12

h~(x) = l i f l < x < 10 nfile~ = 3

= 2 i f l l < x < 2 0 h3(x) = l i f l < x < 2

nfilei = 2 = 2 i f 3 < x < 4
h2(x) = x nfilea = 2

5. A Retrieval Algori thm Based on Multiple Key
Hashing

In addition to reducing effective file size relative to
a keyword, rnkh can be used to completely eliminate
the need for an inverted file in certain situations. This
is because the main tile organization gives the system a
limited capability to identify those parts of the address
space which may contain records with a certain desired
content. Given a keyword, K~j, it is possible to identify
those np/nfilei pages which may contain a qualified
record. This can be accomplished by: (1) generating
the set of characteristic tuples which have hi(vj) as the
ith element (let CT be a function which maps a key-
word into such a set); and (2) mapping those tuples
into the corresponding pages (let CP be a function
which performs that mapping). (The reader should
note CP(CT(KIs)) = S(K~j)). By using these operators
it is possible to identify pages which may contain quali-
fied entries without making recourse to inverted file
directories.

Consider for example the file depicted in Figure 2.
This file is structured by multiple key hashing. It con-
sists of three attributes, ae~, a t2 , and ae 3 , associated
with the hashing functions hi , h.,, and ha, respectively.

66

By using these hashing functions, 12 unique character-
istic tuples can be generated, and hence the file contains
12 pages. The characteristic tuple associated with each
page is shown in the diagram. Suppose, now, that we
wish to retrieve all those records in which at2 = 2. The
first step is to compute the smallest set of characteristic
tuples which will define all clusters containing such
records. The CT function for this particular case is
defined as follows:

CT((ar2,2)) = {(x, y, z) st x C {1, 2} &
y = t,2(2) & z C {1,211. (5)

The set of characteristic tuples which this function
defines is {(1,2,1), (1,2,2), (2,2,1), (2,2,2)}. The next
step is to compute the set of page numbers associated
with these tuples. For the example, this is accomplished
by the following CP function:

CP(CT(K,i)) = {p st (x, y, z) C CT(K,i) &
p = I + (x-- I) * nfile2 * nfile~
+ (y-- 1) * nfile~ + (z-- 1) }. (6)

For the keyword chosen, this set of pages is {3,4,9,10}.

Communications February 1974
of Volume 17
the ACM Number 2

The interested reader can readily generalize the CT and
CP functions to arbitrary keyword retrievals.

The advantages which this approach offers over
inversion fall into two categories. First, mkh will con-
sume a negligible amount of storage beyond that needed
for the main file. Inversion, on the other hand, requires
significant extra space. Second, the computation of the
set of clusters to be searched can be accomplished with
few page accesses since only the data associated with
the hashing functions need be retrieved. The inverted
file approach requires storage references to obtain the
I(K~j) sets which are required in the computation.

On the other hand, there are some situations in
which a standard inverted file retrieval algorithm is
preferred to the mkh search scheme. This occurs for
descriptions involving small l~le values. In such cases,
the quotient np/nfile~ will be large and hence many
page accesses will be required if mkh is employed. The
reader should note that nfile values are sharply con-
strained by the relation / ~ x nfilei = np, and hence,
in nearly every file there will be some attributes whose
nfile values are small.

Since there are some situations in which the mkh
retrieval scheme should be used and others in which
inversion is preferred, a combined approach is sug-
gested. This hybrid algorithm will partition a file's
attributes into two subsets, one to be handled by mkh
and the other by inversion. We are assuming that the
intersection of these subsets is null. (Equivalently, it
can be said that all attributes are in the mkh subset,
but all those which are also in the inverted file subset
have an nfile value equal to 1.) This assumption will be
useful in deriving a near optimal combination of the
two methods in the next section.

6. An Optimal Combination of Inversion and Multiple
Key Hashing

Up to this point we have described a mechanism
for organizing records in the main file according to
content and for using this organization, in conjunction
with inversion, as the basis for a retrieval algorithm.
The use of this technique, however, involves a number
of detailed decisions which must be made for each file.
The decisions fall into two basic categories:

- -Which attributes should belong to the mkh set and
which to the inverted set?
- - W ha t should the riffle values be for the attributes in

the mkh set?
The discussion has not yet considered how these

decisions are made.
In the r~ast, decisions of this nature were made by

the file designer. He used his general knowledge of the
trade-ofib revolved in a file structure and some feeling
for the future use of the file to determine qualitatively
what the specific file characteristics should be. While
this method might be adequate for an experienced file

67

designer, it presents obvious difficulties to the novice.
Furthermore, that approach is difficult to embody in
coding for automatic file design.

In this article, a more rigorous framework for
making the basic file organization decisions will be
presented. Specifically, these decisions will be formu-
lated as in the following mathematical optimization
problem.

n a

Min ~ a~p,(np/nfile, q- 1)
i ~ l

n e t

-4- ~., b,p~(e,p.,r/,~, "4-2), (7)
i = 1

such that IIi '~l nfilel = np; ai q- bl = 1; nfilei , a~ , b~
are integers; and nfile~ , a~ , bi >_ O, where:
nr = the number of records in the file.
np = the number of pages in the file.
na = the number of attributes in the file.
nv~ = the number of unique values which av~ as-

sumes in the file.
pi = the probability that a random single keyword

description will be K~j.
nfilei = the number of elements in the range of hi

(i.e. h~ maps all values which ae~ takes into
nfile~ different values).

e,v = the expected number of pages which will be
accessed in performing nrr record retrievals
from a file of np pages.

a~ = a binary variable which is 1, if ap~ is in the
mkh set, and 0 otherwise.

bi = a binary variable which is 1, if av~ is in the
inverted set, and 0 otherwise.

The decision variables in the formulation are a~, b i ,
and nfilei. The objective function consists of two
summations, each corresponding to the contribution to
page accesses produced by the attributes in one of the
two subsets. Within the first summation, }--~,~1 aipl
(np/nfilel -t- 1), the expression (np/nfilei -4- 1)represents
the number of page accesses which will occur in proc-
essing the single keyword description Kij , if art is
in the mkh set and has a certain value for nfilei. The
1 in that expression is mkh overhead. The role of al in
the summation is to exclude any attributes not in the
mkh set. p~ weights the contributions of attributes
according to the probability of their appearance in a
retrieval request. The set of pi 's constitutes a statistical
description of expected user requests. These values could
be initialized by a user estimate and then updated by
system monitoring of actual traffic.

In the second summation, ~ 2 1 blpi(e ,v .~/ ,~ q- 2),
the expression (e,~.,~/,,~ -t- 2) represents the page
accesses which will occur for requests involving items
in the inverted set. nr/nvi is the average number of
records which will have one particular value vi in
keyword K; j . Again, b~ excludes attributes which are
not in the inverted set, and pi is a weighting factor.

The first constraint, I ~ i ~ nfilei = np, represents
the restriction on the number of clusters, a~ q- bl = 1

Communications February 1974
of Volume 17
the ACM Number 2

simply indicates that an attribute cannot reside in both
sets.

The form of this optimization problem makes it
difficult to solve using any of the standard algorithms.
A branch and bound solution was attempted, but this
proved quite costly in many cases. A heuristic algorithm
yielded nearly as good results for a much lower price.
The latter methodology will be described here.

The heuristic can be summarized as follows:

Step 1. Choose a "reasonable" assignment of a~ and b~
values.

Step 2. Given these values, compute appropriate nfile
values.

Step 3. Compute the value of the objective function.
Step 4. Has the heuristic stopping condition been met?
Step 5. If so, quit.
Step 6. If not, go to 1 and get a new assignment for the

a~'s and bi's.

We will begin a more detailed account of the heuristic
with Step 2, computing nfile values given the values of
a~ and b~. This problem is another optimization prob-
lem which can be formulated as follows:

n a

Min ~ a~p~ np/nfile~ (8)
i = 1

such that
n a

I ~ nfile, = np.
i = l

If we assume that the nfile parameters can take on con-
tinuous values, this problem can be solved by a Lagran-
gian method.

L is defined by the following expression:
n a n a

L = ~_~ a~p, np/nfile, -- X(~'-[nfile, -- np). (9)
4 = 1 i=1

The first order conditions for optimality are defined by
the following system of equations:

n a

OL/Onfile, = aip,np2/nfile~ -- X 1-[nfile~ = O,
j = l

for all i,
n a

OL/Ok = I I n f i l e , - n p = 0. (10)

The solution of the system leads to the following op-
timality conditions:

p,/nf i le , = pj/nfi/ej (11)

for all i and j, such that a~ , a3 = 1 (that is, for all
attributes in the mkh set).

An algorithm which produces an integer approxima-
tion of optimality is the following:
1. Set nfile~ = 1, for all i.
2. Choose j such that a~p~/nfilej >_ a~p~/nfile~, for
all i.
3. nfilej = nfile~ -b 1.
4. If 1-I~1 nfile~ > rip, then quit; else go to 2.

68

(This algorithm assumes that, for all i, nfilei < nv i .
If this condition does not hold for some attributes a r j ,
then nfilei should be set to nv~-.)

This algorithm will produce reasonable nfile values
given a partition of the attributes into mkh and in-
verted sets. The remaining task is to describe a mech-
anism for determining the a; and b~ values which define
the attribute partition. The heuristic method used to
determine these values is based on guessing a set of
a~, b~ values and then examining the resulting value of
the objective function. If this value reflects an improve-
ment over previous assignments, then an additional
guess will be made in an effort to further improve the
solution. As soon as expected performance begins to
deteriorate, however, searching is discontinued and the
best solution tried up to that point will be chosen.

The process of guessing a good potential solution is
based on the principle: those attributes with high p~
values are most likely to perform well in the mkh
set. 2 Those attributes with high nv ~ values are most likely
to do well in the inverted set. 3

In generating the sequence of guesses, this rule will
be used to guide the choice of trial solutions.

Specifically, the heuristic solution is as follows:
1. Begin with all attributes in the inverted set, except
for those for which enp,nr/,~ = rip. For this latter group,
inversion will never yield the paging reduction to justify
its overhead. Compute the expected number of page
accesses for this solution and set the upper bound to
this value.
2. Next order the attributes in the inverted set in
descending order according to the value of the expres-
sion p~(enp.nr/~ + 2). Call the first attribute at t l ,
the next att2, etc. Let i = 1.
3. Place att~ in the mkh subset.
4. Compute the expected paging for this solution.
5. If this value is less than upper bound, set upper
bound to the value; set i = i + 1 ; go to 3. If this value
is greater than upper bound, return at& to the inverted
subset and quit.

This algorithm can be simply described as: (a)
first ordering attributes according to their p~(e,p,~/,,~
-k- 2) values; and (b) then including them, one after
another, in the mkh subset as long as the solution is
being improved.

The expression pi(e,p,,r/ , , i -[- 2) represents the con-
tribution to paging of an attribute included in the in-
verted set and, therefore, constitutes an upper bound on
the improvement which can occur if this item is moved
to the other set. The heuristic uses this value as an in-
dicator of potential improvement and tries those at-
tributes with the greatest possibilities first. If a higher
potential attribute fails to produce an improvement, no

Recall that an optimal assignment of nfile values has the
ratio p~/nfile~ equal lbr all attributes in the mkh set. Thus high p~
values correspond to high nfile values and a correspondingly low
value for np/nfilei.

3 Recall that the upper bound on page accesses for a single
keyword description involving an inverted attribute is nr/nv~.

Communications February 1974
of Volume 17
the ACM Number 2

Table I. Performance of the Heuristic Solution to the Inversion/
Multiple Key Hashing Partitioning Problem

Expected paging for

Ex-
ample In- Heuristic Opti-
num- verted comb. mal
ber p l II~l 1~ n v 2 03 rva p 4 :v4 file comb.

1 .5 6 4 . 3 200 .13 3 0 0 . 0 7 200 46.0 11.7 11.7
2 .5 750[.3 1400 .1 300.1 400 11.3 6.8 6.8
3 .3 324 .1 108 .3 640 .3 80016 .1 9 .5 9 . 5
4- .4 1200 .3 900 .2 6 0 0 . 1 3 0 0 1 0 . 0 7 .9 7 .9
5 1.4451 641.4451430 .11 1 0 8 . 0 1 4 0 . 5 12.1 10.9

further attempts are made. Clearly, the magnitude of
potential improvement is not the same as the actual
gain, and for that matter, the ordering of attributes by
potential is not the same as an ordering by actual im-
provement. This is the reason that the heuristic will
not necessarily yield the optimal solution. Empirical
results illustrated in the examples below indicate that in
most cases the difference between the paging per-
formance of this solution and that of the optimal will
not be sufficiently different to justify further search.

The results of the application of this heuristic to
five example files are shown in Table I. In each case,
the file contained 64 pages and 6400 records. For each
set of file parameters, several alternative partitions were
tested. In each case, the value of the objective function
was computed by approximating e,p by its lower
bound. This will slightly bias the solutions in favor of
the inverted file.

These tables illustrate two important points:
1. First o f all, the heuristically chosen combinations of
techniques often perform substantially better than the
more traditional approach, inversion. This is an im-
portant result because it suggests that the efficiency of
methods used in standard practice can be substantially
improved. Note that in several cases the expected page
accessing of this partition exceeds the heuristically
chosen solution by a factor of 2 or 3.
2. In four of the five examples, the optimal solution
was selected by the heuristic. The one exception, ex-
ample five, exhibits an optimal performance of 10.9
expected page accesses, while the heuristically chosen
solution yields 12.1 accesses. This rather small differen-
tial can be shown to be approaching a bound on the
suboptimality of an heuristic solution to three attribute
files of this size.

7. Summary

This article has addressed a number of issues:
1. First, the importance of the structuring of records in
the main file was discussed. It was demonstra ted that,
in an unstructured file, page accesses will increase in a
near linear way with record retrievals until the number of
retrievals approaches the number of pages in the file.

This led to the conclusions that: (a) inversion and other
retrieval reducing schemes are not very useful if the
number of accessed records cannot be reduced below
the number of pages in the file; and (b) page accesses
could be reduced if structuring of the file could reduce
its effective size relative to a retrieval request.
2. A technique which extended hashing concepts to the
randomizing of several attributes was suggested as a
me thod of structuring the file. The approach, called
multiple key hashing, organizes records into clusters
which correspond roughly to pages.
3. A retrieval algorithm based on multiple key hash-
ing, mkh, was described. It was observed that neither
this algorithm nor the inverted file approach can pro-
duce optimal performance for all files. Hence a tech-
nique which combines the two approaches seems ap-
propriate.
4. A combination by which certain attributes are
handled by m k h and the others are handled by inversion
was suggested. The best way to partition the attributes
into these two sets was formulated as a mathematical
program and a heuristic approximation to the solution
was proposed. The technique yields near optimal com-
binations of m k h and inversion for a relatively small
cost. When applied to several example files, this solution
substantially improved on the page accessing perform-
ance of inversion used independently.

An important issue which has not been explored in
the work reported here is the degradation of retrieval
performance as file parameters change over a period of
time. It is clear that variations in the nature of user
requests and changes in attribute value distributions
will impact on performance. However, the definition
of a formal mechanism for establishing the values of
decision variables enables the system designer to in-
corporate an automatic reorganization feature into the
system. In this way the algorithm is able to adjust to
changes in retrieval and maintenance traffic and reduce
the damaging impact. The nature of the technique's
degradation is nevertheless a significant area for future
research, because this is the issue which determines re-
organization strategy.

Received April 1973; revised September 1973

References
1. Lefkovitz, D. File Structures for On-Line Systems. Spartan
Press, Washington, D.C., 1969, pp. 126-129.
2. Hsiao, D., and Harary, F. A formal system for information
retrieval from files. Comm. ACM 13, 2 (Feb. 1970), 67-73.
3. Corbato, F.J., and Vyssotsky, V.A. Introduction and overview
of the MULTIC system. Proe. AFIPS 1965 FJCC, Vol. 27, AFIPS
Press, Montvale, N.J., pp. 185-196.
4. Gustafson, R.A. Elements of the randomized combinatorial
file structure. Proc. Symp. on Information Storage and Retrieval,
ACM, New York, Apr. 1971, pp. 163-174.
5. Rothnie, J.B. The design of generalized data management
systems. Unpublished Ph.D. Diss., Dep. of Civil Eng., M.I.T.,
1972, pp. 72-89.
6. Knuth, D., Sorting and Searching, The Art of Computer
Programming. Vol. 3, Addison-Wesley, Reading, Mass., 1973,
pp. 506-542.

69 Communications February 1974
of Volume 17
the ACM Number 2

