
A constraint-based method for solving
sequential manipulation planning problems

Tomás Lozano-Pérez and Leslie Pack Kaelbling

Abstract— In this paper, we describe a strategy for integrated
task and motion planning based on performing a symbolic
search for a sequence of high-level operations, such as pick,
move and place, while postponing geometric decisions. Partial
plans (skeletons) in this search thus pose a geometric constraint-
satisfaction problem (CSP), involving sequences of placements
and paths for the robot, and grasps and locations of objects.
We propose a formulation for these problems in a discretized
configuration space for the robot. The resulting problems can
be solved using existing methods for discrete CSP.

I. INTRODUCTION

Much of the work on robot motion planning has focused
on planning a single path with a specified starting and ending
configuration. It has long been recognized [1], [2], [3], [4],
[5], [6], [7], however, that solving manipulation problems
requires planning a coordinated sequence of motions that
involve picking, placing, pushing, or otherwise manipulating
the objects, as well as moving through free space. However,
the dimensionality (and therefore the running time) of these
manipulation planning problems increases substantially over
traditional single motion-planning problems.

This increased dimensionality motivates a hierarchical task
and motion planning (TAMP) approach, in which a symbolic
search at a more abstract level of representation is used to
guide the search for a sequence of motion plans that achieve a
desired objective in the environment (for example, that some
objects are placed in some region of space).

There has been increasing interest in the TAMP problem,
with many suggested solutions for addressing the difficult
multi-level search problem it entails [8], [9], [10], [11],
[12], [13], [14]. Most methods ultimately involve a search
at the task level in an abstract space, in which determining
whether an operation is legal depends on the solution of a
high-dimensional geometric motion-planning problem. Such
approaches are particularly difficult to manage when a geo-
metric decision made early in the high-level plan affects the
feasibility of the rest of the plan in a way that is not revealed
until later in the search. Dependencies of this kind can lead
to relatively unguided backtracking.

An alternative approach [13], [15] is for the task-level
planner to delay the binding of any geometric choices
(grasps, object placements, robot configurations, paths) until

This work was supported in part by the NSF under Grant No. 019868,
in part by ONR MURI grant N00014-09-1-1051, in part by AFOSR grant
AOARD-104135 and in part by Singapore Ministry of Education under a
grant to the Singapore-MIT International Design Center.

Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA tlp@mit.edu,
lpk@mit.edu

it has constructed a plan “skeleton” that consists of unparam-
eterized robot operations, such as pick b, move and place b,
together with a set of constraints on the details of those op-
erations. Then, a geometric planner can attempt to “fill in the
details.” The advantage of this strategy is that the interrelated
geometric decisions can be considered collectively, allowing
us to bring insights from constraint-satisfaction solvers to
bear on the problem. For example, the most constrained
decisions can be addressed first, independent of whether they
come early or late in the plan.

Note that in these constraint-based approaches, the geo-
metric planner is in the inner loop of a symbolic planner, and
must quickly decide whether a set of constraints is satisfiable.
However, the constraints generally describe complicated non-
convex regions in some underlying parameter space. The
solution we describe deterministically finds solutions for
constraints in a quantized representation of the task param-
eters. The fidelity of the representation can be increased
with a corresponding increase in computational cost. The
use of a discrete representation allows us to use solution
methods from the CSP (Constraint Satisfaction Problem)
literature [16].

This basic approach is not specific to any particular robot,
primitives, or tasks. In this paper, we describe a formulation
of plan skeletons for a mobile manipulation problem with
pick-and-place operations, show how they yield constraint
satisfaction problems, and how these problems are ultimately
solved. We demonstrate the flexibility of the method by
showing that the same basic skeleton with slightly different
constraints can give rise to solutions to multiple problems,
including moving one object out of the way in order to
grasp another, putting two objects into the same constrained
region of space, and regrasping an object so that it can
be placed into a tight space. We explore the performance
of several variations on the search strategy for constraint
satisfaction and on the method used for motion planning, and
document how the method scales with sampling granularity
and problem complexity.

II. RELATED WORK

Our focus is on manipulation problems. Early work in
this area [1] used somewhat ad-hoc techniques to couple
planning choices; for example, allowing the choice of a grasp
to depend on the choice of placement location. The Handey
system [2], [17] extended these techniques, using an explicit
graph search to find a sequence of regrasping motions.

In their seminal work, Alami et al. [18] and Simeon et
al. [4] defined the manipulation graph of “transfer” and



“transit” motions, in which the search for grasping, place-
ment and movement actions are integrated. Their approach
involves building probabilistic road-maps embedded in the
appropriately constrained spaces. Hauser [5] generalized
these ideas to a broader class of tasks (such as walking
and pushing) using the idea of multi-modal planning, where
a mode roughly corresponds to a constrained subspace in
the task parameter space. Since sample-based planners do
not naturally terminate when solutions do not exist, Hauser
developed a search strategy that allocates search effort among
multiple possible mode transitions. This line of work is
directly relevant to our problem, although it does not address
all of the constraints, especially those involving manipulating
a sequence of different objects, required to instantiate the
plan skeletons we consider. Also, we explore a strategy
based on deterministic (resolution limited) sampling which
can determine infeasibility (at a given resolution).

More recent work in TAMP has addressed similar prob-
lems. The most relevant work is that of Lagriffoul et al. [13],
who develop a constraint-satisfaction approach to a subset
of the geometric problems arising in TAMP. They do a
backtracking search over a discrete set of possible object
grasps and placements; but given a partial assignment of
those values, they are able to formulate a set of linear
constraints on robot configurations and object poses that
allow them to efficiently determine which assignments are
feasible and rule out large numbers of useless branches,
significantly limiting backtracking. For each step in the
plan skeleton, they call an RRT to determine feasibility of
the motion. Their approach can be thought of, in terms
of constraint satisfaction approaches, as doing backtracking
with forward checking [20] of the kinematic constraints
(but, importantly, not the path-existence constraints) and a
fixed variable ordering. Our approach, in contrast, treats path
existence as another constraint, which can also be used in
forward checking; it also can choose to consider the most
constrained decision first, independent of where it occurs in
the plan skeleton. Perhaps because of this, we are able to
operate with considerably larger numbers of possible discrete
placements and grasps.

Pandey et al. [21] describe a system that chooses geometric
parameters for tasks involving both a robot and a human,
reasoning about what is feasible for the robot and the human,
and taking into account the level of effort required from each
participant by each of the choices. The geometric choices
are made by filtering out locally inconsistent values and
backtracking over the remaining values.

III. TASK-LEVEL PLANNING

We use a simple task-level planner, in which operators
are described with two types of preconditions: symbolic and
geometric. Symbolic preconditions are described using sym-
bolic fluents as is typical in symbolic planning formalisms.
Geometric preconditions are described using constraints on
a set of constraint variables that remain unbound during the
process of task-level planning. A constraint variable is a

variable that ranges over a continuous geometric quantity
such as an object pose or robot configuration.

Associated with each planning operator is a primitive
action that can be taken by the robot; it is typically specified
with symbols naming objects and with a set of geometric
parameters. A primitive will, in general, correspond to a
closed-loop robot control program.

Whenever the symbolic search process reaches a state
in which the symbolic aspects of the goal is satisfied, we
extract a plan skeleton, which is a sequence of primitives
that have constant values for the symbolic parameters, but
whose geometric parameters are instantiated with constraint
variables. A plan skeleton is accompanied by a set of
constraints that relate the constraint variables that occur in
the primitives to one another as well as to quantities in
the goal specification of the plan and in the initial state
description.

We call the CSP solver to see if the constraints associated
with the plan skeleton are satisfiable. If so, the resulting
variable bindings are used to bind the constraint variables
in the plan. If not, then the planner continues to search.

IV. PROBLEM FORMULATION

The mechanism for symbolic planning with deferred
constraint satisfaction is general, and we have a domain-
independent implementation of it. In this paper, we describe
a particular application of this method to solving pick-and-
place problems for a one-armed mobile manipulation robot.
Our formulation of this domain has three primitives: pick ,
move , and place . Pick and place are assumed to be very
simple parameterless policies that either move forward and
adaptively close the hand or open the hand and retract. The
correctness of a plan skeleton is enforced by the constraints,
which are expressed as relationships between poses of ob-
jects in the world, poses of the robot hand, and configurations
of the rest of the robot, as well as requirements that necessary
clear paths exist.

To formulate a domain as a discrete constraint satisfaction
problem (CSP), it is necessary to specify: a set of constraint
variables, a discrete domain of values for each variable, and
a set of constraints. Constraints are specified by a set of
variables to which they apply and an arbitrary test function
that maps an assignment of variable values to True or False .

A. Constraint variables

We will use a hand-centric representation of the robot’s
configurations and relations to other objects, which allows
the constraint satisfaction problem to be described more
compactly and solved more efficiently. It is encoded using
variables of the following three types:
• H: Cartesian poses of the robot’s hand or end effector.

In general, the domain of H is the set of six-degree-
of-freedom poses within the workspace of the mobile
manipulator.

• K: Configurations of the robot. The domain of K is
the set of robot configurations; in our domain it is the
7 degrees of freedom of the arm.



• G: Grasps, which are six-degree-of-freedom specifica-
tions of the pose of an object relative to the hand.

It is typical to think of a robot configuration being
described with a Cartesian base pose and an arm config-
uration. The advantage of that representation is that the
only constraints on validity are joint limits and collisions.
The disadvantage of that representation is that the typical
Cartesian motions required for manipulation lie on a com-
plicated constraint surface in this space. In the hand-centric
representation, we use the hand’s Cartesian pose and the
arm configuration to parameterize the configuration space
(C-space). The space of valid configurations is now on a
constrained surface (the robot base must be on the floor and
not in collision) but the manipulation motions may be more
easily described. In our current implementation, we work in
a discretized subspace of this general C-space (see section VI
for details).

We use some additional types of constant quantities in
the specification of constraints, which are determined by the
goal condition and/or initial conditions of the problem: p
ranges over Cartesian poses of objects and r ranges over
regions of the workspace. We will write H ◦ G to specify
the composition of a hand pose H with a grasp G; because a
grasp describes the relation between hand and object, H ◦G
can also be interpreted as an object pose.

B. Constraints

Constraints relate constraint variables to one another and
to constant quantities; if they are collectively satisfiable,
then a plan matching the skeleton exists and the satisfying
bindings of the constraint variables specify the details of the
geometric solution. In the pick-and-place domain, we use
constraints of the following types:
• Grasp(o, p,H,G): If an object o is at pose p and the

hand is at pose H , then the pose of the object relative
to the hand is G. This can also be written H ◦G = p.

• Contained(o, p, r): If object o is at pose p, it will be
contained in region r.

• Disjoint(o1, p1, o2, p2): If object o1 is at pose p1 and
object o2 is at pose p2, then the two objects are not in
collision with one another.

• ∃VP(H,K, o,G,O): There exists a valid path from a
fixed “home” configuration to the configuration (H,K),
while holding object o in grasp G. A path is valid if
it avoids all fixed obstacles in the domain as well as
the obstacles in set O and the base is on the floor in
configuration (H,K) and stays on the floor throughout
the path. If the robot is not holding an object during
this path, then o and G will be ∅.

Because our goal is to determine feasibility of plan skele-
tons, and because we generally want to avoid having the
robot block itself in by placing objects in such a way that
it cannot return to its original configuration, we require all
robot configurations to be reachable from a “home” config-
uration. If two configurations are reachable from home, then
they will be reachable from one another. This assumption

primitive constraints
move(H1,K1) ∃VP(H1,K1, ∅, ∅, {a@pa})
pick(a,G1) Grasp(pa, H1, G1)
move(H2,K2) ∃VP(H1,K1, a,G1, { })

∃VP(H2,K2, a,G1, { })
place(a,G2) G1 = G2

Contained(a,H2 ◦G2, r)
∃VP(H2,K2, ∅, ∅, {a@H2 ◦G2})

TABLE I: Skeleton for pick and place

will allow us to consider O(N) rather than O(N2) paths,
where N is the number of configurations. But, it does prevent
the technique from being appropriate for solving NAMO-
type problems [22].

In the context of a planning loop, we will prize efficiency
of computation over the optimality of paths, and so finding
a path between two configurations that goes via home is
acceptable. Once a final feasible skeleton is found, it will be
possible to use this or other methods to plan more carefully
and find paths that are more nearly optimal.

V. EXAMPLE PROBLEMS

To build intuition, we will illustrate the use of primitive
actions and constraints to construct plan skeletons for four
different tasks. The general framework of building a plan
skeleton and then solving a constraint satisfaction problem
can be applied to any set of action primitives; in our examples
we restrict our attention to pick, move, and place operations.
For brevity, these examples involve the manipulation of only
one or two objects, but the skeletons can involve arbitrarily
many motion and manipulation steps.

a) Basic pick and place: We will begin with a simple
pick-and-place problem, in which the goal is to put an object
a in some region of space r. The plan to achieve this goal has
four steps: move(H1,K1), to get the robot to a configuration
from which a can be picked; pick(a,G1), to close the hand
around the object with grasp G1; move(H2,K2) to get the
robot to a configuration from which a can be placed; and
place(a,G2) to release the gripper and retract the hand
slightly. Table I shows the constraints associated with each
step of this plan. Variables of the form po denote the initial
pose of object o, and o@p denotes an object shape o placed
at pose p.

The first constraint is that there be a clear path to move,
with an empty hand, to configuration H1,K1, while avoiding
object a in its initial pose (as well as all objects that are never
mentioned in this plan, in their current poses—this condition
will be in force throughout all plans). The second is that,
with the hand at pose H1, it be possible to grasp object a
at its initial pose using grasp G1. The next two constraints
are path constraints: they require that it be possible to move
from the home configuration to H1,K1 and to H2,K2 while
holding object a in grasp G1 and not avoiding any additional
obstacles. Finally, we have a place operation with grasp G2

which must equal G1. In addition, when object a is at pose
H2 ◦G2, it must be resting stably and be contained in region
R. Finally, we add a constraint that the robot be able to



primitive constraints
move(H1,K1) ∃VP(H1,K1, ∅, ∅, {a@pa, b@pb})
pick(b,G1) Grasp(pb, H1, G1)
move(H2,K2) ∃VP(H1,K1, b, G1, {a@pa})

∃VP(H2,K2, b, G1, {a@pa})
place(b,G2) G1 = G2

∃VP(H2,K2, ∅, ∅, {a@pa, b@H2 ◦G2})
move(H3,K3) ∃VP(H3,K3, ∅, ∅, {a@pa, b@H2 ◦G2})
pick(a,G3) Grasp(pa, H3, G3)
move(H4,K4) ∃VP(H3,K3, a,G3, {b@H2 ◦G2})

∃VP(H4,K4, a,G3, {b@H2 ◦G2})
place(a,G4) G3 = G4

Contained(a,H4 ◦G4, R)
Disjoint(a,H4 ◦G4, b,H2 ◦G2)
∃VP(H4,K4, ∅, ∅, {a@H4 ◦G4})

TABLE II: Skeleton for moving an object out of the way

disengage from placing a, by requiring a clear path from
home to H2,K2, holding nothing, but avoiding object a at
its final pose.

b) Moving an object out of the way: In a situation in
which the robot cannot reach object a directly, the previous
set of constraints will be unsatisfiable; due to further auto-
mated high-level planning, we might develop a plan skeleton
of the form shown in table II, which will allow the robot to
move the obstacle b out of the way.

The skeleton resembles two copies of the simple pick-
and-place plan skeleton concatenated together. The critical
connection is that, rather than specifying a region in which
object b should be placed, we require only that it should be
placed in such a way as to allow a clear paths for picking
and placing object a.

c) Putting two objects into the same constrained region:
Interestingly, a very similar plan skeleton applies to a situa-
tion in which two objects must be placed into the same single
region, r. The only change is the addition of a constraint on
the placement of b:

Contained(b,H2 ◦G2, r) .

The requirement that it be possible to pick and place a when
b is located at its new pose will constrain the choice of poses
for a and b in region r so that they can be placed in order:
b first, and then a.

d) Regrasping: Another situation in which the simple
pick-and-place plan skeleton is not satisfiable is when there
is no single grasp that is feasible at both the pick and place
locations. In such cases, we must pick the object, place it
in a more open region of space, then pick it again with a
new grasp that will suffice for the final placement. The plan
skeleton for regrasping is also a minor variation on the one
for moving an object out of the way: it involves two pick-
and-place sequences of the same object, but using different
grasps.

VI. SOLUTION STRATEGY

The constraints from a plan skeleton are significantly non-
linear and much too complex to solve exactly analytically in
continuous form. We discretize the value domains of the vari-
ables and use a constraint solver for variables with discrete

domains. Classical constraint solvers assume that constraints
involve only two variables and that the variables have small
domains. Plan skeletons have constraints with many variables
and the variables have large domains. However, there has
been extensive work on CSP solvers and some more modern
solvers are effective for problems such as the one we face.

One key advantage of a CSP formulation is that it reduces
our job to picking variables and constraints to represent
the problem, and uses a generic solver to do the search.
It is generally easier to articulate and check constraints
for a given assignment of the variables than to construct
a problem-specific search strategy. However, the constraint
checks must be very efficient, since they will be called many
times by the solver. The fundamental question, then, is how
we should represent the variables and evaluate the constraints
articulated in the previous section.

A. Variables

In this section, we develop discrete representations for H ,
K, and G variables. Naive discretization of the original high-
dimensional spaces would result in an intractable problem,
so we must reduce the domain sizes while retaining sufficient
expressive power to state problems of interest.

A hand pose, H , is a six-degree-of-freedom Carte-
sian pose for the end-effector coordinate frame of the
robot. We will represent it with four discrete-valued vari-
ables, Hx, Hy, Hz, Hθ, where Hθ represents rotation in
the horizontal plane. The domains of these variables,
Hx,HY ,HZ ,Hθ, are sets of discrete values in the Cartesian
workspace and reachable horizontal rotational range of the
robot. We are assuming that objects will be resting in a stable
configuration on a horizontal surface when they are not in the
hand, and as such have only four degrees of freedom. Note
that the discrete set of grasps considered can involve arbitrary
orientations of the gripper in the “hand” frame, so the 4
DOF parameterization still enables a rich class of grasps. The
Hx and Hy values are uniformly spaced; the Hz values are
chosen to be ’relevant’ values where the C-space constraints
change, and the Hθ values are non-uniformly spaced with
more values near candidate grasping hand orientations for
the initial poses of the objects.

A robot kinematic configuration for a PR2 consists of 7
degrees of freedom connecting the hand frame to the base
frame. Given a fixed hand frame, we can think of this as a
redundant parameterization of the base frame of the robot.
However, most of the base poses are invalid: we are only
interested in those that put the base on the floor. So, we will
think of K, instead, as a set of functions that map a hand
pose H into a valid base pose.

Let B be the set of valid base poses, let β(H) ⊂ B be the
subset of B that is reachable with the hand fixed at H and
let Ki be a function that maps hand pose H to a particular
B ∈ β(H). We will say that Ki is ε-robust if for any H ′ in an
ε ball around H , Ki(H

′) ∈ β(H ′). That is, if we apply the
function to a slightly different hand pose, it will yield a base
pose that is kinematically feasible for that hand pose. We are
interested in robust kinematic solutions because, ultimately,



we wish to use this planner on a real robot, where uncertainty
is inevitable, and it is important to have solutions that can be
locally modified in response to changes in estimated object or
robot poses. We perform off-line processing to find a discrete
set of robust functions Ki, and it is this set of values1 that
make up K, the domain of the variable K in our formulation.

We handle the grasp variables G similarly, drawing their
values from a discrete domain G, corresponding to a set of
predetermined discrete candidate grasps for each object type;
the elements of G actually specify a “pre-grasp” hand pose,
from which the grasp primitive can be executed.

Therefore, our parameterization for a robot configuration,
possibly holding an object, is specified with 6 discrete values:
(Hx, Hy, Hz, Hθ,K,G). It is important to note that we do
not need to check kinematic feasibility given these values;
we have taken care of this in the definition of the parameters.

The constraint examples given earlier mention object poses
and regions but these are not variables in the CSP formu-
lation. It should be clear that object shapes, initial poses of
objects and shapes of regions are all used in checking the
constraints but are not chosen during the solution process.
Even placements of objects that are chosen during the
solution are not explicitly represented as such, but are a
consequence of the hand and grasp parameters used for
placing them.

B. Constraints
To specify a CSP, together with discrete value domains

for each variable, one must specify functions that can check
whether a complete or partial assignment of values to vari-
ables satisfies each constraint. For ease of understanding, in
section IV-B, we described the constraints in terms of objects
and poses as well as H , K, and G variables; now we must
articulate them in terms only of H , K, and G, with the other
quantities “built into” the constraint testing functions.

The Disjoint constraint is actually subsumed by the ∃VP
constraint, because the robot will not be allowed to move
into a configuration that would cause two objects to collide.

The Grasp(o, p,H,G) constraint can be rewritten, for a
constant pose p, as Graspo,p(H,G); the corresponding test
on variables H and G is whether, if the robot hand is at H
holding o with grasp G, then the pose of o is p. Similarly, the
Contained(o, p, r) constraint can be rewritten as a constraint
on the hand pose and grasp: Graspo,r(H,G), where the test
on the variables H and G is whether, if the robot hand is at
H holding o with grasp G, then o is contained in the r.

In a CSP, constraints involving small numbers of variables
can often be used early to achieve significant pruning. The
Grasp constraint involves several variables, so we add some
conservative low-arity constraints to allow early pruning:
given the desired pose or region for an object, we can
determine simple unary “box” constraints on the x, y, z, and
θ coordinates of the hand that rule out hand poses that are
not feasible for any possible value of G. These constraints
are necessary but not sufficient, and so we must include the
high-arity high-fidelity original grasp constraints as well.

1In our experiments we test cases with 40 and 120 values for K.

FREESPACEMAP(Θ, bCS , hCS , gCS)

1 bM = INITBASEMAP(Θ)
2 for tr ∈ Θ
3 for (k , cs) ∈ bCS
4 UPDATE(CO(cs[tr ], [0, 0]), bM [tr ], k)
5 Z = PICKZRANGES(hCS + gCS)
6 fsM = INITFSMAP(Θ,Z)
7 for tr ∈ Θ
8 for zr ∈ Z
9 fsM [zr ][tr ] = bM [tr ]

10 for (k , cs) ∈ hCS
11 UPDATE(CO(cs[tr ], zr), fsM [tr ][zr ], k)
12 for (g , cs) ∈ gCs
13 UPDATE(CO(cs[tr ], zr), fsM [tr ][zr ], g)
14 return fsM

Fig. 1: Computing the free space map.

The constraint that the robot have collision-free paths is
much more difficult. We enforce an implicit constraint that
all configurations of the robot, at pick and place locations,
as well for the paths to and from the home configuration are
all in the same connected component of the robot free space.

The ∃VP constraint additionally requires checking for
paths through the free configuration space, possibly with
some additional obstacles. We cannot afford to call a motion
planner each time that we need to evaluate such a constraint
during the solution process. Instead, we perform signifi-
cant pre-computation that renders the individual constraint-
checks done during the search relatively efficient. The pre-
computation is done in two phases: finding the connected
component of the free configuration space that contains the
robot and then finding paths through that space that satisfy
additional constraints. We explore two versions of this: one
in which the free-space map takes into account all parts of
the robot, and one in which it only takes into account the
base and the hand (but not the arm). In the second case,
some additional collision-checking must be done during the
CSP process, but the pre-computation time is significantly
reduced.

We pre-compute a free space “map” for the robot (the valid
values of H , K and G) by explicitly computing polygonal
C-space “slices” for the environment objects at fixed values
of Hz and for fixed ranges of Hθ [1]. Concretely, a free-
space map is an array, indexed by entries from Hθ (a range
of angles) and Hz (a range of z values) whose entries are
x, y maps; each map is represented as a vector indexed by
values in Hy of ranges of x values in the free-space of the
hand. Each range of x is tagged with the set of K and G
values for which it is free. Pseudocode is shown in figure 1.

The inputs, bCS , hCS and gCS , are lists of pairs: the first
element of each pair is a value of value of K or G; the second
element, denoted by cs , is a vector indexed by a range of θ
(Θ is a set of such θ ranges) of lists of polyhedral (x, y, z)
C-space obstacles for either the base, the arm (and hand) or a
grasped object. Figure 2 illustrates how these polyhedra are
obtained. C-space obstacles are computed for the three robot
components: the base, the arm and hand, and the grasped



k=1

k=2

k=1

k=2

k=1

k=2

k=1

k=2

x, y (z = 0)
obstacles

θ
slices

k=1

k=2

x, y, z
obstacles

θ
slices

k=1

k=2

x, y, z
obstacles

θ
slices

Fig. 2: Construction of free-space map. Consider two different
kinematic arrangements, k = 1 and k = 2. For each one, compute
configuration-space obstacles for the base; they are represented with
continuous x values, sampled y values, z values dictated by the
object shapes, and sampled θ values; shown schematically in bottom
left. Repeat for arm (middle) and hand, potentially holding an object
(right). The free space map is the complement of the union of these
obstacles.

object—all defined relative to same reference frame, in this
case, the hand frame—interacting with each of the obstacles.
One subtlety is that the base map only has a single z range
(for z = 0) since the base stays on the ground.

The procedure CO takes such a polyhedral map and a
range of z values and produces a list of x, y C-space poly-
gons. These polygons are then scan-converted and merged
into an existing map by the UPDATE procedure. The base
maps (for each range of θ) are used to initialize all the maps
for the hand/arm, since a collision for the base blocks access
for any hand value of z.

Having this map enables efficient checks for the safety of
individual robot configurations. Some of the cost of building
this representation can be amortized over multiple calls to
the CSP solver in closely related environments.

Each ∃VP constraint specifies some static conditions on
the search: which objects are at their initial poses, OI , and
which object is in the hand, oG, which may be ∅. There are
no more of these search conditions than there are steps in
the plan, and they can be straightforwardly extracted from
the plan skeleton. For each of these search conditions, we
construct a spanning tree, rooted at the home configuration,
representing the connectivity of the configuration space cells.

Note that the values of K and G are typically independent;
that is, collisions of the grasped object with other objects
can be checked independently of collisions of the robot
with other objects. In principle, there can be “self-collisions”
between the grasped object and the robot; we choose values
of K and G to ensure that this does not happen. Therefore,

we represent tree nodes for the discretized hand parameters
and at each node represent which values of K and G are
valid at that node.

The tree of paths is represented as a collection of nodes,
each of which points to its parent in the tree. A path-tree
node for OI , oG contains the following information:
• H: A discrete cell in the discretized hand configuration

space.
• Kv: The set of valid K (mappings from hand to base

poses), such that the robot at configuration H,K is not
in collision with any permanent obstacles or with any
O ∈ OI .

• Gv: The set of valid G (mappings from hand to poses of
the grasped object) such that if oG is in relation G to H ,
then it is not in collision with any permanent obstacles
or with any O ∈ OI .

• c: The path cost, which is simply measured in cells.
• φ: A pointer to the parent node in the path tree
These trees pre-compute paths that avoid objects that are

placed at their initial conditions; but we will also need to be
sure that objects that are placed during the plan do not con-
flict with the robot’s paths. It would be computationally much
too expensive to pre-compute paths that avoid all possible
locations of the objects that are placed during the execution
of the plan skeleton. In our implementation, we make a
simplifying assumption: when evaluating a constraint, we
check whether the specified object placements collide with
the pre-computed path to the target location. This means that
there are situations where we will fail to find a solution even
though one may exist in the quantized C-space, although we
believe that these are in rare in practice.

The procedure EVPEVAL, in figure 3 evaluates an ∃VP
constraint with respect to V , which is an assignment of
values to constraint variables. The parameters Hvar , Kvar ,
and Gvar are the variables (not values) to which this
constraint applies; oG is the grasped object, O is the set
of objects to be avoided (both those that are known to be at
their initial conditions and those that will have been placed
during a previous plan step), and T is the set of path trees.

We begin, in lines 1–3 by finding which objects are placed
at their initial conditions and using those and the grasped
object to get the tree τ that corresponds to those planning
conditions. In line 4, we look to see if the bound values
for H and K are represented in some node in the tree. If
not, then the home configuration is not reachable. Lines 7–
11 constitute a loop that traverses the path from the target
node back up to the root node. If the specified grasp value
V [Gvar ] is not in the legal set of grasps for the node, or if
the placed objects, at the places specified for them in V cause
a collision with this node (which means that it collides2 for
all values of K ∈ n.Kv), then we fail and return FALSE. If
the entire path to the root is valid, we return TRUE.

Constraints used in our CSP solver must have fixed arity;
that is, they involve a fixed set of constraint variables.

2When the free space map is built without considering the arm, we check
for arm collisions at this state, inside the constraint test.



EVPEVAL(Hvar ,Kvar , oG,Gvar ,O, V, T )

1 OI = getInitialObjects(O)
2 OP = getPlacedObjects(O)
3 τ = T (OI , oG)
4 n = FINDNODE(V [Hvar ], V [Kvar ], τ)
5 if n == ∅
6 return False
7 while n.φ 6= ∅
8 if V [Gvar ] 6∈ n.G or
9 COLLIDES(n,OP , oG, V [Gvar ], V )

10 return False
11 n = n.φ
12 return True

Fig. 3: Valid path constraint test.

EVPEVAL operates on a set of placed objects OP , each of
which is specified by H and G variables; thus, it does not
have fixed arity. In practice, we introduce a separate ∃VP
constraint for each placed obstacle.

C. Solving the CSP

We use an “off-the-shelf” CSP solver developed by Chen
and Van Beek [23]. It uses a combination of backtracking
(with backjumping), and some combination of propagation,
ranging from forward checking to full arc-consistency. One
can choose the level of propagation per constraint; we
choose limited propagation for the ∃VP constraints and full
propagation for the others.

VII. RESULTS

We tested the performance of several variations of the
proposed approach in five scenarios, using a pilot imple-
mentation in unoptimized Python. The relative performance
of the different methods is well characterized, but the timings
are incomparable to more optimized implementations of
other approaches.

A. Scenarios

The first four test scenarios correspond to finding plans for
the four skeletons discussed in section V. Figure 4 shows the
solution to a relatively difficult regrasping problem. Figure 5
shows an object placement in a more complex domain.
Results for the other two scenarios are available in the
accompanying video material.

The last scenario (shown in the accompanying video
material) corresponds to an entire execution of the task
planner, with the goal of putting an object into a target region,
which requires moving two other objects out of the way in
the process. During the course of the task-level planning, it
has to do the pre-processing once, but then calls the CSP
35 times; 34 of these calls involve plan skeletons whose
constraints are not satisfiable. This is a realistic situation,
highlighting how critical it is for an approach to be able to
fail effectively as well as to succeed. The time to execute

Fig. 4: Given a plan skeleton consisting of pick, place, pick, and
place operations all on the same object and the constraint that
the object end up in a certain region, the CSP determines grasps,
object placements, robot configurations, and paths that satisfy the
constraints.

Fig. 5: Plan to pick an object from an awkward location on one
table, and move it to the back table.

the entire search, including all 35 calls to the CSP was 192
seconds.

B. Comparing algorithms

In this section we present a quantitative comparison of
several different variations on the general approach. We
consider the following algorithms:
• BT-Sim : pure backtracking (no constraint propagation)

using simplified configuration-space in pre-processing
(not including the arm)

• CSP-Sim: constraint satisfaction using simplified
configuration-space

• CSP-Full: constraint satisfaction using complete all con-
figuration space obstacles

• CSP-RRT: constraint satisfaction, with no pre-
processing, but calling an RRT planner in the test for
the ∃VP constraints

For each of these cases, we tried two values of several
complexity parameters:
• Number of obstacles in the environment: no = 5, 15
• Number of grid samples of y coordinate: ny = 64, 128
• Number of grid samples of θ: nθ = 5, 12
• Number of kinematic solutions: nk = 40, 120

Recall that we do not discretize the x coordinate. In our
experiments, we use object models that are unions of extru-
sions in z; that is, objects with a constant z cross-section. So,
z values are sampled at every value where the collection of



nk nθ ny no Pre BT F CSP F BT I CSP I
40 5 64 5 10.2 23.3 5.5 59.3 0.0
40 5 64 15 15.2 – – 9.4 0.0
40 5 128 5 17.9 197.2 13.2 123.5 0.0
40 5 128 15 26.8 – – 19.3 0.0
40 12 64 5 24.6 25.9 9.2 61.6 2.9
40 12 64 15 36.0 – – 9.6 0.4
40 12 128 5 47.0 275.3 30.6 128.7 4.8
40 12 128 15 65.9 – – 21.8 0.8

120 5 64 5 48.0 74.4 17.3 335.7 0.0
120 5 64 15 63.8 2.0 1.7 67.7 0.0
120 5 128 5 99.4 258.4 24.5 500.0 0.0
120 5 128 15 123.8 335.3 9.7 132.0 0.0
120 12 64 5 105.2 78.7 22.3 356.6 2.9
120 12 64 15 149.5 3.6 2.9 78.9 4.7
120 12 128 5 216.9 327.5 79.5 500.0 12.4
120 12 128 15 302.8 336.7 13.8 154.3 1.8

TABLE III: Run-times in seconds on problems described in the
text. Columns correspond to: BT F is backtracking on feasible
problems; CSP F is CSP on feasible problems; BT I is backtracking
on infeasible problems; CSP I is CSP on infeasible problems. An
entry of ’–’ means that the problem was feasible but no solution
was found, due to coarse granularity of discretization. A value of
0.0 means it ran less than 0.05 seconds. Jobs were terminated after
500 seconds; times for such jobs reported as 500s.

objects changes cross section. In these tests we use relatively
simple objects that have on the order of four possible grasps.

We ran each algorithm under each of the 16 complexity
conditions on each of the four plan skeletons, and report
averages over the skeletons. Table III shows the time taken
for pre-processing and the time taken to find a solution after
pre-processing for BT-Sim and CSP-Sim. Backtracking runs
were terminated after 500 seconds.

The CSP-Full and CSP-RRT algorithms are not com-
petitive with the others. CSP-Full frequently runs out of
memory due to the complexity of the configuration space
it has to represent. CSP-RRT takes about two orders of
magnitude longer to run (using a relatively naive Python
implementation of the RRT). Because the algorithm never
explicitly fails, it requires that a time-out be selected, but it
is well known that running times on feasible problems have
high variance, so it is difficult to select a time-out value.
We did some preliminary experiments using a probabilistic
road-map approach, in which the road map is constructed
at pre-processing time, and shared by all calls to the ∃VP
constraint test. This approach is very promising and might
equal the performance of CSP-Sim with less pre-processing.

These results show the consistent advantage of the CSP
method over pure backtracking. However, the behavior on
feasible problems does not begin to tell the full story. In the
context of task planning, the time taken to fail is even more
important than the time taken to succeed. We attempted to
find a plan using a skeleton with just one pick and one place
operation in a domain that required moving something out of
the way. In Table III we report the time taken to fail, by BT-
Sim and CSP-Sim. Note that the CSP is dramatically faster
than BT in detecting failures. It is interesting to note that BT
fails faster in the more cluttered environments, presumably
because it fails earlier in the search tree.

The constraint-based formulation described here provides
an attractive approach to integrating symbolic and geometric
constraints for TAMP. One important drawback is the need
to pick an arbitrary discretization; we are investigating alter-
native approaches that generate task specific discretizations.

REFERENCES

[1] T. Lozano-Pérez, “Automatic planning of manipulator transfer move-
ments,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11,
pp. 681–698, 1981.

[2] T. Lozano-Pérez, J. L. Jones, E. Mazer, P. A. O’Donnell, W. E. L.
Grimson, P. Tournassoud, and A. Lanusse, “Handey: A robot system
that recognizes, plans, and manipulates,” in ICRA, 1987, pp. 843=–
849.

[3] G. T. Wilfong, “Motion planning in the presence of movable obsta-
cles,” in Symposium on Computational Geometry, 1988, pp. 279–288.

[4] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” IJRR, vol. 23, pp. 729–746,
2004.

[5] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” IJRR, vol. 30, no. 6,
pp. 676–698, 2011.

[6] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
in Proceedings of Robotics: Science and Systems, 2011.

[7] J. Barry, K. Hsiao, L. Kaelbling, and T. Lozano-Pérez, “Manipulation
with multiple action types,” in Int. Symp. on Experi. Robotics, 2012.

[8] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” IJRR, vol. 28, 2009.

[9] E. Plaku and G. Hager, “Sampling-based motion planning with sym-
bolic, geometric, and differential constraints,” in ICRA, 2010.

[10] K. Hauser, “Randomized belief-space replanning in partially-
observable continuous spaces,” in Workshop on Algorithmic Founda-
tions of Robotics, 2010.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE Conference on Robotics and Automa-
tion, 2011.

[12] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in ICRA,
2011.

[13] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric backtrack-
ing,” in IROS, 2012.

[14] S. Srivastava, L. Riano, S. Russell, and P. Abbeel, “Using classical
planners for tasks with continuous operators in robotics,” in ICAPS
Workshop on Planning and Robotics (PlanRob), 2013.

[15] C. Erdogan and M. Stilman, “Planning in constraint space: Automated
design of functional structures,” in ICRA, 2013.

[16] R. Dechter, Constraint processing. Elsevier Morgan Kaufmann, 2003.
[17] T. Lozano-Pérez, J. L. Jones, E. Mazer, and P. A. O’Donnell, Handey:

A Robot Task Planner. Cambridge, MA: MIT Press, 1992.
[18] R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical approach

to planning manipulation tasks. the case of discrete placements and
grasps,” in ISRR, 1990.

[19] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe, “Planning motions
with intentions,” in SIGGRAPH, 1994.

[20] R. Haralick and G. Elliot, “Increasing tree search efficiency for
constraint satisfaction problems,” Artificial Intelligence, vol. 14, no. 3,
pp. 263–313, 1980.

[21] A. K. Pandey, J.-P. Saut, D. Sidobre, and R. Alami, “Towards
planning human-robot interactive manipulation tasks: Task dependent
and human oriented autonomous selection of grasp and placement,”
in RAS/EMBS International Conference on Biomedical Robotics and
Biomechatronics, 2012.

[22] M. Stilman and J. J. Kuffner, “Planning among movable obstacles with
artificial constraints,” in Proceedings of the Workshop on Algorithmic
Foundations of Robotics (WAFR), 2006.

[23] X. Chen and P. van Beek, “Conflict-directed backjumping revisited,”
J. Artif. Intell. Res. (JAIR), vol. 14, pp. 53–81, 2001.

[24] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” in WAFR, 2012.


