
224 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3, JUNE 1987

A Simple Motion-Planning Algorithm for General
Robot Manipulators

TOMAS LOZANO-PEREZ, MEMBER, IEEE

Abstrct-A simple and efficient algorithm is presented, using configu-
ration space, to plan collision-free motions for general manipulators. An
implementation of the algorithm for manipulators made up of revolute
joints is also presented. The configuration-space obstacles for an n
degree-of-freedom manipulator are approximated by sets of n - 1-
dimensional slices, recursively built up from one-dimensional slices. This
obstacle representation leads to an efficient approximation of the free
space outside of the configuration-space obstacles.

T
I . INTRODUCTION

HIS PAPER presents an implementation of a new
motion-planning algorithm for general robot manipulators

moving among three-dimensional polyhedral obstacles. The
algorithm has a number of advantages: it is simple to
implement, it is fast for manipulators with few degrees of
freedom, it can deal with manipulators having many degrees
of freedom (including redundant manipulators), and it can deal
with cluttered environments and nonconvex polyhedral obsta-
cles. An example of a path obtained from an implementation of
the algorithm is shown in Fig. 1.

The ability to plan automatically collision-free motions for a
manipulator given geometric models of the manipulator and
the task is one of the capabilities required to achieve task-leuel
robot programming [lS]. Task-level programming is one of
the principal goals of research in robotics. It is the ability to
specify the robot motions required to achieve a task in terms of
task-level commands, such as ‘ ‘Insert pin-A in hole-B , ’ ’ rather
than robot-level commands, such as “move to 0.1, 0.35,
1.6.”

The motion-planning problem, in its simplest form, is to
find a path from a specified starting robot configuration to a
specified goal configuration that avoids collisions with a
known set of stationary obstacles. Note that this problem is
significantly different from, and quite a bit harder than, the
collision detection problem: detecting whether a known robot
configuration or robot path would cause a collision [1], [4].
Motion planning is also different from on-line obstacle
avoidance: modifying a known robot path so as to avoid
unforeseen obstacles [6], [9], [lo], [111.

Manuscript received May 19, 1986; revised December 11, 1986. This work
was supported in part by the Office of Naval Research under Contract
N00014-82-K-0494, in part by a grant from the System Development
Foundation, in part by the Advanced Research Projects Agency under Office
of Naval Research Contracts N00014-85-K-0214 and N00014-82-K-0334, and
in part by a National Science Foundation Young Investigator Grant.

The author is with the Artificial Intelligence Laboratory and the Department
of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.

IEEE Log Number 8714998.

Although general-purpose task-level programming is still
many years away, some of the techniques developed for task-
level programming are relevant to existing robot applications.
There is, for example, increasing emphasis among major robot
users on developing techniques for off-line programming, by
human programmers, using computer-aided design (CAD)
models of the manipulator and the task. In many of these
applications motion planning plays a central role. Arc welding
is a good example; specifying robot paths for welding along
complex three-dimensional paths is a time-consuming and
tedious process. The development of practical motion-plan-
ning algorithms could reduce significantly the programming
time for these applications.

A great deal of research has been devoted to the motion-
planning problem within the last five to eight years, e.g. , [2],
[31, [SI, 171, 181, [121-[141, U61, [17l, W I , POI. However,
few of these methods are simple enough and powerful enough
to be practical. Practical algorithms are particularly scarce for
manipulators made up of revolute joints, the most popular type
of industrial robot. The author is aware of only two previous
motion-planning algorithms that are both efficient and reason-
ably general for revolute manipulators with three or more
degrees of freedom [2], [7]. Brook’s algorithm [2] has
demonstrated impressive results but is fairly complex. Faver-
jon’s algorithm [7], on the other hand, is appealingly simple.
The basic approach of the algorithm described here is closely
related to the method described by Faverjon. Many of the
details of the present algorithm, however, especially the
treatment of three-dimensional constraints and the free space
representation, are new and more general.

The approach taken in this algorithm is similar to that of [7],
[8], [12], [13] in that it involves quantizing joint angles. It
differs in this respect from exact algorithms such as [171, [191.
On the other hand, the quantization approach lends itself
readily to efficient computer implementation. The approach
taken here differs from most previous configuration-space
algorithms, for example, [4], [5], [131, [141, in that no attempt
is made to characterize the surfaces of the obstacles in the
configuration space. Instead, the approximate obstacles are
built up from a series of one-dimensional ranges of forbidden
values. As with many motion-planning algorithms, including
[5], [13], [14], [19], the free-space outside of the obstacles in
this algorithm is represented as a collection of cells. The
connectivity graph of the cells is used to search for a path. A
cellular representation of the free-space contrasts with the use
of a one-dimensional subset of the free-space such as the
Voronoi diagram; see, for example, [2], [17].

0882-4967/87/0600-0224$01 .OO 0 1987 IEEE

LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 225

4

Fig. 1 . Path for all six links of Puma obtained using algorithm described here. Three-fingered hand shown as end-effector does not
change configuration during motion, hut its shape is taken into account during motion planning. Total planning time on Symbolics
3600 was approximately 3 min. Joints were sampled at k 3".

The purpose of this paper is to show that motion planning
for general manipulators can be both simple and relatively
efficient in most practical cases. There is no reason why
motion planning should be any less practical than computing
renderings of three-dimensional solids in computer graphics.
In both cases, there are many simple numerical computations
that can benefit from hardware support. In fact, it is worth
noting that in the examples in Fig. 1 it took longer to compute
the hidden-surface displays in the figures than to compute the
paths.

II. THE BASIC APPROACH: SLICE PROJECTION
The configuration of a moving object is any set of

parameters that completely specify the position of every point
on the object. Configuration space (C space) is the space of
configurations of a moving object. The set of joint angles of a
robot manipulator constitute a configuration. Therefore, a
robot's joint space is a configuration space. The Cartesian
parameters of the robot's end effector, on the other hand, do
not usually constitute a configuration because of the multiplic-
ity of solutions to a robot's inverse kinematics. It is possible to

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3, JUNE 1987 226

I

(b)
Fig. 2. (a) Closeup of initial configuration of manipulator for path in Fig.

l(b) (from different viewpoint). (b) Closeup of final configuration of
manipulator for path in Fig. l(b). Note that full polyhedral descriptions of
arm and end-effector are used in algorithm.

map the obstacles in the robot's workspace into its configura-
tion space [3j-[5], [13], [14j. These C-space obstacles
represent those configurations of the moving object that would
cause collisions. Free space is defined to be the complement
of the C-space obstacles.

Motion planning requires an explicit characterization of the
robot's free space. The characterization may not be complete,
for example, it may cover only a subset of the free space.
However, without a characterization of the free space, one is
reduced to trial and error methods to find a path. In this paper
we show how to compute approximate characterizations of the
free space for simple manipulators. By simple manipulators
we mean manipulators composed of a nonbranching sequence
of links connected by either revolute or prismatic joints (see
[18] for a treatment of the kinematics of simple manipulators).
We restrict the position of link zero of a simple manipulator to
be fixed. Most industrial manipulators (not including parallel-
jaw grippers) are simple manipulators in this sense.

The C-space obstacles for a manipulator with n joints are, in
general, n-dimensional volumes. Let C denote an n-dimen-
sional C-space obstacle for a manipulator with n joints. We
represent approximations of C by the union of n - 1-

dimensional slice projections [131, [141. Each n - 1-
dimensional configuration in a slice projection of C represents
a range of n-dimensional configurations (differing only in the
value of a single joint parameter) that intersects C.

A slice projection of an n-dimensional C-space obstacle is
defined by a range of values for one of the defining parameters
of the C space and an n - 1-dimensional volume. Let q =
(q l , * , qn) denote a configuration, where each qi is a joint
parameter, which measures either angular displacement (for
revolute joints) or linear displacement (for prismatic joints).
Let x, be a projection operator for points, defined such that

x,(4)=(41, * * * Y q j - 1 9 4 j + l > . * *) qn).

Let IIla,,bjl(S) be a projection operator for point sets S , defined
such that

n[a,,,](S)= {Tj(q)lq E S and q j E [ai, bjI}*

Then, the slice projection of the obstacle C for values of qj E
[aj , b,] is

% 7 j , b j] (C) .

The definition of slice projection is illustrated in Fig. 3. In the
foregoing example, joint j is called the slice joint while the
other joints are known as free joints.

Note that a slice projection is a conservative approximation
of a segment of an n-dimensional C-space obstacle. An
approximation of the full obstacle is built as the union of a
number of n - 1-dimensional slice projections, each for a
different range of values of the same joint parameter (Fig. 3).
Each of the n - 1-dimensional slice projections, in turn, can
be approximated by the union of n - 2-dimensional slice
projections and so on, until we have a union of one-
dimensional volumes, that is, linear ranges. This process is
illustrated graphically in Fig. 3. Note that the slice projection
can be continued one more step until only zero-dimensional
volumes (points) remain, but this is wasteful.

Consider a simple two-link planar manipulator whose joint
parameters are q1 and 4 2 . C-space obstacles for such a
manipulator are two-dimensional. The one-dimensional slice
projection of a C-space obstacle C for 41 E [a, b] is some set
of linear ranges {Ri} for 4 2 . The ranges must be such that if
there exists a value of q 2 , call it d, and a value q1 E [a, bj,
call it c, for which (cy d) E C, then d is in one of the Ri (Fig.
3).

A representation of a configuration space with obstacles is
illustrated in Fig. 4(b), for the two-link manipulator and
obstacles shown in Fig. 4(a). The actual configuration space is
the surface of a torus since the top and bottom edge of the
diagram coincide (0 = 2a), as do the left and right edge. The
obstacles are approximated as a set of 4 2 ranges (shown dark)
for a set of values of q l . The resolution is 2" along the qI axis.

If the manipulator has three links, its configuration space
can be constructed as follows.

1) Ignore links beyond link 1. Find the ranges of legal
values of 41 by considering rotations of link 1 around the
fixed base.

LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM

P

t
I I

I I T

227

2) Sample the legal range of q1 at the specified resolution.
Do steps 3-5 for each of the value ranges of ql .

3) Ignore links beyond link 2. Find the ranges of legal
values of q2 by considering rotating link 2 around the
positions of joint 2 determined by the current value range

4) Sample the legal range of q2 at the specified resolution.
Do step 5 for each of these value ranges of q2.

5) Find the ranges of legal values of q3 by considering
rotating link 3 around the position of joint 3 determined
by the current value ranges of q1 and 4 2 .

of 41.

Some sample slices from a configuration space computed in
this way can be seen in Fig. 5 .

Note that the process just described is an instance of the
following simple recursive process. To compute C space (i) ,

1) ignore links beyond link i , and find the ranges of legal
values of qi by considering rotating link i around the
positions of joint i determined by the current value
ranges of ql, * e , 4;- 1;

2) if i = n, then stop; else sample the legal range of qi at
the specified resolution. Compute C space (i + 1) for
each of these value ranges of qi.

Observe that the basic computation to be done is that of
determining the ranges of legal values for a joint parameter
given ranges of values of the previous joints. This computation
is the subject of Section 111.

The recursive nature of the C-space computation calls for a
recursive data structure to represent the C space. The current
implementation uses a tree whose depth is n - 1, where n is
the number of joints, and whose branching factor is the
number of intervals into which the legal joint parameter range
for each joint is divided (Fig. 6) . The leaves of the tree are
ranges of legal (or forbidden) values for the joint parameter n.
Many of the internal nodes in the tree will have no descendants
because they produce a collision of some link i < n.

The main advantage of a representation method built on
recursive slice projection is its simplicity. All operations on
the representation boil down to dealing with linear ranges, for
which very simple and efficient implementations are possible.
The disadvantages are the loss of accuracy, and the rapid
increase of storage and processing time with dimensionality of
the C space. Contrast this approach with one that represents
the boundaries of the obstacles by their defining equations [4],
[5] . Using the defining equations is cleaner and more accurate,
but the algorithms for dealing with interactions between
obstacle boundaries are very complex. I believe that the
simplicity of slice projection outweighs its drawbacks. These
drawbacks can be significantly reduced by exercising care in
the implementation of the algorithms.

111. SLICE PROJECTIONS FOR POLYGONS

The key step in our approach is computing one-dimensional
slice projections of C-space obstacles, that is, determining the
range of forbidden values of one joint parameter, given ranges
of values for all previous joint parameters. We will illustrate
how these ranges may be computed by considering the case of

228 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3, JUNE 1987

(b)

Fig. 4. (a) Two-link revolute manipulator and obstacles. (b) Two-dimensional C space with obstacles approximated by list of one-
dimensional slice projections (shown dark). Initial and final position of manipulator are shown in input space and C space.

Fig. 5 . Configuration space slices for three link revolute manipulator.
Figures on right show samples of two-dimensional slice projections used to
approximate three-dimensional configuration space. Each slice shows
constraints on q2 and q, for different range of values of q1 (note different
orientations of manipulator’s first link in right figures). On left, manipula-
tor is shown in number of configurations along path shown on slice
diagram; initial and final configurations of paths are indicated by circles.

planar revolute manipulators moving among planar obstacles.
We will first discuss this problem informally and then derive
the solution from the equations of C surfaces.

A . A Geometric View
Assume that joint k, a revolute joint, is the free joint for a

one-dimensional slice projection and that the previous joints

are fixed at known values. Note that we assume, for now, that
the previous joints are fixed at single values rather than ranges
of values; we will see in Section III-C how to relax this
restriction. We require that the configuration of the first k - 1
links be safe, that is, no link intersects an obstacle. This is
guaranteed by the recursive computation we saw in Section 11.
Given these assumptions, we need to find the ranges of values
of the single joint parameter q k that are forbidden by the
presence of objects in the workspace.

The ranges of forbidden values for q k will be bounded by
angles where link k is just touching an obstacle. For polygonal
links moving among polygonal obstacles, the extrema1 con-
tacts happen when a vertex of one object is in contact with an
edge of another object. Therefore, the first step in computing
the forbidden ranges for q k is to identify those critical values
of q k for which some obstacle vertex is in contact with a link
edge or some link vertex is in contact with an obstacle edge
(Fig. 7).

The link is constrained to rotate about its joint; therefore,
every point on the link follows a circular path when the link
rotates. The link vertices, in particular, are constrained to
known circular paths. The intersection of these paths with
obstacle edges determine some of the critical values of q k , for
example, B in Fig. 7. As the link rotates, the obstacle vertices
also follow known circular paths relative to the link. The
intersection of these circles with link edges determine the
remaining critical values for q k , for example, A in Fig. 7.

Determining whether a vertex and an edge segment can
intersect requires first intersecting the circle traced out by the
vertex and the infinite line supporting the edge to compute the
potential intersection points. The existence of such an intersec-
tion is a necessary condition for a contact between link and
obstacle, but it is not sufficient. Three additional constraints
must hold (Fig. 8). 1) In-edge constraint is that where the
intersection point must be within the finite edge segment, not
just the line supporting the edge. 2) For orientation con-
straint, the orientation of the edges at the potential contact
must be compatible, that is, the edges that define the contact
vertex must both be outside of the contact edge. For the
reachability constraint for nonconvex objects, there must not
be other contacts that prevent reaching this point.

The in-edge constraint can be tested trivially given the

LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 229

0 0 0

Fig. 6 . Recursive nature of C space leads to recursive data structure: an n-level tree whose leaves represent legal ranges of
configurations for robot manipulator.

Fig. 7. Contact conditions for computing one-dimensional slice projections.
(a) Vertex of obstacle and edge of link. (b) Vertex of link and edge of
obstacle. Circles indicate path of vertices as link rotates around specified
joint.

\
\

Fig. 8. Given intersection of vertex circle and edge line, following
conditions must be met for feasible contact. a) Contact must be in edge
segment, contact 1 satisfies this but 1 ’ does not; b) edges that define contact
vertex must both be outside of contact edge, contact 1 satisfies this but
contact 2 does not; c) contact must be reachable, contact 1 satisfies this, but
contact 3 does not (this condition is only relevant for nonconvex objects).

potential contact point and the endpoints of the contact edge.
Since we know that the contact point is on the line of the edge,
all that remains to be determined is whether it lies between the
endpoints of the edge. This can be done by ensuring that the x
and y coordinates of the contact point are within the range of x
and y coordinates defined by the edge endpoints. Note that for
contacts involving link edges and obstacle vertices, the
position of the endpoints of the link edge must be rotated
around the joint position by the computed value of the joint
angle at the contact.

The orientation constraint can also be tested simply. All that
is required is that the two edges forming the contact vertex be
on the outside of the contact edge. Polygon edges are typically
oriented so that they revolve in a counterclockwise direction
about the boundary. Therefore, the outside of the polygon is
on the right of the edge as we traverse the boundary. Given
this, the feasibility of a contact can be verified simply by
comparing the absolute orientations of the edges involved in
the contact.

The reachability constraint, on the other hand, requires
examining all the contacts of the link with a given obstacle that
satisfy the first two constraints. For each contact angle q we
determine whether values of q k greater than q cause collision
or whether values less than 4 cause collision (Section 111-B).
The contact angles together with the collision directions can be
merged to form the ranges of forbidden values for qk. This
process is illustrated in Fig. 9.

B. Derivation Using C Surfaces
The two types of contacts (vertex-edge and edge-vertex)

give rise to the two basic types of C-space boundary (hyper-)
surfaces [3]-[5], [14]. One type of C surface (type A)
characterizes the configuration of the moving object for which
a vertex of the stationary obstacle is in contact with the infinite
line supporting an edge of the moving object. The other (type
B) characterizes the configuration of the moving object for
which the infinite line supporting an edge of the stationary
obstacle is in contact with a vertex of the moving object. The
equations of such surfaces are parameterized by the configura-
tion parameters of the moving object. For planar polygons, x,

230 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3, JUNE 1987

Fig. 9. Constructing ranges of forbidden values using potential contact
angles and collision directions.

y , 13 can be used as configuration parameters; for manipula-
tors, the 4i are the configuration parameters.

For a revolute joint, choose the coordinate system to be
located at the joint. The coordinate representation of all of the
vectors will be relative to this coordinate system. We represent
a line supporting an edge by an equation of the form: n * x + d
= 0. Where n is the (outward pointing) unit vector that is
normal to the line and the absolute value of d is the
perpendicular distance to the edge from the origin. The
condition for a vertex u being in contact with such a line is
simply n-u + d = 0.

For a type B contact, we are given a link vertex whose
initid position vector (for q k = 0) is u and an obstacle edge
whose line equation is n . x + d = 0. If the link angle is qk,
the coordinates of the rotated link vertex are

u' = (v, cos 4 k - vu sin q k , v, sin q k + vy cos q k) .

Substituting into the line equation yields a simple trigonomet-
ric equation in q k (all the other terms are constant):

(nxUx+nyVy) COS qk+(YlyV,-nxUy) Sin q k + d = o . (1)

From the definition of the scalar and vector product, we have
that

n,u,+ n,v, = 11 u 1 1 cos 4 nYv,-- n,vy= 11 u I I sin 4

where 4 is the angle between n and u . From this, it is clear that
the C-surface equation is merely

IIu/I cos (q k - ' $) = -d*

The solution to this equation is

Fig. 10,illustrates this situation. There is one such C surface
for each combination of link vertex and obstacle edge. Of
course, only convex vertices need be considered; no contact is
possible at a concave vertex.

Using the same notation, except that the edge is a link edge
and the vertex an obstacle vertex, the equation for a type-A C
surface is

(n,U,-kn,V,) COS ~ k - (~ y V , - ~ , V y) Sin q k + d = O . (3)

Fig. 10. Illustration of terms used in (1)-(4).

The only difference is the sign of the coefficient of sin q k . This
difference arises from the fact that we are thinking of the
obstacle vertex as counter-rotating while the link stands still.
That is, the direction of rotation of the vertex is the opposite of
q k ; this changes the sign of the sine of the angle. The solution
to this equation is:

One such C surface exists for each combination of (convex)
obstacle vertex and link edge.

Note that there are generally two solutions to each of the
equations (arising from the arccosine) since they correspond to
intersections of a circle traced out by a vertex and an infinite
line supporting an edge. These solutions, however, do not
necessarily represent feasible contacts between the link and an
obstacle. The remaining constraints illustrated in Fig. 8 must
also be satisfied. Of course, when the magnitude of the
argument to the arccosine is greater than one, this indicates an
infeasible contact, that is, the line is beyond the reach of the
vertex.

The in-edge constraint can be checked, as described before,
by computing the coordinates of the intersection point and the
positions of the edge endpoints, given the computed values of

The solutions obtained from (2) and (4) must also satisfy the
orientation constraint. One way of testing this constraint is by
ensuring that the polygon edges that intersect at the contact
vertex both point outward from the contact edge. If el and e2
are the edge vectors pointing away from the vertex (Fig. 1 l),
then the orientation constraint boils down to

q k -

sgn (n * e l) r O sgn (n * e 2) r 0

where sgn (x) = x / \ x1 for x # 0 and 0 otherwise.
The reachability constraint is handled as described in

Section 111-B. To do that, we must be able to tell whether an
increase in q k will move the link towards or away from the
obstacle. This can be done by computing the derivative of (1)
and (2) . The left side of these equations is a measure of the
perpendicular distance of a vertex from an edge. The sign of
the derivative of this distance with respect to q k will indicate
whether a change in q k will move further into contact or away.

LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 23 1

any point on a link to the base joint and on the maximum angular
displacement of the link. The maximum distance of points on
link k is the sum of the distances between all previous joints plus
the distance of any point on link k from joint k. The angular
displacement of link k in a planar revolute manipulator is also
the sum of the angular displacements of all the previous joints.
Given the distance d and the angle 8, the magnitude of the
displacement (chord of a circle) is &(1 - cos 8).

Let the allowed angle range for qi be a; + ei; let ri be the
maximum distance of any point on link i from joint i ; and let l;
be the distance from joint i to joint i + 1. The value of 6 k is Fig. 1 1 . Testing orientation constraint for polygonal contact.

Fig. 12. The kth manipulator link can be grown by radius &: maximum
Cartesian displacement of any point on link in response to joint displace-
ments E , for i s k.

For example, the sign of the derivative of the distance for a
type B contact (see (1)) is determined by the sign of - sin (q k

+ 4) evaluated at the value of q k that gives rise to contact.

C. The Effect of Ranges of Joint Angles
Our discussion thus far has been limited to situations where

all the joints except the last have known fixed values. The
definition of one-dimensional slice projections allows all the
joints, save one free joint, to be within a range, not just a
single value. We can readily convert the slice projection
problem (for ranges of joint values) to the simpler cross section
projection problem (for single joint values) we have already
discussed. The idea is to replace the shape of the link under
consideration by the area it sweeps out when the joints
defining the slice move within their specified value ranges
[131, [141. Any safe placement of the expanded link represents
a range of legal displacements of the original link within the
specified joint ranges.

In most cases, instead of computing the exact swept
volumes, we can use a very simple approximation method.
Assume the manipulator is positioned at the configuration
defined by the midpoint of all the joint value ranges specified
for the slice projection. Compute the upper bound on the
largest Cartesian displacement of .any point on link k in
response to any displacement within the specified range of
joint values. Call this bound 8k. If we “grow” each link by its
corresponding radius Sk , the grown link includes the swept
area.

A polygonal approximation to the grown link can be
obtained by computing the “set sum” of “Minkowski sum”
of the link and a polygon enclosing a circle of radius 6 [141. An
example of such a grown manipulator can be seen in Fig. 12.

We can illustrate this approach by considering how to
compute 6 k for a planar manipulator composed of n revolute
joints. The motion of a joint affects the displacement of all
subsequent links. Therefore, the maximum Cartesian displace-
ment of each link depends on the maximum total distance from

Because the last link’s motion is never quantized when
computing the C space, we have that ek = 0. This value of 6 k
is very conservative; it is the largest displacement anywhere in
the work space. In fact, it corresponds to the displacement in a
link when all the previous links are fully outstretched, that is,
all the aj = 0, j 5 k. Different configurations would yield
smaller values of Sk.

In Fig. 12 the relevant parameter values are e l = 2O, e2 =
2O, e3 = 0, lo = 0, I I = 17.0, Z, = 17.0, rl = 18.44, r2 =
17.26, r3 = 5.385. Therefore, the values of the & are SI =
0.644, S2 = 2.39, S3 = 2.749. Note the growth in the value of
Ejk as the distance from the base increases. Because of this, one
might want to choose a finer quantization for joints associated
with long links near the base, for example, joint two in our
example.

In some applications, if the fk are small, it may be
preferable to ignore the effect of small ek during planning and
simply check the resulting path for collisions. Of course, if the
joint ranges 6k are large, these gross approximations may be
too conservative and the exact swept volume should be used.

D. Prismatic Joints
The discussion so far has concentrated on revolute joints,

but the approach is not limited to them. If any of the joints are
prismatic, only the computation of one-dimensional slices will
be different and, in fact, it will be simpler.

As before, the key problem is computing the.critica1 value
of the joint parameters for which a link is in contact with an
obstacle. These contacts involve contact of a vertex and an
edge. So, as in the case for revolute joints, we need to
determine the locus of motion of link vertices relative to
obstacle edges and the locus of motion of obstacle vertices
relative to link edges. For links actuated by revolute joints, we
have seen that the vertices trace out circles. For links actuated
by prismatic joints, the points on the link trace out lines.
Potential points of contact occur where the lines defined by the
motion of the vertices intersect the edges. This operation
replaces the intersection of circles and lines in the preceding
discussion.

The points of intersection must still satisfy the in-edge,
orientation, and reachability constraints. Note that the in-edge
constraint must now be modified to check, not only that the
intersection point is within the finite edge segment of the

232 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3, JUNE 1987

polygon, but also that the contact is within the range of motion
of the joint.

IV. SLICE PROJECTIONS FOR POLYHEDRA

The basic approach described in Section I11 carries over
directly to three-dimensional manipulators and obstacles.
There is, however, one significant difference: there are three
types of contacts possible between three-dimensional polyhe-
dra. The three contact types are type A, vertex of obstacle and
face of link; type B, vertex of link and face of obstacle; and
type C, edge of link and edge of obstacle.

Let us consider type B contacts first. Each revolute joint is
characterized by an axis of rotation. As the joint rotates, link
vertices trace circles in a plane whose normal is the joint axis.
The intersection of this circle with the plane supporting an
obstacle face defines two candidate points of contact (see the
appendix). As in the two-dimensional case, possible contacts
must satisfy three constraints to be feasible. For the in-face
constraint, the contact must be within the obstacle face; for the
orientation constraint, all of the link edges meeting at the
vertex must be outside of the obstacle; and for the reachability
constraint, for nonconvex polyhedra, there must not be any
earlier contacts that prevent reaching this one.

The in-face constraint can be checked using any of the
existing algorithms for testing whether a point is in a polygon.
The orientation constraint can be enforced by checking that the
dot products of the face normal with each of the vectors from
the contact vertex to adjacent vertices is positive [5] . The
reachability constraint is enforced exactly as in the two-
dimensional case by merging the forbidden angle ranges.

Type A contacts are handled analogously to type B contacts
except that now the vertex belongs to an obstacle and the face
to a link. The axis of rotation is still that of the manipulator
joint.

Detecting type C contacts requires detecting the intersection
of a line (supporting a link edge) rotating about the joint axis
and a stationary line (supporting an obstacle edge). The
solution for this case can be found in the appendix. Of course,
an intersection point must be inside both edge segments to be
feasible. There is also an orientation constraint which is a bit
more difficult to derive than those for type A and B contacts
but not particularly difficult to check (for the derivation, see
[5]) . The appendix shows the details of these computations.

V. FREE-SPACE REPRESENTATION
Having obtained a conservative approximation of the C-

space obstacles, the free space is simply the complement of all
the obstacles. Since the obstacles are ultimately represented as
sets of linear ranges, the complement is trivial to compute. A
two-dimensional free space, for example, will be represented
as a list of one-dimensional slices. Each slice represents the
ranges of regal values of q2 for some small range of values of
ql. This is in itself a reasonably convenient representation of
the free space but not very compact. If we were to try to find
paths through the individual slices a great deal of time would
be wasted searching through nearly identical slices. A more
compact representation is called for, one that captures some of
the coherence between adjacent slices.

I I I I I I I I I I I

Fig. 13. Illustration of definition of free-space regions. Bold lines indicate
configuration space obstacles. Two regions are indicated in dashed lines.
Kernels are rectangular areas within regions corresponding to common
intersection .of all free ranges in region.

The free-space representation used in the current implemen-
tation is made up of regions. A region is made up of linear
ranges from a set of adjacent slices such that the ranges all
overlap. The area of common overlap of all the slices in a
region is rectangular and called the region’s kernel (Fig. 13).

The regions are built by looping over the slices from left to
right in the diagrams, that is, from q1 = 0 towards q1 = 27r.
Each legal range in the first slice initializes a new region. For
each region, we keep track of the legal range of q2 values
common to all the slices in the region; this is the kernel. As
each new slice is considered, the ranges in that slice are
compared to the kernel of the regions in the preceding slice. If
a range overlaps the kernel of some region, then that range is
added to the region and the kernel updated by intersecting it
with the new range. If a range does not overlap any previous
region, it is used to start a new region. Note that, in general,
more than one range in the new slice may overlap the kernel of
a region in the previous slice. The implemented algorithm
chooses the lower range (smaller values of q2) to add to the
region; the higher ranges are used to start new regions. By this
construction, we guarantee that all the slices in a region share a
common range of q2 values; this is the kernel. In practice, we
require some minimum overlap between slices in the same
regions to avoid very narrow kernels.

Free-space regions are nonconvex and so points within the
region may not always be connectable by a straight line. There
is, however, a simple method for moving between points
within the region: move from each point along its slice to the
edge of the kernel and connect these kernel points with a
straight line.

To search for a path between points in different regions
requires representing the connectivity of the regions. We build
a region graph where the nodes are regions and the links
indicate regions with common boundary. Associated with each
region is a set of links to adjacent regions, where each link
records the location of the overlap in addition to the adjacent
region. Regions have neighbors primarily in the q1 direction;
for these neighbors, the range of q 2 values at the common
region boundary is stored with the link. By construction,
regions only have q2 neighbors at the 0 = 27r boundary.
Anywhere else the region is bounded above and below by
obstacles.

In general, each n-dimensional slice is represented as a list

MZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 233

Fig. 14. (a) Regions for two-joint C space. Rectangles are region kernels.
Hashed area shows region R2. (b) Region graph corresponding to regions in
part A. Link labels indicate existence of common boundary in q1 and/or q 2
directions.

of n - 1-dimensional slices, and one-dimensional slices are a
list of ranges of joint values. We have seen that two-
dimensional regions are constructed by joining neighboring
one-dimensional slice-projections. In principle, we could
construct three-dimensional regions by joining neighboring
two-dimensional regions, and so on. Instead, for three-
dimensional C spaces we simply build two-dimensional
regions for each range of values of the first joint parameter and
represent the connectivity among these regions in the region
graph (Fig. 15). The connectivity is determined -by detecting
overlap between region kernels in neighboring two-dimen-
sional slices, that is, slices obtained by incrementing or
decrementing the first joint parameter. When overlap exists,
the area of overlap is associated with the corresponding link in
the region graph. This method is readily extended to n-
dimensional slices by considering as neighbors slices obtained
by incrementing or decrementing one of the first n - 2 joint
parameters used to define the two-dimensional slice.

The main feature of this region representation is that it
exploits the coherence of the free space; thus, for example, it
does not introduce many arbitrary divisions in the free space
such as are introduced by octree-type representations [7].
Exploiting the natural coherence has a number of practical
advantages. The main result is the compactness of the
representation: very few regions are required to represent

rather complex free spaces. Another important result is low
branching in the region graph: each region has relatively few
neighbors. These characteristics of the representation also
make possible some of the heuristic search techniques de-
scribed in Section VII.

VI. SEARCHING FOR A PATH IN THE REGION GRAPH

In this section, a technique for searching a region graph is
described. This technique applies to searching any subset of
the C space; it is not necessary that the complete C space be
examined before any searching is done. Section VI1 describes
some heuristic strategies for limiting what parts of the C space
are actually explored.

Path searching is done by an A* search in the region graph
from the region containing the start point to the region
containing the goal point. During the search, a list of search
nodes is kept. Each search node is associated with some
intermediate region in the region graph and represents a set of
regions connecting the start region to that intermediate region.
For each node, we also keep track of an entry point on the
region boundary that represents the location where the robot
path would enter the region. When a search node is expanded
by extending the region path to an adjacent region, the entry
point is moved.to the closest point on the common boundary
between the two regions. The entry point to the next region
becomes the exit point for the current region.

To carry out the search, we must associate with each search
node an actual distance covered and an underestimate of the
remaining distance to the goal. We use the distance between
entry points to define the distance between two regions and the
underestimate is the distance between the entry point and the
goal. Of course, these distances are based on differences
between the joint parameters modulo 2n. Once having found a
list of regions connecting the start to the goal, the actual path is
obtained by connecting the entry points and exit points of the
regions. The entry point of the start region is the start point
and the exit point of the goal region is the goal point.

A typical path found by the algorithm using the simple
strategy described earlier is shown in Fig. 16. The paths tend
to be jagged; some postprocessing to smooth the path would be
desirable and is currently under investigation. On the other
hand, because of the compactness and low branching of the
region representation, searching for a path tends to be very fast
(less than half a second for two-dimensional C spaces).

VII. HEURISTIC SUBSETS OF THE C SPACE

Having built a C space, it may be searched repeatedly for
different paths. Changes to the environment, however, will
cause parts of the C space to be recomputed. In rapidly
changing environments, it may not be appropriate to compute
the complete C space since only small sections of the C space
will ever be traversed. This section describes experience with
a number of simple heuristic strategies that help select the
subset of the C space relevant to a particular path.

A . Decoupling the Degrees of Freedom
The path shown in Fig. 1 was computed using two simple

heuristics to choose subsets of the C space. First plan a path

234 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3 , JUNE 1987

Fig. 15. Region connectivity for three dimensional slices; regions can have neighbors in 41 direction.

(c)
Fig, 16. (a) Regions kernels for example in Fig. 4. (b) Path found between start (1) and goal (4) configurations. (c) Some

intermediate configurations.

for the first three links and a simple conservative approxima-
tion of the rest of the manipulator (the last three links, the end-
effector, and the load), see Fig. 17. The origin and goal for this
path are chosen to be the points in free space closest to the
(projection of the) actual origin and goal. Note that these
points may differ from the actual origin and goal in all of the
joints. Having found such a path, there remains finding paths
in the six-dimensional C space between the actual origin (resp.
goal) and the origin (resp. goal) of the path. For all these
paths, we compute only the portion of the C space bounded by
the joint values of the origin and goal configurations.

This strategy has the effect of nearly decoupling the degrees
of freedom. The six-dimensional planning is confined to the

to find a path in the worst case, but this strategy has proven to
be reliable and efficient in most practical situations.

near the origin and goal. ofcourse, this strategy will fail Fig. 17. First three links of manipulator of Fig. 1 . Last three links and end
effector have been replaced by simple bounding box.

LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 235

B. Modifying Low-Dimensional Paths
One alternative approach for searching for a path from

configuration (q l , - , qn) to configuration (qg,l , * - -qgJ is
the following.

1) Ignore all but the first two joints. Build the free space for
this reduced manipulator. Find a sequence of free space
regions that contain a path from (41, q 2) to (4; , 4;). Let
i = 3.

2) Expand the portion of the free space included in the
regions found so far to incorporate the link i. That is,
quantize the range of values in the region and use them to
compute one-dimensional slice projections of the C
space for the first i links.

3) Search for a sequence of free-space regions that contain
a path from (q l , - - a , qi) to (q,’, e , 41). If i = n then
stop; else increment i and to to step 2 .

The idea behind this strategy is to focus on relevant sections
of the configuration space by first finding paths for succes-
sively “longer” manipulators, starting with a two-link manip-
ulator and going all the way through to a manipulator with n
links.

It is important that at each stage we consider not just a single
path of the “shorter” manipulator, but a sequence of regions
that span all the free-space between a set of obstacles. The
addition of link n will typically change the required path for
the first n - 1 links. Therefore, the search space should
include more than a single path so as to avoid the need to
perform a backtracking search.

This method has been implemented. The path for the four-
degree-of-freedom manipulator shown in Fig. 18 was found by
this technique. The technique leads to significant time savings
on problems involving more than two degrees of freedom. Of
course, since the complete configuration space is not com-
puted, the time to plan a subsequent motion in the same work
space will be as long as that for the initial motion.

VIII. DISCUSSION
The main advantages of the algorithm described here are 1)

it is simple to implement, 2) it is fast for manipulators with few
degrees of freedom, 3) it can deal with manipulators having
many degrees of freedom including redundant manipulators,
and 4) it can deal with cluttered environments and nonconvex
polyhedral obstacles. The total wall-clock time to compute the
C-space obstacles and then plan a path for the two-link
example shown in Figs. 4 and 16 is 6 s on a Symbolics 3600
Lisp Machine with floating-point operations performed in
software. These times could be improved by carefully recod-
ing the algorithm and use ‘of floating-point hardware, but they
are already quite a bit faster than a human using an interactive
programming system (on-line or off-line).

The main disadvantages of the algorithm are that the
approximations introduced by the quantization may cause the
algorithm to miss legal paths in very tight environments, and
the rapid growth in execution time with the number of robot
joints. This last drawback is probably inherent in any general
motion planner; the worst-case time bound will be exponential
in the number of degrees of freedom [19]. Certainly, the

(b)
Fig. 18. (a) Initial and goal configurations for two-dimensional manipula-

tor with four degrees of freedom. (b) Path found by algorithm in Section
VII-B.

algorithm described here is exponential in the number of
degrees of freedom of the robot. The execution time is
dominated by the time to build the configuration space. The
worst-case asymptotic complexity for building a complete
(quantized) C space a robot with k degrees of freedom, in
which the joint ranges are divided into r values, in which the
robot description has m faces and edges, and in which the
environment has n faces and edges is O(rk- 1(mn)2) . In
practice, as we pointed out earlier, except for k = 2 one never
builds the complete C-space representation.

The performance of this algorithm shows that motion
planning algorithms can be fast enough and simple enough for
practical use. I believe that in many applications automatic
motion planning will be more time effective than interactive
off-line programming of robots. In fact, the planning times
will probably be on the order of the times required to perform
hidden surface elimination in graphics systems.

APPENDIX

COMPUTING CONTACT ANGLES FOR POLYHEDRA
In what follows we assume that we are dealing with a

convex polyhedron describing link k and an obstacle polyhe-
dron (not necessarily convex). The coordinate system is
chosen so that the origin corresponds to the position of
revolute joint k and the z axis is aligned with the joint axis
(Fig. 19). The coordinate representation of all vectors is
relative to this coordinate system. We assume that the initial
position of the link polyhedron corresponds to q k is zero. We

236 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO, 3, JUNE 1987

Link k-1 I Link k

Y
" k

Fig. 19. Joint coordinate system.

are interested in computing values of q k for which the link is in
contact with the obstacle polyhedron.

Type B Contact: Vertex of Link and Face of Obstacle
We are given a vertex of the link whose position vector is u

and an obstacle face whose plane equation is n *x + d = 0 (n
is the plane's outward-facing unit normal). We solve for the
angle q k that rotates the vector onto the plane. We obtain the
equation for q k by substituting the vertex's position, rotated by
q k , into the plane equation and solving for q k .

The coordinates of the position vector for the rotated vertex
are

u ' = (ux cos q k - v, sin q k , u, sin q k + v, cos q k , u,).

Substituting into the plane equation yields n- u ' + d = 0, this
yields a simple trigonometric equation

(nxux+ nyuy) cos q k + (nyu, - n,u,) sin q k = - d - n,u, (5)

whose solution is (6).

qk=cos-'
-n,v,-d

+ arctan (n,u,- nxuy, n,u,+ nyuy). (6)

Equation (5) is the equation for a C surface of type B [14].
Note that if we let n, = 0, then (5) and (1) are essentially
identical. The arctangent simply computes the angle between
the plane normal and the projection of u on the xy plane; this
magnitude is analogous to 4 in the planar case. Equations (6)
and (2) are also related in the same way.

The left side of (5) represents the perpendicular distance of
the rotated vertex from the obstacle plane. The sign of the
derivative of this quantity with respect to q k can be used to
determine whether increasing or decreasing q k causes a
collision.

The orientation constraint simply requires testing whether
the other endpoint of all the edges meeting at the contact vertex
are on the outside of the plane. This is done by substituting the
position vector of these endpoints into the left side of the plane
equation and testing that the value is positive.

Type A Contact: Vertex of Obstacle and Face of Link
We are given an obstacle vertex whose position vector is u

and a link face whose plane equation is n * x + d = 0 (n is the
plane's outward-facing normal). The solution for q k is almost
identical to the type A case, the only difference is the sign of
the first argument to the arctangent. This reflects the fact that

in type A contact we are treating the link as stationary and
assuming the object is rotating in the opposite direction. This
changes the sign. of the sine of the angle.

Typc C Contact: Edge of Obstacle and Edge of Link
This case is substantially more difficult; we follow the

derivation in [11. We represent points on the edges parametri-
cally in t . Therefore, points on the link's edge are represented
by tlm + v where v is the position vector of one of the
endpoints of the edge and m is a vector along the edge
(actually the difference vector between the endpoints). The
parameter tr E [O, 11 parameterizes along the edge. We can
represent the vector along the obstacle edge similarly as ton +
w for to E [O, 11.

As the edge rotates around the z axis, points on the edge
trace out circles. The equation for points on those circles are

x2+y2=(m,tr+u,)2+(mytl+uy)2

z=rn,tr+uz.

These can be combined by solving the second equation for tr
= (z - uz)/rn, and substituting into the first to obtain

x ' + y ' = (m ' (z - u ,) + u x) 2 + (~ (~ - u ~) + u , mz m, > 2 . (7)

This is an implicit equation for points on the rotation surface.
The parametric form of the obstacle edge can be used to

solve for the intersection of the edge with the rotation surface:

x=n,to+ w, y=n,to+ w, z=n,to+ w,.

Substituting into (7) gives a quadratic equation in to.
Define the following terms:

p=(nE+n;)mz- (m:+m~)n~

4 = 2 [(n x w , + n , w ,) m ~ - (m ~ + m ~ ~) (w , + ~ ,) n ,

- (mxu,+ ~y~y)mzn , l

r=(w~+w~)m~-[(m,(w,-v ,)+u,m,)2

+(~y(w,-~z)+Uym,)21.

The quadratic equation that must be solved for to is

pt:+qto+r=O.

Having to we can solve for br since we know that the z values at
contact must be equal. Therefore,

n,to = w, - u,

mZ
t, =

Given values for tl and to, we must first check that they are in
the range [0, 11 (the in-edge constraint), then we can compute
points of intersection on each of the edges. Let 1 be the position
vector of the intersection point on the link edge and o the
position of the intersection point on the object edge. Then,

q k = arctan (lxoy- Zyox, lxo,+ lyoy).

LOZANO-PEREZ: A SIMPLE MOTION-PLANNING ALGORITHM 237

Note, however, that we have assumed, when deriving (7)
that m, f 0. In the not uncommon event that it is, then all the
points on the rotation surface have z = u, and so will the
intersection point with the obstacle edge. We can use this to
obtain to = (u, - w,)/n,. We can then solve for tl by using the
fact that the contact point on the link edge will be on the same
circle as the contact point on the obstacle edge:

(m x t r + u x) 2 + (m , t r + u y) 2 = (n x t o + ~ x) 2 + (n y t ~ + ~ ,) 2 .

However, we know the value of to so this is a quadratic
equation for t,. Given the values of ti and to we can solve for 4 k

as before.
In addition to solving for the value of the contact angle we

must compute the derivative of the distance to the contact as a
function of 4 k . As before, this will determine whether the
contact angle is a potential upper or lower bound for a contact
range. Unfortunately, this is not as simple as it is for type A
and B contacts.

When the two edges are in contact, any motion component
perpendicular to both of them will cause a collision while a
component of motion along either edge will not cause a
collision. The direction perpendicular to both edges is simply
the cross product of the two edge vectors (given the link edge
rotated to the contact angle):

The 4 k dependence has been indicated explicitly.
One problem here is that we do not know whether c is

outward pointing or not. We can decide that by dotting c with a
direction known to point into the link. If el and e2 .are the
direction vectors of edges meeting the link edge at one of its
vertices (see Fig. 20), then el + ez is a direction pointing into
the link volume. Let k = sgn @.(el + e2)), then kc is the
outward-pointing normal we require (see [5] for a careful
derivation).

Given the values of k, the type-C C-surface equation can be
written as [14]

Differentiating the left side with respect to 4 k yields

((wymx- wxmy)n,+ (dzmx- uxmz)n,

- (dzmy - uym,)nx)k sin 4 k + ((wymy+ wxm,)nz

Fig. 20. Definition of e, for i = 1, 2 , 3, 4.

s’ = sgn (c e3) = sgn (c e4)

s#s’.

These conditions are analogous to the type A and B cases.

the actual amount of computation involved is not large.
Although the derivation of the type C case is a bit involved,

ACKNOWLEDGMENT

My thanks to Bruce Donald, Mike Erdmann, Rod Brooks,
and Eric Grimson for their comments on an earlier draft of this
paper. I also thank the reviewers for their helpful suggestions.

REFERENCES

[71

J . W. Boyse, “Interference detection among solids and surfaces,”
Comm. Assoc. Comput. Mach., vol. 22, Jan. 1979.
R. A. Brooks, “Planning collision-free motions for pick-and-place
operations,” Znt. J. Robotics Res., vol. 2, no. 4, 1983.
R. A. Brooks and T. Lozano-Wrez, “A subdivision algorithm in
configuration space for findpath with rotation,” in Proc. 8th Znt. Joint
ConJ on AI, Aug. 1983 (also ZEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, pp, 224-233, MarJApr. 1985; MIT AI Memo 684, Feb.
1983).
J. F. Canny, “Collision detection for moving polyhedra,” in Proc.
European Con$ AI, 1984 (also MIT AI Memo 806, Oct. 1984).
B. R. Donald, “Motion planning with six degrees of freedom,” MIT
AI Tech. Rep. 791, May 1984.
E. Freund, “Collision avoidance in multi-robot systems,” in Proc.
2nd Znt. Symp. Robotics Research, Kyoto, Japan, Aug. 1984.
Cambridge, MA: MIT Press.
B. Faverjon, “Obstacle avoidance using an octree in the configuration
space of a manipulator,” in Proc. IEEE Znt. ConJ Robotics, Atlanta,
GA, Mar. 1984.
L. Gouzenes, “Strategies for solving collision-free trajectory problems
for mobile and manipulator robots,” Znt. J. Robotics Res., vol. 3, no.

+ (dzmy - U,m,)n, - (d,m,- Uxmz)nx)k COS 4 k
4, 1984.

[9] N. Hogan, “Impedance control: An approach to manipulation,”
presented at the American Control Conf., June 1984.

where d, = v, - w,. If this derivative is negative then [lo] 0. Khatib and J. F. Le Maitre, “Dynamic control of manipulators

increasing 4 k will cause a collision.
operating in a complex environment,” in Proc. 3rd CISM-ZFToMM,
Udine, Italy, Sept. 1978.

We are not finished yet. We must guarantee that the contact [l l] B. H. Krogh, “Feedback obstacle avoidance control,” in Proc. 21st

satisfies the orientation constraint. The following are neces- [121 c. and F. Germain, ‘‘An adaptive collision-free trajectory Allerton Conj., Univ. of Illinois, Oct. 1983.

sary and sufficient conditions for this [5]: planner,” in Proc. Int. Conf. Adv. Robotics, Tokyo, Japan, Sept.

s =. sgn (c el) = sgn (c e2) [13] T. Lozano-Wrez, “Automatic planning of manipulator transfer move-
1985.

238 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 3, JUNE 1987

ments,” IEEE Trans. Syst., Man, Cybern., vol. SMC-11, pp. 681-
698, Oct. 1981 (also MIT AI Memo 606, Dec. 1980).
--,“Spatial planning: A configuration space approach,” IEEE
Trans. Comput., vol. C-32, pp. 108-120, Feb. 1983 (also MIT AI
Memo 605, Dec. 1980).
-,“Robot programming,” Proc. IEEE, vol. 71, pp. 821-841, July
1983 (also MIT AI Memo 698, Dec. 1982).
T. Lozano-Pkrez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Comm. Assoc.
Comput. Mach., vol. 22, pp. 560-570, Oct. 1979.
C. O’Dunlaing, M. Sharir, and C. K. Yap, “Retraction: A new
approach to motion planning,” in Proc. 15th ACM STOC, pp. 207-
220, 1983.
R. P. Paul, Robot Manipulators. Cambridge, MA: MIT Press,
1981.
J. Schwartz and M. Sharir, “On the piano mover’s problem 11,” in
Advances in Applied Mathematics, 1983.
S. Udupa, “Collision detection and avoidance in computer controlled
manipulators,” in Proc. 5th Znt. Joint Conf. AI, Cambridge, 1977.

