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A Simple Motion-Planning Algorithm for General 
Robot Manipulators 

TOMAS LOZANO-PEREZ, MEMBER, IEEE 

Abstrct-A simple and efficient algorithm is presented,  using configu- 
ration space, to plan collision-free  motions  for general manipulators. An 
implementation  of the  algorithm for manipulators  made  up of revolute 
joints is also presented.  The configuration-space  obstacles  for an n 
degree-of-freedom manipulator  are  approximated by sets  of n - 1- 
dimensional slices, recursively  built  up from  one-dimensional  slices.  This 
obstacle representation leads to an  efficient approximation of  the free 
space outside of the configuration-space  obstacles. 

T 
I .  INTRODUCTION 

HIS  PAPER presents an implementation of a new 
motion-planning algorithm for general robot manipulators 

moving among three-dimensional polyhedral obstacles. The 
algorithm has a number of advantages: it is simple to 
implement, it is fast for manipulators with few degrees of 
freedom, it can deal with manipulators having  many degrees 
of freedom (including redundant manipulators), and it can  deal 
with cluttered environments and nonconvex polyhedral obsta- 
cles. An example of a path obtained from an implementation  of 
the algorithm is shown in Fig. 1. 

The ability to plan automatically collision-free motions for a 
manipulator given geometric models of the manipulator and 
the task is one of the capabilities required to achieve task-leuel 
robot programming [lS]. Task-level programming is one of 
the principal goals of research in robotics. It is the ability to 
specify the robot motions required to achieve a task in terms of 
task-level commands, such as ‘ ‘Insert pin-A in  hole-B , ’ ’ rather 
than robot-level commands, such as “move to 0.1,  0.35, 
1.6.” 

The motion-planning problem, in its simplest form, is to 
find a path from a specified starting robot configuration to a 
specified goal configuration that avoids collisions with a 
known set of stationary obstacles. Note  that this problem is 
significantly different from, and quite a bit harder than, the 
collision detection problem: detecting whether a known robot 
configuration or robot path would cause a collision [1], [4]. 
Motion planning is also different from on-line obstacle 
avoidance: modifying a known robot path so as to avoid 
unforeseen obstacles [6],  [9], [lo], [ 111. 
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Although general-purpose task-level programming is still 
many years away, some of the techniques developed for task- 
level programming are relevant to existing robot applications. 
There is, for example, increasing emphasis among major robot 
users on developing techniques for off-line programming, by 
human programmers, using computer-aided design (CAD) 
models  of the manipulator and the task. In many  of these 
applications motion planning plays a central role. Arc welding 
is a good example; specifying robot paths for welding along 
complex three-dimensional paths is a time-consuming and 
tedious process. The development of practical motion-plan- 
ning algorithms could reduce significantly the programming 
time for these applications. 

A great deal of research has been devoted to the motion- 
planning problem within the last five to eight years, e.g. , [2], 
[31, [SI, 171,  181,  [121-[141,  U61, [17l, W I ,  POI. However, 
few  of these methods are simple enough and powerful enough 
to be practical. Practical algorithms are particularly scarce for 
manipulators made up of revolute joints, the most popular type 
of industrial robot. The author is aware of only two previous 
motion-planning algorithms that are both efficient and reason- 
ably general for revolute manipulators with three or more 
degrees of freedom [2],  [7]. Brook’s algorithm [2] has 
demonstrated impressive results but is fairly complex. Faver- 
jon’s algorithm [7], on the other hand, is appealingly simple. 
The basic approach of the algorithm described here is closely 
related to the method described by Faverjon. Many of the 
details of the present algorithm, however, especially the 
treatment of three-dimensional constraints and the free space 
representation, are new  and more general. 

The approach taken in this algorithm is similar to that of [7], 
[8], [12], [13]  in  that it involves quantizing joint angles. It 
differs in this respect from exact algorithms such as [ 171, [ 191. 
On the other hand, the quantization approach lends itself 
readily to efficient computer implementation. The approach 
taken here differs from most previous configuration-space 
algorithms, for example, [4],  [5], [ 131, [ 141, in that no attempt 
is made to characterize the surfaces of the obstacles in the 
configuration space. Instead, the approximate obstacles are 
built up from a series of one-dimensional ranges of forbidden 
values. As with  many  motion-planning algorithms, including 
[5],  [13],  [14],  [19], the free-space outside of the obstacles in 
this algorithm is represented as a collection of cells. The 
connectivity graph of the cells is  used to search for a path. A 
cellular representation of the free-space contrasts with the use 
of a one-dimensional subset of the free-space such as the 
Voronoi diagram; see, for example, [2], [17]. 
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Fig. 1 .  Path for all six links of Puma obtained using algorithm described here. Three-fingered hand shown as end-effector does not 
change configuration during motion, hut its shape is taken into account during motion planning. Total planning time on Symbolics 
3600 was approximately 3 min. Joints were sampled at k 3".  

The purpose of this paper is to show that  motion planning 
for general manipulators can be  both simple and relatively 
efficient in most practical cases. There is no reason why 
motion planning should be any less practical than computing 
renderings of three-dimensional solids in computer graphics. 
In both cases, there are many simple numerical computations 
that can benefit from hardware support. In fact, it is worth 
noting that in the examples in Fig. 1 it took longer to compute 
the hidden-surface displays in the figures than to compute the 
paths. 

II. THE BASIC APPROACH: SLICE PROJECTION 
The configuration of  a  moving object is  any  set of 

parameters that completely specify the position of every point 
on the object. Configuration space (C space) is the space of 
configurations of a moving object. The set of joint angles of a 
robot manipulator constitute a configuration. Therefore, a 
robot's joint space is  a configuration space. The Cartesian 
parameters of  the robot's end effector, on the other hand, do 
not  usually constitute a configuration because of the multiplic- 
ity of solutions to a robot's inverse kinematics. It is possible to 



IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL.  RA-3, NO. 3, JUNE 1987 226 

I 

(b) 
Fig. 2. (a)  Closeup of  initial configuration of  manipulator for path  in  Fig. 

l(b) (from different viewpoint). (b) Closeup of final configuration of 
manipulator for path in Fig. l(b). Note  that full polyhedral  descriptions  of 
arm and  end-effector are used in algorithm. 

map the obstacles in the robot's workspace into its configura- 
tion space [3j-[5], [13], [14j. These C-space obstacles 
represent those configurations of the moving object that would 
cause collisions. Free  space is defined to be the complement 
of the C-space obstacles. 

Motion planning requires an explicit characterization of the 
robot's free space. The characterization may  not be complete, 
for example, it  may cover only a subset of the free space. 
However, without a characterization of the free space, one is 
reduced to trial and error methods to find a path. In this paper 
we  show  how to compute approximate characterizations of the 
free space for simple manipulators. By simple manipulators 
we mean manipulators composed of a nonbranching sequence 
of links connected by either revolute or prismatic joints (see 
[18] for a treatment of the kinematics of simple manipulators). 
We restrict the position of link zero of a simple manipulator to 
be fixed. Most industrial manipulators (not including parallel- 
jaw grippers) are simple manipulators in this sense. 

The C-space obstacles for a manipulator with n joints are, in 
general, n-dimensional volumes. Let C denote an n-dimen- 
sional C-space obstacle for a manipulator with n joints. We 
represent approximations of C by the union of n - 1- 

dimensional slice projections [ 131, [ 141. Each n - 1- 
dimensional configuration in a slice projection of C represents 
a range of n-dimensional configurations (differing only  in the 
value of a single joint parameter) that intersects C. 

A slice projection of an n-dimensional C-space obstacle is 
defined by a range of values for one of the defining parameters 
of the C space and an n - 1-dimensional volume. Let q = 
(q l ,  * , qn) denote a configuration, where each qi is a joint 
parameter, which measures either angular displacement (for 
revolute joints) or linear displacement (for prismatic joints). 
Let x, be a projection operator for points, defined such  that 

x,(4)=(41,  * * * Y  q j - 1 9  4 j + l >  . * * )  qn). 

Let IIla,,bjl(S) be a projection operator for point sets S ,  defined 
such that 

n[a,,,](S)= {Tj(q)lq E S and q j  E [ai, bjI}* 

Then, the slice projection of the obstacle C for values of qj E 
[aj ,  b,] is 

% 7 j , b j ] ( C ) .  

The definition of slice projection is illustrated in Fig. 3. In the 
foregoing example, joint j is called the slice joint while the 
other joints are known as free  joints. 

Note  that a slice projection is a conservative approximation 
of a segment of an n-dimensional C-space obstacle. An 
approximation of the full obstacle is built as the union  of a 
number  of n - 1-dimensional slice projections, each for a 
different range of values of the same joint parameter (Fig. 3). 
Each  of the n - 1-dimensional slice projections, in turn, can 
be approximated by the union  of n - 2-dimensional slice 
projections and so on, until we  have a union of one- 
dimensional volumes, that is, linear ranges. This process is 
illustrated graphically in Fig. 3. Note  that the slice projection 
can  be continued one more step until only zero-dimensional 
volumes (points) remain, but this is wasteful. 

Consider a simple two-link planar manipulator whose joint 
parameters are q1 and 4 2 .  C-space obstacles for such a 
manipulator are two-dimensional. The one-dimensional slice 
projection of a C-space obstacle C for 41 E [a, b] is some set 
of linear ranges {Ri} for 4 2 .  The ranges must be such  that if 
there exists a value of q 2 ,  call it d,  and a value q1 E [a, bj, 
call it c, for which (cy d )  E C, then d is  in one of the Ri (Fig. 
3). 

A representation of a configuration space with  obstacles  is 
illustrated in Fig.  4(b), for the two-link manipulator and 
obstacles shown in Fig. 4(a). The actual configuration space is 
the surface of a torus since the top and bottom edge of the 
diagram coincide (0 = 2a), as do the left and right edge. The 
obstacles are approximated as a set of 4 2  ranges (shown dark) 
for a set of values of q l .  The resolution is 2" along the qI axis. 

If  the manipulator has three links, its configuration space 
can  be constructed as follows. 

1) Ignore links beyond link 1. Find the ranges of legal 
values of 41 by considering rotations of link 1 around the 
fixed base. 



LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 

P 

t 
I I 

I I T 

227 

2) Sample the legal range of q1 at the specified resolution. 
Do steps 3-5 for each of the value ranges of ql .  

3)  Ignore links beyond link 2.  Find the ranges of legal 
values of q2 by considering rotating link 2 around the 
positions of joint 2 determined by the current value range 

4) Sample the legal range of q2 at the specified resolution. 
Do step 5 for each of these value ranges of q2. 

5)  Find the ranges of legal values of q3 by considering 
rotating link 3 around the position of joint 3 determined 
by the current value ranges of q1 and 4 2 .  

of 41. 

Some sample slices from a configuration space computed in 
this way can be seen in Fig. 5 .  

Note that the process just described is an instance of the 
following simple recursive process. To compute C space ( i ) ,  

1) ignore links beyond link i ,  and find the ranges of legal 
values of qi by considering rotating link i around the 
positions of joint i determined by the current value 
ranges of ql, * e ,  4;- 1; 

2) if i = n,  then stop; else sample the legal range of qi at 
the specified resolution. Compute C space (i + 1) for 
each of these value ranges of qi. 

Observe that the basic computation to be done is that of 
determining the ranges of legal values for a joint parameter 
given ranges of values of the previous joints. This computation 
is the subject of Section 111. 

The recursive nature of the C-space computation calls for a 
recursive data structure to represent the C space. The current 
implementation uses a tree whose depth is n - 1, where n is 
the number of joints, and whose branching factor is the 
number  of intervals into which the legal joint parameter range 
for each joint is divided (Fig. 6) .  The leaves of the tree are 
ranges of legal (or forbidden) values for the joint parameter n. 
Many  of the internal nodes in the tree will have no descendants 
because they produce a collision of some link i < n. 

The main advantage of a representation method built on 
recursive slice projection is its simplicity. All operations on 
the representation boil down to dealing with linear ranges, for 
which very simple and efficient implementations are possible. 
The disadvantages are the loss of accuracy, and the rapid 
increase of storage and processing time with dimensionality of 
the C space. Contrast this approach with one that represents 
the boundaries of the obstacles by their defining equations [4], 
[5 ] .  Using the defining equations is cleaner and more accurate, 
but the algorithms for dealing with interactions between 
obstacle boundaries are very complex. I believe that the 
simplicity of slice projection outweighs its drawbacks. These 
drawbacks can be significantly reduced by exercising care in 
the implementation of the algorithms. 

111. SLICE PROJECTIONS FOR POLYGONS 

The key step in our approach is computing one-dimensional 
slice projections of C-space obstacles, that is, determining the 
range of forbidden values of one joint parameter, given ranges 
of values for all previous joint parameters. We will illustrate 
how these ranges may be computed by considering the case of 
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Fig. 4. (a)  Two-link revolute manipulator  and obstacles. (b) Two-dimensional C space  with  obstacles  approximated by list of one- 
dimensional  slice projections (shown dark). Initial  and  final  position of manipulator are shown  in  input space and C  space. 

Fig. 5 .  Configuration  space  slices  for  three link revolute  manipulator. 
Figures  on  right show  samples of two-dimensional slice projections  used to 
approximate three-dimensional configuration  space. Each  slice  shows 
constraints  on q2 and q, for different range of values of q1 (note  different 
orientations of  manipulator’s first link in right figures). On left, manipula- 
tor is  shown  in  number of configurations along  path  shown  on slice 
diagram; initial  and  final configurations of paths are indicated by circles. 

planar revolute manipulators moving  among planar obstacles. 
We will first discuss this problem informally and  then derive 
the solution from the equations of C surfaces. 

A .  A Geometric  View 
Assume that joint k,  a revolute joint, is the free joint for a 

one-dimensional slice projection and  that the previous joints 

are fixed at known values. Note that we assume, for now, that 
the previous joints  are fixed at single values rather than ranges 
of values; we will see in Section III-C how to relax this 
restriction. We require that the configuration of the first k - 1 
links be safe, that is, no link intersects an obstacle. This is 
guaranteed by the recursive computation we saw  in  Section 11. 
Given these assumptions, we  need to find the ranges of  values 
of the single joint parameter q k  that are forbidden by the 
presence of objects in the workspace. 

The ranges of forbidden values for q k  will be bounded by 
angles where link k is just touching an obstacle. For polygonal 
links moving among polygonal obstacles, the extrema1 con- 
tacts happen when a vertex of one object is in contact with an 
edge of another object. Therefore, the first step in computing 
the forbidden ranges for q k  is to identify those critical  values 
of q k  for which some obstacle vertex is in contact with a link 
edge or some link vertex is  in contact with an obstacle edge 
(Fig. 7). 

The link is constrained to rotate about its joint; therefore, 
every point  on the link follows a circular path  when  the link 
rotates. The link vertices, in particular, are constrained to 
known circular paths. The intersection of these paths  with 
obstacle edges determine some of the critical values of q k ,  for 
example, B in Fig. 7. As the link rotates, the obstacle vertices 
also follow  known circular paths relative to the link. The 
intersection of these circles with link edges determine the 
remaining critical values for q k ,  for example, A in Fig. 7. 

Determining whether a vertex and  an edge segment  can 
intersect requires first intersecting the circle traced out by the 
vertex and the infinite line supporting the edge to compute the 
potential intersection points. The existence of  such an intersec- 
tion  is a necessary condition for a contact between link and 
obstacle, but it is  not sufficient. Three additional constraints 
must  hold (Fig. 8). 1) In-edge constraint is that where the 
intersection point must be within the finite edge segment, not 
just the line supporting the edge. 2)  For orientation con- 
straint, the orientation of the edges at the potential contact 
must  be compatible, that is, the edges that define the  contact 
vertex must  both  be outside of the contact edge. For the 
reachability constraint for nonconvex objects, there must not 
be other contacts that prevent reaching this point. 

The in-edge constraint can  be tested trivially given  the 
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Fig. 6 .  Recursive  nature of C space leads  to recursive data structure:  an  n-level  tree whose  leaves represent  legal  ranges  of 
configurations  for robot manipulator. 

Fig. 7. Contact conditions  for computing  one-dimensional  slice projections. 
(a) Vertex of obstacle and edge of link. (b) Vertex of link and edge of 
obstacle. Circles  indicate path of vertices as link rotates around  specified 
joint. 

\ 
\ 

Fig. 8. Given intersection of vertex  circle and edge  line, following 
conditions  must  be  met for  feasible  contact.  a)  Contact must  be  in edge 
segment, contact 1 satisfies this  but 1 ’ does not; b) edges  that  define  contact 
vertex must  both  be outside of contact  edge,  contact 1 satisfies  this  but 
contact 2 does  not;  c) contact  must  be reachable,  contact 1 satisfies this, but 
contact 3 does not  (this  condition  is  only relevant  for nonconvex objects). 

potential contact point and the endpoints of  the contact edge. 
Since we  know that the contact point is on the line of the edge, 
all that remains to be determined is whether it lies between the 
endpoints of the edge. This can be done by ensuring that the x 
and y coordinates of the contact point are within the range of x 
and y coordinates defined by the edge endpoints. Note that for 
contacts involving link edges and obstacle vertices, the 
position of the endpoints of the link edge must be rotated 
around the  joint position by the computed value of the joint 
angle at the contact. 

The orientation constraint can also be tested simply. All that 
is required is that the two edges forming the contact vertex be 
on the outside of the contact edge. Polygon edges are typically 
oriented so that they revolve in  a counterclockwise direction 
about the boundary. Therefore, the outside of the polygon is 
on the right of the edge as we traverse the boundary. Given 
this, the feasibility of  a contact can be verified simply by 
comparing the absolute orientations of the edges involved in 
the contact. 

The reachability constraint, on the other hand, requires 
examining all the contacts of the link with a given obstacle that 
satisfy the first two constraints. For each contact angle q we 
determine whether values of q k  greater than q cause collision 
or whether values less than 4 cause collision (Section 111-B). 
The contact angles together with the collision directions can be 
merged to form the ranges of forbidden values for qk. This 
process is illustrated in Fig. 9. 

B. Derivation Using C Surfaces 
The two types of contacts (vertex-edge and edge-vertex) 

give  rise to the two basic types of  C-space  boundary  (hyper-) 
surfaces [3]-[5], [14]. One type of C surface (type A) 
characterizes the configuration of the moving object for which 
a vertex of the stationary obstacle is in contact with the infinite 
line supporting an edge of the moving object. The other (type 
B) characterizes the configuration of the moving object for 
which the infinite line supporting an edge of the stationary 
obstacle is in contact with a vertex of the moving object. The 
equations of such surfaces are parameterized by the configura- 
tion parameters of  the moving object. For planar polygons, x, 
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Fig. 9. Constructing  ranges of forbidden values  using  potential  contact 
angles  and  collision directions. 

y ,  13 can  be  used as configuration parameters; for manipula- 
tors, the 4i are the configuration parameters. 

For a revolute joint, choose the coordinate system to be 
located at the joint. The coordinate representation of all of the 
vectors will be relative to this coordinate system. We represent 
a line supporting an edge by  an equation of the form: n * x  + d 
= 0. Where n is the (outward pointing) unit vector that is 
normal to the line and the absolute value of d is the 
perpendicular distance to the edge from the origin. The 
condition for a vertex u being in contact with such a line is 
simply n-u + d = 0. 

For a type B contact, we are given a link vertex whose 
initid position vector (for q k  = 0) is u and an obstacle edge 
whose line equation is n . x  + d = 0. If the link angle is qk, 
the coordinates of the rotated link vertex are 

u' = (v, cos 4 k -  vu sin q k ,  v, sin q k +  vy cos q k ) .  

Substituting into the line equation yields a simple trigonomet- 
ric equation in q k  (all the other terms are constant): 

(nxUx+nyVy) COS qk+(YlyV,-nxUy)  Sin q k + d = o .  (1) 

From the definition of the scalar and vector product, we have 
that 

n,u,+ n,v, = 11 u 1 1  cos 4 nYv,-- n,vy= 11 u I I  sin 4 

where 4 is the angle between n and u .  From this, it is clear that 
the C-surface equation is merely 

IIu/I cos ( q k - ' $ ) =  -d*  

The solution to this equation is 

Fig.  10,illustrates this situation. There is one such C surface 
for each combination of link vertex and obstacle edge. Of 
course, only convex vertices need be considered; no contact is 
possible at a concave vertex. 

Using the same notation, except that  the edge is a link edge 
and the vertex an obstacle vertex, the equation for a type-A C 
surface is 

(n,U,-kn,V,) COS ~ k - ( ~ y V , - ~ , V y )  Sin q k + d = O .  (3) 

Fig. 10. Illustration of terms used  in (1)-(4). 

The only difference is the sign of the coefficient of sin q k .  This 
difference arises from the fact that we are thinking of the 
obstacle vertex as counter-rotating while the link stands still. 
That is, the direction of rotation of the vertex is the opposite of 
q k ;  this changes the sign of  the sine of the angle. The solution 
to this equation is: 

One such C surface exists for each combination of (convex) 
obstacle vertex and link edge. 

Note that there are generally two solutions to each  of the 
equations (arising from the arccosine) since they correspond to 
intersections of a circle traced out by a vertex and an infinite 
line supporting an edge. These solutions, however, do not 
necessarily represent feasible contacts between the link and an 
obstacle. The remaining constraints illustrated in Fig. 8 must 
also be satisfied. Of course, when the magnitude of the 
argument to the arccosine is greater than one, this indicates an 
infeasible contact, that is, the line is  beyond the reach of the 
vertex. 

The in-edge constraint can be checked, as described before, 
by computing the coordinates of the intersection point  and the 
positions of the edge endpoints, given the computed values of 

The solutions obtained from ( 2 )  and (4) must also satisfy the 
orientation constraint. One way  of testing this constraint is by 
ensuring that the polygon edges that intersect at the contact 
vertex both point outward from the contact edge. If el and e2 
are the edge vectors pointing away from the vertex (Fig. 1 l), 
then the orientation constraint boils down to 

q k -  

sgn (n * e l ) r O  sgn (n * e 2 ) r 0  

where sgn ( x )  = x / \  x1 for x # 0 and 0 otherwise. 
The reachability constraint is  handled as described in 

Section 111-B. To do that, we must be able to tell whether an 
increase in q k  will move  the link towards or away from the 
obstacle. This can be done by computing the derivative of (1) 
and ( 2 ) .  The left side of these equations is a measure of the 
perpendicular distance of a vertex from an edge. The sign  of 
the derivative of  this distance with respect to q k  will indicate 
whether a change in q k  will  move further into contact or away. 



LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 23 1 

any  point  on a link to the base joint and  on  the  maximum  angular 
displacement  of  the link. The maximum  distance  of  points  on 
link k is  the  sum of the distances  between all previous joints plus 
the  distance of  any  point  on link k from joint k.  The angular 
displacement of link k in a planar  revolute  manipulator is also 
the  sum  of  the angular displacements  of  all  the  previous joints. 
Given  the  distance d and the angle 8, the magnitude of the 
displacement (chord of a circle) is &(1 - cos 8). 

Let the allowed angle range for qi be a; + ei; let ri be the 
maximum distance of any point on link i from joint i ;  and let l; 
be the distance from joint i to  joint i + 1. The value of 6 k  is Fig. 1 1 .  Testing  orientation  constraint for polygonal contact. 

Fig. 12. The kth  manipulator link  can be grown by radius &: maximum 
Cartesian displacement of any  point on link  in response  to  joint displace- 
ments E ,  for i s k. 

For example, the sign of the derivative of the distance for a 
type B contact (see  (1)) is determined by the sign  of - sin ( q k  

+ 4) evaluated at the value of q k  that gives rise to contact. 

C. The Effect of Ranges of Joint Angles 
Our discussion thus far has been limited to situations where 

all the joints except the last have known fixed values. The 
definition of one-dimensional slice projections allows all the 
joints, save one free  joint,  to be within a range, not just a 
single value. We can readily convert the slice projection 
problem  (for  ranges  of joint values) to the  simpler  cross  section 
projection problem (for single joint values) we  have already 
discussed. The idea is to replace the shape of  the link under 
consideration by the area it sweeps out when the joints 
defining the slice move within their specified value ranges 
[ 131, [ 141.  Any safe placement of the expanded link represents 
a range of legal displacements of the original link within the 
specified joint ranges. 

In most cases, instead of computing the exact swept 
volumes, we can use a very simple approximation method. 
Assume the manipulator is  positioned at the configuration 
defined by the midpoint of all the joint value ranges specified 
for the slice projection. Compute the upper bound on the 
largest Cartesian displacement of .any point on link k in 
response to any displacement within the specified range of 
joint values. Call this bound 8k. If  we “grow” each link by its 
corresponding radius Sk ,  the grown link includes the swept 
area. 

A polygonal approximation to the grown link can be 
obtained by computing the “set sum” of “Minkowski sum” 
of the link and a polygon enclosing a circle of radius 6 [ 141.  An 
example of such a grown manipulator can be seen in Fig. 12. 

We can illustrate this approach by considering  how to 
compute 6 k  for a planar  manipulator  composed of n revolute 
joints. The motion of a joint affects the displacement of all 
subsequent links. Therefore, the maximum Cartesian displace- 
ment of each link depends  on the maximum  total  distance from 

Because the last link’s motion is never quantized when 
computing the C space, we have that ek = 0. This value of 6 k  
is very conservative; it is the largest displacement anywhere in 
the work space. In fact,  it corresponds to the displacement in a 
link when all the previous links are fully outstretched, that is, 
all the aj = 0, j 5 k. Different configurations would  yield 
smaller values of Sk.  

In Fig. 12 the relevant parameter values are e l  = 2O, e2 = 
2O, e3 = 0,  lo = 0, I I  = 17.0, Z, = 17.0, rl = 18.44, r2 = 
17.26, r3 = 5.385. Therefore, the values of the & are SI = 
0.644, S2 = 2.39, S3 = 2.749. Note the growth in the value of 
Ejk as the distance from the base increases. Because of this, one 
might  want to choose a finer quantization for joints associated 
with long links near the base, for example, joint two in our 
example. 

In some applications, if the fk are small, it may be 
preferable to ignore the effect of small ek during planning and 
simply  check the resulting path for collisions. Of course, if the 
joint ranges 6k are large, these gross approximations may be 
too conservative and the exact swept volume should be used. 

D. Prismatic  Joints 
The discussion so far has concentrated on revolute joints, 

but the approach is not limited to them. If  any  of the joints are 
prismatic, only the computation of one-dimensional slices will 
be different and, in fact, it  will be simpler. 

As before, the key problem is computing the.critica1 value 
of the joint parameters for which a link is in contact with an 
obstacle. These contacts involve contact of a vertex and an 
edge. So, as in the case for revolute joints, we  need to 
determine the locus of motion of link vertices relative to 
obstacle edges and the locus of  motion  of obstacle vertices 
relative to link edges. For links actuated by revolute joints, we 
have seen that the vertices trace out circles. For links actuated 
by prismatic joints, the points on the link trace out lines. 
Potential points of contact occur where the lines defined by the 
motion  of the vertices intersect the edges. This operation 
replaces the intersection of circles and lines in the preceding 
discussion. 

The points of intersection must still satisfy the in-edge, 
orientation, and reachability constraints. Note that the in-edge 
constraint must  now be modified to check, not  only  that the 
intersection point is within the finite edge segment of the 
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polygon, but also that the contact is within the range of motion 
of the joint. 

IV. SLICE PROJECTIONS FOR POLYHEDRA 

The basic approach described in Section I11 carries over 
directly to three-dimensional manipulators and obstacles. 
There is, however, one significant difference: there are three 
types of contacts possible between three-dimensional polyhe- 
dra. The three contact types are type A, vertex of obstacle and 
face of link; type B, vertex of link and face of obstacle; and 
type C, edge of link and edge of obstacle. 

Let us consider type B contacts first. Each revolute joint is 
characterized by an axis of rotation. As the joint rotates, link 
vertices trace circles in a plane whose normal is the joint axis. 
The intersection of this circle with  the plane supporting an 
obstacle face defines two candidate points  of contact (see the 
appendix). As in the two-dimensional case, possible contacts 
must satisfy three constraints to be feasible. For the in-face 
constraint, the contact must  be within the obstacle face; for the 
orientation constraint, all of the link edges meeting at the 
vertex must  be outside of the obstacle; and for the reachability 
constraint, for nonconvex polyhedra, there must  not  be  any 
earlier contacts that prevent reaching this one. 

The in-face constraint can be checked using  any  of the 
existing algorithms for testing whether a point is  in a polygon. 
The orientation constraint can be enforced by checking that the 
dot products of the face normal with each of the vectors from 
the contact vertex to adjacent vertices is positive [5] .  The 
reachability constraint is enforced exactly as in the two- 
dimensional case by merging the forbidden angle ranges. 

Type A contacts are handled analogously to type B contacts 
except that  now the vertex belongs to an obstacle and the face 
to a link. The axis of rotation is still that of the manipulator 
joint. 

Detecting type C contacts requires detecting the intersection 
of a line (supporting a link edge) rotating about the joint axis 
and a stationary line (supporting an obstacle edge). The 
solution for this case can  be found in the appendix. Of course, 
an intersection point must be inside both edge segments to be 
feasible. There is also an orientation constraint which is a bit 
more difficult to derive than those for type A and B contacts 
but  not particularly difficult to check (for the derivation, see 
[5]) .  The appendix shows the details of these computations. 

V. FREE-SPACE REPRESENTATION 
Having obtained a conservative approximation of the C- 

space obstacles, the free space is simply the complement of all 
the obstacles. Since the obstacles are ultimately represented as 
sets of linear ranges, the complement is trivial to compute. A 
two-dimensional free space, for example, will be represented 
as a list of one-dimensional slices. Each slice represents the 
ranges of regal values of q2 for some small range of values of 
ql. This is in itself a reasonably convenient representation of 
the free space but  not very compact. If we were to try to find 
paths through the individual slices a great deal of time would 
be wasted searching through nearly identical slices. A more 
compact representation is called for, one that captures some  of 
the coherence between adjacent slices. 

I I I I I I I I I I  I 

Fig. 13. Illustration of  definition of free-space  regions. Bold lines  indicate 
configuration space  obstacles. Two regions  are indicated  in  dashed lines. 
Kernels are rectangular areas within regions  corresponding to  common 
intersection .of all free  ranges in region. 

The free-space representation used  in the current implemen- 
tation is  made up of regions. A region is  made  up of linear 
ranges from a set of adjacent slices such  that the ranges all 
overlap. The area of common overlap of all the slices in a 
region is rectangular and called the region’s kernel (Fig. 13). 

The regions are built by looping over the slices from left to 
right  in the diagrams, that is, from q1 = 0 towards q1 = 27r. 
Each legal range in the first slice initializes a new region. For 
each region, we keep track of the legal range of q2 values 
common to all the slices in the region; this is the kernel. As 
each new slice is considered, the ranges in that slice are 
compared to the kernel of the regions in the preceding slice. If 
a range overlaps the kernel of  some region, then  that range is 
added to the region and the kernel updated by intersecting it 
with the new range. If a range does not overlap any previous 
region, it is used to start a new region. Note that, in general, 
more than one range in the new slice may overlap the kernel of 
a region in the previous slice. The implemented algorithm 
chooses the lower range (smaller values of q2) to add to the 
region; the higher ranges are used to start new regions. By this 
construction, we guarantee that all the slices in a region share a 
common range of q2 values; this is the kernel. In practice, we 
require some minimum overlap between slices in  the same 
regions to avoid very narrow kernels. 

Free-space regions are nonconvex  and so points  within the 
region may  not always be connectable by a straight line. There 
is, however, a simple method for moving  between  points 
within the region: move from each point along its slice to the 
edge of the kernel and connect these kernel points  with a 
straight line. 

To search for a path between points  in different regions 
requires representing the connectivity of the regions. We build 
a region  graph where the nodes are regions and the links 
indicate regions with common boundary. Associated  with each 
region is a set of links to adjacent regions, where each link 
records the location of the overlap in addition to the adjacent 
region. Regions have neighbors primarily in the q1 direction; 
for these neighbors, the range of q 2  values at the common 
region boundary is stored with the link. By construction, 
regions only have q2 neighbors at the 0 = 27r boundary. 
Anywhere else the region is  bounded above and  below by 
obstacles. 

In general, each n-dimensional slice is represented as a list 
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Fig. 14. (a)  Regions  for  two-joint C space.  Rectangles  are  region kernels. 
Hashed  area  shows  region R2. (b)  Region  graph  corresponding  to  regions  in 
part A. Link  labels  indicate  existence  of  common boundary in q1 and/or q 2  
directions. 

of n - 1-dimensional slices, and one-dimensional slices are a 
list of ranges of joint values. We have seen that  two- 
dimensional regions are constructed by joining neighboring 
one-dimensional slice-projections. In principle, we could 
construct three-dimensional regions by joining neighboring 
two-dimensional regions, and so on. Instead, for three- 
dimensional C spaces we simply build two-dimensional 
regions for each range of values of the first joint parameter and 
represent the connectivity among these regions in the region 
graph (Fig. 15). The connectivity is determined -by detecting 
overlap between region kernels in neighboring two-dimen- 
sional slices, that is, slices obtained by incrementing or 
decrementing the first joint parameter. When overlap exists, 
the area of overlap is associated with the corresponding link in 
the region graph. This method is readily extended to n- 
dimensional slices by considering as neighbors slices obtained 
by incrementing or decrementing one of the first n - 2 joint 
parameters used to define the two-dimensional slice. 

The main feature of this region representation is that it 
exploits the coherence of the free space; thus, for example, it 
does not introduce many arbitrary divisions in the free space 
such as are introduced by octree-type representations [7]. 
Exploiting the natural coherence has a number of practical 
advantages. The main result is the compactness of the 
representation: very few regions are required to represent 

rather complex free spaces. Another important result is low 
branching in the region graph: each region has relatively few 
neighbors. These characteristics of the representation also 
make possible some of the heuristic search techniques de- 
scribed in Section VII. 

VI. SEARCHING FOR A PATH IN THE REGION GRAPH 

In this section, a technique for searching a region graph is 
described. This technique applies to searching any subset of 
the C space; it is not necessary that the complete C space be 
examined before any searching is done. Section VI1 describes 
some heuristic strategies for limiting what parts of the C space 
are actually explored. 

Path searching is done by an A* search in the region graph 
from the region containing the start point to the region 
containing the goal point. During the search, a list of search 
nodes is kept. Each search node is associated with some 
intermediate region in the region graph and represents a set  of 
regions connecting the start region to that intermediate region. 
For each node, we also keep track of an entry point on the 
region boundary that represents the location where the robot 
path  would enter the region. When a search node is expanded 
by extending the region path to an adjacent region, the entry 
point is moved.to the closest point on the common boundary 
between the two regions. The entry point to the next region 
becomes  the exit point for the current region. 

To carry out the search, we must associate with each search 
node an actual distance covered and an underestimate of the 
remaining distance to the goal.  We use the distance between 
entry points to define the distance between two regions and the 
underestimate is the distance between the entry point and the 
goal. Of course, these distances are based  on differences 
between the joint parameters modulo 2n. Once having found a 
list of regions connecting the start to the goal, the actual path  is 
obtained by connecting the entry points and exit points of  the 
regions. The entry point of the start region is  the start point 
and the exit point of the goal region is the goal point. 

A typical path found by the algorithm using the simple 
strategy described earlier is shown in Fig. 16. The paths tend 
to be jagged; some postprocessing to smooth the path would be 
desirable and  is currently under investigation. On the other 
hand, because of the compactness and low branching of the 
region representation, searching for a path tends to be very fast 
(less than  half a second for two-dimensional C spaces). 

VII. HEURISTIC SUBSETS OF THE C SPACE 

Having  built a C space, it may  be searched repeatedly for 
different paths. Changes to the environment, however, will 
cause parts of the C space to be recomputed. In rapidly 
changing environments, it  may  not be appropriate to compute 
the complete C space since only small sections of the C space 
will ever be traversed. This section describes experience with 
a number of simple heuristic strategies that help select the 
subset of the C space relevant to a particular path. 

A .  Decoupling the Degrees of Freedom 
The path shown in Fig. 1 was computed using two simple 

heuristics to choose subsets of the C space. First plan a path 
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Fig. 15. Region  connectivity for  three dimensional slices; regions can have neighbors in 41 direction. 

(c) 
Fig, 16. (a) Regions kernels for example in Fig. 4. (b)  Path  found  between start (1) and goal (4) configurations. (c)  Some 

intermediate configurations. 

for the first three links and a simple conservative approxima- 
tion of the rest of the manipulator (the last three links, the end- 
effector,  and the load), see Fig. 17. The origin  and  goal  for this 
path are chosen to be the points in free space closest to the 
(projection of the) actual origin and goal. Note  that these 
points  may differ from the actual origin and goal in  all of the 
joints. Having found such a path, there remains finding paths 
in the six-dimensional C space between the actual origin (resp. 
goal)  and  the origin (resp. goal) of the path. For all these 
paths, we compute only the portion of the C space bounded by 
the joint values of  the origin and goal configurations. 

This strategy has the effect of nearly decoupling the degrees 
of freedom. The six-dimensional planning is confined to the 

to find a path in the worst case, but this strategy has proven to 
be reliable and efficient in  most practical situations. 

near the origin and goal. ofcourse, this strategy will fail Fig. 17. First three links  of  manipulator  of Fig. 1 .  Last three links  and  end 
effector have  been  replaced by simple bounding  box. 
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B. Modifying  Low-Dimensional  Paths 
One alternative approach for searching for a path from 

configuration (q l ,  - , qn) to configuration (qg,l ,  * - -qgJ is 
the following. 

1) Ignore all but the first two joints. Build the free space for 
this reduced manipulator. Find a sequence of free space 
regions that contain a path from (41, q 2 )  to (4; , 4;). Let 
i = 3.  

2 )  Expand the portion of the free space included in the 
regions found so far  to incorporate the link i. That is, 
quantize the range of values in the region and use them to 
compute one-dimensional slice projections of the C 
space for the first i links. 

3) Search for a sequence of free-space regions that contain 
a path from (q l ,  - - a ,  qi) to (q,’, e ,  41). If i = n then 
stop; else increment i and to  to step 2 .  

The idea behind this strategy is to focus  on relevant sections 
of  the configuration space by first finding paths for succes- 
sively “longer” manipulators, starting with a two-link manip- 
ulator and going all the way through to a manipulator with n 
links. 

It is important that at each stage we consider not just a single 
path of the “shorter” manipulator, but a sequence of regions 
that span all the free-space between a set of obstacles. The 
addition of link n will typically change the required path for 
the first n - 1 links. Therefore, the search space should 
include more than a single path so as  to avoid the need to 
perform a backtracking search. 

This method has been implemented. The path for the four- 
degree-of-freedom manipulator shown in Fig. 18 was found by 
this technique. The technique leads to significant time savings 
on problems involving more than two degrees of freedom. Of 
course, since the complete configuration space is not com- 
puted, the time to plan a subsequent motion in the same work 
space will be as long as that for the initial motion. 

VIII. DISCUSSION 
The main advantages of the algorithm described here are 1) 

it is simple to implement, 2)  it is fast for manipulators with few 
degrees of freedom, 3) it can deal with manipulators having 
many degrees of freedom including redundant manipulators, 
and 4) it can deal with cluttered environments and  nonconvex 
polyhedral obstacles. The total wall-clock time to compute the 
C-space obstacles and then plan a path for the two-link 
example shown in Figs. 4 and 16 is 6 s on a Symbolics 3600 
Lisp Machine with floating-point operations performed in 
software. These times could be improved by carefully recod- 
ing the algorithm and  use ‘of floating-point hardware, but  they 
are already quite a bit faster than a human  using an interactive 
programming system (on-line or off-line). 

The main disadvantages of the algorithm are that the 
approximations introduced by the quantization may cause the 
algorithm to miss legal paths in very tight environments, and 
the rapid growth in execution time with the number of robot 
joints. This last drawback is probably inherent in any general 
motion planner; the worst-case time bound  will  be exponential 
in  the number of degrees of freedom [19]. Certainly, the 

(b) 
Fig. 18. (a)  Initial  and  goal configurations  for two-dimensional  manipula- 

tor with four  degrees of freedom. (b) Path  found by algorithm in  Section 
VII-B. 

algorithm described here is exponential in the number of 
degrees of freedom of the robot. The execution time is 
dominated  by the time to build the configuration space. The 
worst-case asymptotic complexity for building a complete 
(quantized) C space a robot with k degrees of freedom, in 
which the joint ranges are divided into r values, in  which the 
robot description has m faces and edges, and  in  which the 
environment has n faces and edges is O(rk-  1(mn)2) .  In 
practice, as we pointed out earlier, except for k = 2 one never 
builds the complete C-space representation. 

The performance of  this algorithm shows that motion 
planning algorithms can be fast enough and simple enough for 
practical use. I believe that  in  many applications automatic 
motion planning will be more time effective than interactive 
off-line programming of robots. In fact, the planning times 
will probably be  on the order of the times required to perform 
hidden surface elimination in graphics systems. 

APPENDIX 

COMPUTING CONTACT ANGLES FOR POLYHEDRA 
In what follows we assume that we are dealing with a 

convex polyhedron describing link k and an obstacle polyhe- 
dron (not necessarily convex). The coordinate system is 
chosen so that the origin corresponds to the position  of 
revolute joint k and the z axis is aligned with the joint axis 
(Fig. 19). The coordinate representation of all vectors is 
relative to this coordinate system. We assume that the initial 
position  of the link polyhedron corresponds to q k  is zero. We 
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Link k-1 I Link k 

Y 
" k  

Fig. 19. Joint coordinate system. 

are interested in computing values of q k  for which the link is  in 
contact with the obstacle polyhedron. 

Type B Contact: Vertex of Link and  Face of Obstacle 
We  are given a vertex of the link whose  position vector is u 

and an obstacle face whose plane equation is n *x  + d = 0 (n 
is the plane's outward-facing unit normal). We solve for the 
angle q k  that rotates the vector onto the plane. We obtain the 
equation for q k  by substituting the vertex's position, rotated  by 
q k ,  into the plane equation and solving for q k  . 

The coordinates of the position vector for the rotated vertex 
are 

u ' = (ux cos q k  - v, sin q k  , u, sin q k  + v, cos q k ,  u,). 

Substituting into the plane equation yields n- u ' + d = 0,  this 
yields a simple trigonometric equation 

(nxux+ nyuy) cos q k  + (nyu, - n,u,) sin q k  = - d -  n,u, ( 5 )  

whose solution is (6). 

qk=cos-' 
-n,v,-d 

+ arctan (n,u,- nxuy, n,u,+ nyuy). (6) 

Equation (5) is the equation for a C surface of type B [14]. 
Note  that if  we let n, = 0, then (5) and (1) are essentially 
identical. The arctangent simply computes the angle between 
the plane normal and  the projection of u on the xy plane; this 
magnitude  is analogous to 4 in the planar case. Equations (6) 
and (2) are also related in the same way. 

The left side of (5) represents the perpendicular distance of 
the rotated vertex from the obstacle plane. The sign of the 
derivative of this quantity with respect to q k  can be used to 
determine whether increasing or decreasing q k  causes a 
collision. 

The orientation constraint simply requires testing whether 
the other endpoint of all the edges meeting  at the contact vertex 
are on  the outside of the plane. This is done by substituting the 
position vector of these endpoints into the left side of the plane 
equation and testing that the value is positive. 

Type A Contact: Vertex of Obstacle and Face of Link 
We are given an obstacle vertex whose position vector is u 

and a link face whose plane equation is n * x  + d = 0 (n is the 
plane's outward-facing normal). The solution for q k  is almost 
identical to the type A case, the only difference is the sign of 
the first argument to the arctangent. This reflects the fact that 

in type A contact we are treating the link as stationary and 
assuming the object is rotating in the opposite direction. This 
changes the sign. of the sine of the angle. 

Typc C Contact:  Edge of Obstacle  and Edge of Link 
This case is substantially more difficult; we  follow the 

derivation in [ 11. We represent points on the edges parametri- 
cally  in t .  Therefore, points on the link's edge are represented 
by tlm + v where v is the position vector of one of the 
endpoints of the edge and m is a vector along the edge 
(actually  the difference vector between the endpoints). The 
parameter tr E [O, 11 parameterizes along the edge. We can 
represent the vector along the obstacle edge similarly as ton + 
w for to E [O, 11. 

As the edge rotates around the z axis, points on the edge 
trace out circles. The equation for points on those circles are 

x2+y2=(m,tr+u,)2+(mytl+uy)2 

z=rn,tr+uz. 

These can  be combined by solving the second equation for tr 
= ( z  - uz)/rn,  and substituting into the first to obtain 

x ' + y ' = ( m ' ( z - u , ) + u x ) 2 + ( ~ ( ~ - u ~ ) + u ,  mz m, > 2  . (7) 

This is  an implicit equation for points  on the rotation surface. 
The parametric form of the obstacle edge can be  used to 

solve for the intersection of  the edge with  the rotation surface: 

x=n,to+ w, y=n,to+ w, z=n,to+ w,. 

Substituting into (7) gives a quadratic equation in to. 
Define the following terms: 

p=(nE+n; )mz- (m:+m~)n~  

4 = 2 [ ( n x w , + n , w , ) m ~ - ( m ~ + m ~ ~ ) ( w , + ~ , ) n ,  

- (mxu,+ ~y~y)mzn , l  

r=(w~+w~)m~-[(m,(w,-v , )+u,m,)2 

+(~y(w,-~z)+Uym,)21.  

The quadratic equation that  must be solved for to is 

pt:+qto+r=O. 

Having to we can solve for br since we  know  that the z values at 
contact must  be equal. Therefore, 

n,to = w, - u, 

mZ 
t, = 

Given  values for tl and to, we  must first check that  they are in 
the range [0, 11 (the in-edge constraint), then we can compute 
points  of intersection on each of the edges. Let 1 be the position 
vector of the intersection point on the link edge and o the 
position of the intersection point on the object edge. Then, 

q k =  arctan (lxoy- Zyox, lxo,+ lyoy). 
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Note, however, that we have assumed, when deriving (7) 
that m, f 0. In the not uncommon event that it is, then all the 
points on the rotation surface have z = u, and so will the 
intersection point with the obstacle edge. We can use this to 
obtain to = (u, - w,)/n,. We can then solve for tl  by using the 
fact that the contact point on the link edge will be on the same 
circle as the contact point on the obstacle edge: 

( m x t r + u x ) 2 + ( m , t r + u y ) 2 = ( n x t o + ~ x ) 2 + ( n y t ~ + ~ , ) 2 .  

However, we know the value of to so this is a quadratic 
equation for t,. Given the values of ti and to we can solve for 4 k  

as before. 
In addition to solving for the value of the contact angle we 

must compute the derivative of the distance to the contact as a 
function of 4 k .  As before, this will determine whether the 
contact angle is a potential upper or lower bound for a contact 
range. Unfortunately, this is  not as simple as it  is for type A 
and B contacts. 

When the two edges are in contact, any motion component 
perpendicular to both of them will cause a collision while a 
component of motion along either edge will  not cause a 
collision. The direction perpendicular to both edges is simply 
the cross product of the two edge vectors (given the link edge 
rotated to the contact angle): 

The 4 k  dependence has been indicated explicitly. 
One problem here is that we do not  know whether c is 

outward pointing or not. We can decide that by dotting c with a 
direction known to point into the link. If el and e2 .are the 
direction vectors of edges meeting the link edge at one of its 
vertices (see Fig. 20), then el + ez is a direction pointing into 
the link volume. Let k = sgn @.(el + e2)), then kc is  the 
outward-pointing normal we require (see [5] for a careful 
derivation). 

Given the values of k,  the type-C C-surface equation can be 
written as [14] 

Differentiating the left side with respect to 4 k  yields 

((wymx- wxmy)n,+ (dzmx- uxmz)n, 

- (dzmy - uym,)nx)k sin 4 k +  ( (wymy+ wxm,)nz 

Fig.  20.  Definition of e, for i = 1, 2 ,  3, 4. 

s’ = sgn (c e3) = sgn (c e4) 

s#s’. 

These conditions are analogous to the type A and B cases. 

the actual amount of computation involved is not large. 
Although the derivation of the type C case is a bit involved, 
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