
Focused Model-Learning and Planning for
Non-Gaussian Continuous State-Action Systems

Zi Wang Stefanie Jegelka Leslie Pack Kaelbling Tomás Lozano-Pérez

Abstract— We introduce a framework for model learning
and planning in stochastic domains with continuous state and
action spaces and non-Gaussian transition models. It is efficient
because (1) local models are estimated only when the planner
requires them; (2) the planner focuses on the most relevant
states to the current planning problem; and (3) the planner
focuses on the most informative and/or high-value actions. Our
theoretical analysis shows the validity and asymptotic optimality
of the proposed approach. Empirically, we demonstrate the
effectiveness of our algorithm on a simulated multi-modal
pushing problem.

I. INTRODUCTION

Most real-world domains are sufficiently complex that
it is difficult to build an accurate deterministic model of
the effects of actions. Even with highly accurate actuators
and sensors, stochasticity still frequently appears in basic
manipulation, especially when it is non-prehensile [1]. The
stochasticity may come from inaccurate execution of actions
as well as from lack of detailed information about the
underlying world state. For example, rolling a die is a
deterministic process that depends on the forces applied,
air resistance, etc.; however, we are not able to model the
situation sufficiently accurately to plan reliable actions, nor
to execute them repeatably if we could plan them. We can
plan using a stochastic model of the system, but in many
situations, such as rolling dice or pushing a can as shown
in Fig. 1, the stochasticity is not modeled well by additive
single-mode Gaussian noise, and a more sophisticated model
class is necessary.

In this paper, we address the problem of learning and
planning for non-Gaussian stochastic systems in the practical
setting of continuous state and action spaces. Our framework
learns transition models that can be used for planning to
achieve different objectives in the same domain, as well
as to be potentially transferred to related domains or even
different types of robots. This strategy is in contrast to
most reinforcement-learning approaches, which build the
objective into the structure being learned. In addition, rather
than constructing a single monolithic model of the entire
domain which could be difficult to represent, our method uses
a memory-based learning scheme, and computes localized
models on the fly, only when the planner requires them.

Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139.
{ziw,stefje,lpk,tlp}@csail.mit.edu. We gratefully acknowl-
edge support from NSF CAREER award 1553284, NSF grants 1420927
and 1523767, from ONR grant N00014-14-1-0486, and from ARO grant
W911NF1410433. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

Fig. 1: A quasi-static pushing problem: the pusher has a
velocity controller with low gain, resulting in non-Gaussian
transitions. We show trajectories for object and pusher re-
sulting from the same push velocity.

To avoid constructing models that do not contribute to
improving the policy, the planner focuses only on states
relevant to the current planning problem, and actions that
can lead to high reward.

We propose a closed-loop planning algorithm that applies
to stochastic continuous state-action systems with arbitrary
transition models. It is assumed that the transition models
are represented by a function that may be expensive to
evaluate. Via two important steps, we focus the computation
on the current problem instance, defined by the starting
state and goal region. To focus on relevant states, we use
real time dynamic programming (RTDP) [2] on a set of
states strategically sampled by a rapidly-exploring random
tree (RRT) [3], [4]. To focus selection of actions from a
continuous space, we develop a new batch Bayesian opti-
mization (BO) technique that selects and tests, in parallel,
action candidates that will lead most quickly to a near-
optimal answer.

We show theoretically that the expected accumulated dif-
ference between the optimal value function of the original
problem and the value of the policy we compute vanishes
sub-linearly in the number of actions we test, under mild as-
sumptions. Finally, we evaluate our approach empirically on
a simulated multi-modal pushing problem, and demonstrate
the effectiveness and efficiency of the proposed algorithm.

II. RELATED WORK

a) Learning: The class of problems that we address
may be viewed as reinforcement-learning (RL) problems in
observable continuous state-action spaces. It is possible to
address the problem through model-free RL, which estimates
a value function or policy for a specific goal directly through
experience. Though the majority of work in RL addresses

domains with discrete action spaces, there has been a thread
of relevant work on value-function-based RL in continuous
action spaces [5], [6], [7], [8], [9]. An alternative approach
is to do direct search in the space of policies [10], [11].

In continuous state-action spaces, model-based RL, where
a model is estimated to optimize a policy, can often be
more effective. Gaussian processes (GP) can help to learn
the dynamics [12], [13], [14], which can then be used by
GP-based dynamic programming [15], [13] to determine a
continuous-valued closed-loop policy for the whole state
space. More details can be found in the excellent survey [16].

Unfortunately, the common assumption of i.i.d Gaussian
noise on the dynamics is restrictive and may not hold in
practice [1], and the transition model can be multi-modal.
It may additionally be difficult to obtain a good GP prior.
The basic GP model can capture neither the multi-modality
nor the heteroscedasticity of the noise. While more advanced
GP algorithms may address these problems, they often suffer
from high computational cost [17], [18].

Moldovan et al. [19] addressed the problem of multi-
modality by using Dirichlet process mixture models (DP-
MMs) to learn the density of the transition models.
Their strategies for planning were limited by determin-
istic assumptions, appropriate for their domains of ap-
plication, but potentially resulting in collisions in ours.
Kopicki et al. [20], [21], [22] addressed the problem of
learning to predict the behavior of rigid objects under ma-
nipulations such as pushing, using kernel density estimation.
In this paper, we propose an efficient planner that can work
with arbitrary, especially multi-modal, stochastic models in
continuous state-action spaces. Our learning method in the
experiment resembles DPMMs but we estimate the density
on the fly when the planner queries a state-action pair. We
were not able to compare our approach with DPMMs because
we found DPMMs not computationally feasible for large
datasets.

b) Planning: We are interested in domains for which
queries are made by specifying a starting state and a goal
set, and in which the solution to the given query can be
described by a policy that covers only a small fraction of
the state space that the robot is likely to encounter.

Planning only in the fraction of the state-action space that
the robot is likely to encounter is, in general, very challeng-
ing [23]. The iMDP method [4], which is most related to
our work, uses sampling techniques from RRTs to create
successively more accurate discrete MDP approximations
of the original continuous MDP, ultimately converging to
the optimal solution to the original problem. Their method
assumes the ability to solve the Bellman equation optimally
(e.g. for a simple stochastic LQR problem), the availability
of the backward transition models, and that the dynamics is
modeled by a Wiener process, in which the transition noise is
Gaussian with execution-time-dependent variance. However,
the assumptions are too restrictive to model our domains
of interest where the dynamics is non-closed-form, costly
to evaluate, non-reversible, and non-Gaussian. Furthermore,
iMDP is designed for stochastic control problems with mul-

tiple starting states and a single goal, while we are interested
in multiple start-goal pairs.

Our work builds on the idea of constructing a sequence of
MDPs from iMDP [4], and aims at practically resolving the
challenges of state/action selection.

c) Bayesian optimization: There have been a number
of applications of BO in optimal control, although to our
knowledge, it has not been previously applied to action-
selection in continuous-action MDPs. BO has been used to
find weights in a neural network controller [24], to solve for
the parameters of a hierarchical MDP [25], and to address
safe exploration in finite MDPs [26].

III. PROBLEM FORMULATION

Let the state space S ⊂ Rds with metric d and the control
space U ⊂ Rdu both be compact and measurable sets.
The interior of the state space S is So and the boundary
is ∂S. For the control space U , there exists an open set
Uo in Rdu such that U is the closure of Uo. We assume
the state is fully observed (any remaining latent state will
manifest as stochasticity in the transition models). Actions
a = (u,∆t) are composed of both a control on the robot and
the duration for which it will be exerted, so the action space
is A = U×[Tmin, Tmax], where Tmin, Tmax ∈ R+\{∞} are
the minimum and the maximum amount of duration allowed.
The action space A is also a compact set. The starting state
is s0, and the goal region is G ⊂ S, in which all states are
terminal states. We assume G has non-zero measure, and
S has finite measure. The transition model has the form
of a continuous probability density function ps′|s,a on the
resulting state s′, given previous state s and action a, such
that ∀s′ ∈ S, ps′|s,a(s′ | s, a) ≥ 0,

∫
S
p(s′ | s, a) ds′ = 1.

Given a transition model and a cost function C : S ×
S ×A→ R, we can formulate the problem as a continuous
state-action MDP (S,A, ps′|s,a, R, γ), where R(s′ | s, a) =
−C(s′ | s, a) is the immediate reward function and γ is the
discount factor. A high reward is assigned to the states in
the goal region G, and a cost is assigned to colliding with
obstacles or taking any action. We would like to solve for
the optimal policy π : S → A, for which the value of each
state s is

V π(s) = max
a∈A

∫
s′∈S

ps′|s,a(s
′|s, a)

(
R(s′|s, a) + γ∆tV π(s′)

)
ds′.

IV. OUR METHOD: BOIDP
We describe our algorithm Bayesian Optimization

Incremental-realtime Dynamic Programming (BOIDP) in
this section. At the highest level, BOIDP in Alg. 1 operates
in a loop, in which it samples a discrete set of states S̃ ⊂ S
and attempts to solve the discrete-state, continuous-action
MDP M̃ = (S̃, A, P̂s′|s,a, R, γ). Here P̂s′|s,a(s′ | s, a) is
the probability mass function for the transition from state
s ∈ S̃ using action a ∈ A to a new state s′ ∈ S̃. The value
function for the optimal policy of the approximated MDP
M̃ is V (s) = max

a∈A
Qs(a), where

Qs(a) =
∑
s′∈S̃

P̂s′|s,a(s′|s, a)
(
R(s′|s, a) + γ∆tV (s′)

)
. (1)

Algorithm 1 BOIDP

1: function BOIDP(s0,G, S, ps′|s,a, Nmin)
2: S̃ ← {s0}
3: loop
4: S̃ ← SAMPLESTATES(Nmin, S̃,G, S, ps′|s,a)
5: π, V = RTDP(s0,G, S̃, ps′|s,a)
6: until stopping criteria reached
7: EXECUTEPOLICY(π, S̃,G)

8: function EXECUTEPOLICY(π, S̃,G)
9: loop

10: sc ← current state
11: s̃← argmins∈S̃ d(s, sc)
12: Execute π(s̃)
13: until current state is in G

If the value of the resulting policy is satisfactory according
to the task-related stopping criterion1, we can proceed;
otherwise, additional state samples are added and the process
is repeated. Once we have a policy π on S̃ from RTDP, the
robot can iteratively obtain and execute the policy for the
nearest state to the current state in the sampled set S̃ by the
metric d.

There are a number of challenges underlying each step
of BOIDP. First, we need to find a way of accessing
the transition probability density function ps′|s,a , which
is critical for the approximation of P̂s′|s,a(s′ | s, a) and
the value function. We describe our “lazy access” strategy
in Sec. IV-A. Second, we must find a way to compute
the values of as few states as possible to fully exploit the
“lazy access” to the transition model. Our solution is to
first use an RRT-like process [3], [4] to generate the set
of states that asymptotically cover the state space with low
dispersion (Sec. IV-B), and then “prune” the irrelevant states
via RTDP [2] (Sec. IV-C). Last, each dynamic-programming
update in RTDP requires a maximization over the action
space; we cannot achieve this analytically and so must
sample a finite set of possible actions. We develop a new
batch BO algorithm to focus action sampling on regions of
the action space that are informative and/or likely to be high-
value, as described in Sec. IV-D.

Both the state sampling and transition estimation processes
assume a collision checker EXISTSCOLLISION(s, a, s′) that
checks the path from s to s′ induced by action a for collisions
with permanent objects in the map.

A. Estimating transition models in BOIDP

In a typical model-based learning approach, first a mono-
lithic model is estimated from the data and then that model is
used to construct a policy. Here, however, we aim to scale to
large spaces with non-Gaussian dynamics, a setting where it
is very difficult to represent and estimate a single monolithic
model. Hence, we take a different approach via “lazy access”
to the model: we estimate local models on demand, as the

1For example, one stopping criterion could be the convergence of the
starting state’s value V (s0).

Algorithm 2 Transition model for discrete states

1: function TRANSITIONMODEL(s, a, S̃, ps′|s,a)
2: Ŝ ← HIGHPROBNEXTSTATES(ps′|s,a(S̃ | s, a)) ∪ {sobs}
. sobs is a terminal state

3: P̂s′|s,a(Ŝ | s, a)← ps′|s,a(Ŝ | s, a)
4: for s′ in Ŝ do
5: if s′ ∈ So and EXISTSCOLLISION(s, a, s′) then
6: P̂s′|s,a(sobs | s, a) ← P̂s′|s,a(sobs | s, a) +

P̂s′|s,a(s
′ | s, a)

7: P̂s′|s,a(s
′ | s, a)← 0

8: P̂s′|s,a(Ŝ | s, a)← NORMALIZE(P̂s′|s,a(Ŝ | s, a))
9: return Ŝ, P̂s′|s,a(Ŝ | s, a)

planning process requires information about relevant states
and actions.

We assume a dataset D = {si, ai, s′i}Ni=0 for the system
dynamics and the dataset is large enough to provide a good
approximation to the probability density of the next state
given any state-action pair. If a stochastic simulator exists for
the transition model, one may collect the dataset dynamically
in response to queries from BOIDP. The “lazy access” pro-
vides a flexible interface, which can accommodate a variety
of different density-estimation algorithms with asymptotic
theoretical guarantees, such as kernel density estimators [27]
and Gaussian mixture models [28]. In our experiments,
we focus on learning Gaussian mixture models with the
assumption that ps′|s,a(s′ | s, a) is distributed according to
a mixture of Gaussians ∀(s, a) ∈ S ×A.

Given a discrete set of states S̃, starting state s and
action a, we compute the approximate discrete transition
model P̂s′|s,a as shown in Algorithm 2. We use the function
HIGHPROBNEXTSTATES to select the largest set of next
states Ŝ ⊆ S̃ such that ∀s′ ∈ Ŝ, ps′|s,a(s′ | s, a) > ε. The
parameter ε is a small threshold, e.g. we can set ε = 10−5.
If ps′|s,a does not take obstacles into account, we have to
check the path from state s to next state s′ ∈ S̃ induced
by action a for collisions, and model their effect in the
approximate discrete transition model P̂s′|s,a. To achieve
this, we add a dummy terminal state sobs, which represents
a collision, to the selected next-state set Ŝ. Then, for any
s, a, s′ transition that generates a collision, we move the
probability mass P̂s′|s,a(s′ | s, a) to the transition to the
collision state P̂s′|s,a(sobs | s, a). Finally, P̂s′|s,a(Ŝ | s, a) is
normalized and returned together with the selected set Ŝ.

These approximated discrete transition models can be
indexed by state s and action a and cached for future use in
tasks that use the same set of states S̃ and the same obstacle
map. The memory-based essence of our modeling strategy
is similar to the strategy of non-parametric models such as
Gaussian processes, which make predictions for new inputs
via smoothness assumptions and similarity between the query
point and training points in the data set.

For the case where the dynamics model ps′|s,a is given,
computing the approximated transition P̂s′|s,a could still be
computationally expensive because of the collision checking.
Our planner is designed to alleviate the high computation

Algorithm 3 RRT states sampling for BOIDP

1: function SAMPLESTATES(Nmin, S̃,G, S, ps′|s,a)
2: S̃o ← SAMPLEINTERIORSTATES(dNmin/2e, S̃,G, S, ps′|s,a)
3: ∂S̃ ← SAMPLEBOUNDARYSTATES(dNmin/2e, S̃,G, S, ps′|s,a)
4: return S̃o ∪ ∂S̃

5: function SAMPLEINTERIORSTATES(Nmin, S̃,G, S, ps′|s,a)
6: while | S̃ |< Nmin or G ∩ S̃ = ∅ do
7: srand ← UNIFORMSAMPLE(S)
8: snearest ← NEAREST(srand, S̃)
9: sn, an ← RRTEXTEND(snearest, srand, ps′|s,a)

10: if found sn, an then
11: S̃ ← S̃ ∪ {sn}
12: return S̃

13: function RRTEXTEND(snearest, srand, ps′|s,a)
14: dn =∞
15: while stopping criterion not reached do
16: a← UNIFORMSAMPLE(A)
17: s′ ← SAMPLE

(
ps′|s,a(· | snearest, a)

)
18: if (not EXISTSCOLLISION(s, s′, a)) and dn >
d(srand, s

′) then
19: dn ← d(srand, s

′)
20: sn, an ← s′, a

21: return sn, an

in P̂s′|s,a by focusing on the relevant states and actions, as
detailed in the next sections.

B. Sampling states

Algorithm 3 describes the state sampling procedures. The
input to SAMPLESTATES in Alg. 3 includes the minimum
number of states, Nmin, to sample at each iteration of
BOIDP. It may be that more than Nmin states are sampled,
because sampling must continue until at least one terminal
goal state is included in the resulting set S̃. To generate a
discrete state set, we sample states both in the interior of
So and on its boundary ∂S. Notice that we can always add
more states by calling SAMPLESTATES.

To generate one interior state sample, we randomly gen-
erate a state srand, and find snearest that is the nearest
state to srand in the current sampled state set S̃. Then we
sample a set of actions from A, for each of which we sample
the next state sn from the dataset D given the state-action
pair sneareast, a (or from ps′|s,a if given). We choose the
action a that gives us the sn that is the closest to srand.
To sample states on the boundary ∂S, we assume a uniform
random generator for states on ∂S is available. If not, we
can use something similar to SAMPLEINTERIORSTATES but
only sample inside the obstacles uniformly in line 7 of
Algorithm 3. Once we have a sample srand in the obstacle,
we try to reach srand by moving along the path srand → sn
incrementally until a collision is reached.

C. Focusing on the relevant states via RTDP

We apply our algorithm with a known starting state s0

and goal region G. Hence, it is not necessary to compute a
complete policy, and so we can use RTDP [2] to compute
a value function focusing on the relevant state space and a

Algorithm 4 RTDP for BOIDP

1: function RTDP(s0,G, S̃, ps′|s,a)
2: for s in S̃ do
3: V (s) = hu(s) . Compute the value upper bound
4: while V (·) not converged do
5: π, V ← TRIALRECURSE(s0,G, S̃, ps′|s,a)
6: return π, V

7: function TRIALRECURSE(s,G, S̃, ps′|s,a)
8: if reached cycle or s ∈ G then
9: return

10: π(s)← argmaxaQ(s, a, S̃, ps′|s,a) . Max via BO
11: s′ ← SAMPLE(P̂s′|s,a(S̃|s, π(s)))
12: TRIALRECURSE(s′,G, S̃, ps′|s,a)
13: π(s)← argmaxaQ(s, a, S̃, ps′|s,a) . Max via BO
14: V (s)← Q(s, π(s), S̃, ps′|s,a)
15: return π, V

16: function Q(s, a, S̃, ps′|s,a)
17: if P̂s′|s,a(S̃|s, a) has not been computed then
18: P̂s′|s,a(S̃|s, a) = 0 . P̂s′|s,a is a shared matrix
19: Ŝ, P̂s′|s,a(Ŝ|s, a) ← TRANSITIONMODEL(s, a, S̃, ps′|s,a)

20: return R(s, a) + γ∆t
∑
s′∈Ŝ P̂s′|s,a(s

′|s, a)V (s′)

policy that, with high probability, will reach the goal before it
reaches a state for which an action has not been determined.
We assume an upper bound of the values for each state s to be
hu(s). One can approximate hu(s) via the shortest distance
from each state to the goal region on the fully connected
graph with vertices S̃. We show the pseudocode in Algo-
rithm 4. When doing the recursion (TRIALRECURSE), we
can save additional computation when maximizing Qs(a).
Assume that the last time arg maxaQs(a) was called, the
result was a∗ and the transition model tells us that S̄
is the set of possible next states. The next time we call
arg maxaQs(a), if the values for S̄ have not changed, we
can just return a∗ as the result of the optimization. This can
be done easily by caching the current (optimistic) policy and
transition model for each state.

D. Focusing on good actions via BO

RTDP in Algorithm 4 relies on a challenging optimization
over a continuous and possibly high-dimensional action
space. Queries to Qs(a) in Eq. (1) can be very expensive
because in many cases a new model must be estimated.
Hence, we need to limit the number of points queried during
the optimization. There is no clear strategy for computing
the gradient of Qs(a), and random sampling is very sample-
inefficient especially as the dimensionality of the space
grows. We will view the optimization of Qs(a) as a black-
box function optimization problem, and use batch BO to
efficiently approximate the solution and make full use of the
parallel computing resources.

We first briefly review a sequential Gaussian-process opti-
mization method, GP-EST [29], shown in Algorithm 5. For a
fixed state s, we assume Qs(a) is a sample from a Gaussian
process with zero mean and kernel κ. At iteration t, we select
action at and observe the function value yt = Qs(at) +

εt, where εt ∼ N (0, σ2). Given the observations Dt =
{(aτ , yτ)}tτ=1 up to time t, we obtain the posterior mean
and covariance of the Qs(a) function via the kernel matrix
Kt = [κ(ai, aj)]ai,aj∈Dt

and κt(a) = [κ(ai, a)]ai∈Dt
[30]:

µt(a) = κt(a)T(Kt + σ2I)−1yt

κt(a, a
′) = κ(a, a′)− κt(a)T(Kt + σ2I)−1κt(a

′) .

The posterior variance is given by σ2
t (a) = κt(a, a). We can

then use the posterior mean function µt(·) and the posterior
variance function σ2

t (·) to select which action to test in the
next iteration. We here make use of the assumption that we
have an upper bound hu(s) on the value V (s). We select
the action that is most likely to have a value greater than or
equal to hu(s) to be the next one to evaluate. Algorithm 5
relies on sequential tests of Qs(a), but it may be much more
effective to test Qs(a) for multiple values of a in parallel.
This requires us to choose a diverse subset of actions that
are expected to be informative and/or have good values.

We propose a new batch Bayesian optimization method
that selects a query set that has large diversity and low values
of the acquisition function Gs,t(a) =

(
hu(s)−µt−1(a)

σt−1(a)

)
. The

key idea is to maximize a submodular objective function with
a cardinality constraint on B ⊂ A, |B| = M that characterize
both diversity and quality:

Fs(B) = log detKB − λ
∑
a∈B

hu(s)− µt−1(a)

σt−1(a)
(2)

where KB = [κ(ai, aj)]ai,aj∈B and λ is a trade-off param-
eter for diversity and quality. If λ is large, Fs will prefer
actions with lower Gs,t(a), which means a better chance of
having high values. If λ is low, log detKB will dominate Fs
and a more diverse subset B is preferred. λ can be chosen by
cross-validation. We optimize the heuristic function Fs via
greedy optimization which yield a 1 − 1

e approximation to
the optimal solution. We describe the batch GP optimization
in Algorithm 6.

The greedy optimization can be efficiently implemented
using the following property of the determinant:

Fs(B ∪ {a})− Fs(B) (3)

= log detKB∪{a} − log detKB −
hu(s)− µt−1(a)

σt−1(a)
(4)

= log(κa − κT
BaK

−1
B κBa)− hu(s)− µt−1(a)

σt−1(a)
(5)

where κa = κ(a, a),κBa = [κ(ai, a)]ai∈B .

Algorithm 5 Optimization of Qs(a) via sequential GP optimization

1: D0 ← ∅
2: for t = 1→ T do
3: µt−1, σt−1 ← GP-predict(Dt−1)
4: at ← argmina∈A

hu(s)−µt−1(a)

σt−1(a)

5: yt ← Qs(at)
6: Dt ← Dt−1 ∪ {at, yt}

Algorithm 6 Optimization of Qs(a) via batch GP optimization

1: D0 ← ∅
2: for t = 1→ T do
3: µt−1, σt−1 ← GP-predict(Dt−1)
4: B ← ∅
5: for i = 1→M do
6: B ← B ∪ {argmaxa∈A Fs(B ∪ {a})− Fs(B)}
7: yB ← Qs(B) . Test Qs in parallel
8: Dt ← Dt−1 ∪ {B,yB}

V. THEORETICAL ANALYSIS

In this section, we characterize the theoretical behavior of
BOIDP. Thm. 1 establishes the error bound for the value
function on the π̂∗-relevant set of states [2], where π̂∗ is the
optimal policy computed by BOIDP. A set B ⊆ S is called
π-relevant if all the states in B are reachable via finite actions
from the starting state s0 under the policy π. We denote | · |B
as the L∞ norm of a function · over the set B. Without loss
of generality, we assume min ∆t = 1.

Under mild conditions on Qs(a) specified in Thm. 1,
we show that with finitely many actions selected by BO,
the expected accumulated error expressed by the difference
between the optimal value function V ∗ and the value function
V̂ of the policy computed by BOIDP in Alg. 1 on the π̂∗-
relevant set decreases sub-linearly in the number of actions
selected for optimizing Qs(·) in Eq. (1).

Theorem 1 (Error bound for BOIDP). Let D =
{si, ai, s′i}Ni=0 be the dataset that is collected from
the true transition probability ps′|s,a, ∀(s, a) ∈ S ×
A. We assume that the transition model ps′|s,a esti-
mated by the density estimator asymptotically converges
to the true model. ∀s ∈ S, we assume Qs(a) =∫
s′∈S ps′|s,a(s′ | s, a)

(
R(s′ | s, a) + γ∆tV ∗(s′)

)
ds′ is a

function locally continuous at arg maxa∈AQs(a), where
V ∗(·) = maxa∈AQ·(a) is the optimal value function for
the continuous state-action MDP M = (S,A, ps′|s,a, R, γ).
V ∗(·) is associated with an optimal policy whose relevant set
contains at least one state in the goal region G. At iteration
k of RTDP in Alg. 4, we define V̂k to be the value function
for M̃ = (S̃, A, P̂s′|s,a, R, γ) approximated by BOIDP, π̂k
to be the policy corresponding to V̂k, and Bk to be the π̂k-
relevant set. We assume that

Qs,k(a) =
∑
s′∈S̃

P̂s′|s,a(s′ | s, a)
(
R(s′ | s, a) + γ∆tV̂k−1(s′)

)
is a function sampled from a Gaussian process with known
priors and i.i.d Gaussian noise N (0, σ). If we allow
Bayesian optimization for Qs,k(a) to sample T actions for
each state and run RTDP in Alg. 4 until it converges with
respect to the Cauchy’s convergence criterion [31] with
K <∞ iterations, in expectation,

lim
|S̃|,|D|→∞

|V̂K(·)− V ∗(·)|BK ≤
ν

1− γ

√
2ηT

T log(1 + σ2)
,

where ηT is the maximum information gain of the selected
actions [32, Theorem 5], ν = max

s,t,k
min
a∈A

Gs,t,k(a), and

Fig. 2: Pushing a circular object with a rectangle pusher.

Gs,t,k(·) is the acquisition function in [29, Theorem 3.1]
for state s ∈ S̃, iteration t = 1, 2, · · · , T in Alg. 5 or 6, and
iteration k = 1, 2, · · · ,K of the loop in Alg. 4.

The detailed proof can be found in [33].

VI. IMPLEMENTATION AND EXPERIMENTS

We tested our approach in a quasi-static problem, in which
a robot pushes a circular object through a planar workspace
with obstacles in simulation2. We represent the action by the
robot’s initial relative position x to the object (its distance
to the object center is fixed), the direction of the push z,
and the duration of the push ∆t, which are illustrated in
Fig. 2. The companion video shows the behavior of this
robot, controlled by a policy derived by BOIDP from a set
of training examples.

In this problem, the basic underlying dynamics in free
space with no obstacles are location invariant; that is, that the
change in state ∆s resulting from taking action a = (u,∆t)
is independent of the state s in which a was executed. We are
given a training dataset D = {∆si, ai}Ni=0, where ai is an
action and ∆si is the resulting state change, collected in the
free space in a simulator. Given a new query for action a, we
predict the distribution of ∆s by looking at the subset D′ =
{∆sj , aj}Mj=0 ⊆ D whose actions aj are the most similar
to a (in our experiments we use 1-norm distance to measure
similarity), and fit a Gaussian mixture model on ∆sj using
the EM algorithm, yielding an estimated continuous state-
action transition model ps′|s,a(s + ∆s | s, a) = p∆s|a(∆s |
a). We use the Bayesian information criterion (BIC) to
determine the number of mixture components.

A. Importance of learning accurate models

Our method was designed to be appropriate for use in
systems whose dynamics are not well modeled with uni-
modal Gaussian noise. The experiments in this section ex-
plore the question of whether a uni-modal model could work
just as well, using a simple domain with known dynamics
s′ = s + T (a)ρ, where the relative position x = 0 and
duration ∆t = 1 are fixed, the action is the direction of
motion, a = z ∈ [0, 2π), T (a) is the rotation matrix for
angle, and the noise is

ρ ∼ 0.6N (

[
5.0
5.0

]
,

[
2.0 0.0
0.0 2.0

]
) + 0.4N (

[
5.0
−5.0

]
,

[
2.0 0.0
0.0 2.0

]
).

2All experiments were run with Python 2.7.6 on Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz with 64GB memory.

−20−15−10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

s
[1
]

K=1

K=2

1500 2000 2500 3000 3500 4000 4500 5000 5500

|S̃|

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f
v
is
it
a
e
d
 s

ta
te

s
 i
n
 R

T
D

P

K=1

K=2

(a) (b)s[0]

Fig. 3: (a) Samples from the single-mode Gaussian transition
model (K = 1) and the two-component Gaussian mixture
transition model (K = 2) in the free space when a = 0.
(b) The number of visited states (y-axis) increases with the
number of sampled states |S̃| (x-axis). Planning with K = 2
visits fewer states in RTDP than with K = 1.

−40 −20 0 20 40

−40

−20

0

20

40

Start

Obstacle

Obstacle

Goal

−40 −20 0 20 40

−40

−20

0

20

40

Start

Obstacle

Obstacle

Goal

(a) (b)

Fig. 4: (a) Samples of 10 trajectories with K = 1. (b)
Samples of 10 trajectories with K = 2. Using the correct
number of components for the transition model improves the
quality of the trajectories.

We sample ρ from its true distribution and fit a Gaussian
(K = 1) and a mixture of Gaussians (K = 2). The samples
from K = 1 and K = 2 are shown in Fig. 3 (a). We plan
with both models where each action has an instantaneous
reward of −1, hitting an obstacle has a reward of −10, and
the goal region has a reward of 100. The discount factor
γ = 0.99. To show that the results are consistent, we use
Algorithm 3 to sample 1500 to 5000 states to construct S̃,
and plan with each of them using 100 uniformly discretized
actions within 1000 iterations of RTDP.

To compute the Monte Carlo reward, we simulated 500
trajectories for each computed policy with the true model
dynamics, and for each simulation, at most 500 steps are
allowed. We show 10 samples of trajectories for both K = 1
and K = 2 with |S̃| = 5000, in Fig 4. Planning with the right
model, K = 2, tends to find better trajectories, while because
K = 1 puts density on many states that the true model does
not reach, the policy of K = 1 in Fig 4 (a) causes the robot
to do extra maneuvers or even choose a longer trajectory to
avoid obstacles that it actually has very low probability of
hitting. As a result, the reward and success rate for K = 2
are both higher than K = 1, as shown in Fig. 5. Furthermore,
because the single-mode Gaussian estimates the noise to have
a large variance, it causes RTDP to visit many more states
than necessary, as shown in Fig. 3 (b).

1500 2000 2500 3000 3500 4000 4500 5000

−150

−100

−50

0

50

100

R
e
w

a
rd

K=1

K=2

1500 2000 2500 3000 3500 4000 4500 5000

|S̃|

0.990

0.995

1.000

1.005

S
u

c
c
e
s
s
 R

a
te

K=1

K=2

|S̃|
(a) (b)

Fig. 5: (a): Reward. (b): Success rate. Using two components
(K = 2) performs much better than using one component
(K = 1) in terms of reward and success rate.

B. Focusing on the good actions and states

In this section we demonstrate the effectiveness of our
strategies for limiting the number of states visited and actions
modeled. We denote using Bayesian optimization in Lines 10
and 13 in Algorithm 4 as BO and using random selections
as Rand.

2 4 6 8 10 12 14 16 18

s[0]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

S
[1
]

Samples from data

Samples from model

Fig. 6: The conditional distribution of ∆s given a =
(z, x,∆t) = (0.0, 0.3, 2.0) is a multi-modal Gaussian.

We first demonstrate why BO is better than random for
optimizing Qs(a) with the simple example from Sec. VI-
A. We plot the Qs(a) in the first iteration of RTDP where
s = [−4.3, 33.8], and let random and BO in Algorithm 5
each pick 10 actions to evaluate sequentially as shown in
Fig 7 (a). We use the GP implementation and the default
Matern52 kernel implemented in the GPy module [34] and
optimize its kernel parameters every 5 selections. The first
point for both BO and Rand is fixed to be a = 0.0. We
observe that BO is able to focus its action selections in the
high-value region, and BO is also able to explore informative
actions if it has not found a good value or if it has finished
exploiting a good region (see selection 10). Random action
selection wastes choices on regions that have already been
determined to be bad.

Next we consider a more complicated problem in which
the action is the high level control of a pushing problem
a = (z, x,∆t), z ∈ [0, 2π], x ∈ [−1.0, 1.0],∆t ∈ [0.0, 3.0]
as illustrated in Fig. 2. The instantaneous reward is −1 for
each free-space motion, −10 for hitting an obstacle, and 100
for reaching the goal; γ = 0.99. We collected 1.2×106 data
points of the form (a,∆s) with x and ∆t as variables in the
Box2D simulator [35] where noise comes from variability of

N
u
m

b
er

 o
f
se

le
ct

ed
 a

ct
io

n
s

200 400 600 800 1000 1200

|S̃|

0

200

400

600

800

1000

1200

1400

1600

Rand

BO

0 1 2 3 4 5 6
a

20

0

20

40

60

80

100

Q
s(
a
)

0
1

2 3456

7

8 910

0 123 4

5

6

7 8

9

10

Qs(a)

Rand

BO

(b)(a)

Fig. 7: (a) We optimize Qs(a) with BO and Rand by
sequentially sampling 10 actions. BO selects actions more
strategically than Rand. (b) BO samples fewer actions than
Rand in the pushing problem for all settings of |S̃|.

200 400 600 800 1000 1200

0

20

40

60

80

100

120

L
ea

rn
in

g
an

d
pl

an
ni

ng
 T

im
e

(s
)

Rand

BO

(a) (b)

200 400 600 800 1000 1200

|S̃|

0

20

40

60

80

100

120

140

N
um

be
r

of
 v

is
it
ed

 s
ta

te
s

in
 R

T
D

P

Rand

BO

|S̃|

Fig. 8: (a) Number of visited states in RTDP. Both of Rand
and BO consistently focus on about 10% states for planning.
(b) Learning and planning time of BO and Rand.

the executed action. We make use of the fact that the object
is cylindrical (with radius 1.0) to reuse data. An example of
the distribution of ∆s given a = (0.0, 0.3, 2.0) is shown in
Fig. 6.

We compare policies found by Rand and BO with the
same set of sampled states (|S̃| = 200, 400, 600, 800, 1000)
within approximately the same amount of total computation
time. They are both able to compute the policy in 30 ∼ 120
seconds, as shown in Fig. 8 (b). In more realistic domains, it
is possible that learning the transition model will take longer
and dominate the action-selection computation. We simulate
100 trajectories in the Box2D simulator for each planned
policy with a maximum of 200 seconds. We show the result
of the reward and success rate in Fig. 9, and the average
number of actions selected for visited states in Fig. 7(b).
In our simulations, BO consistently performs approximately
the same or better than Rand in terms of reward and success
rate while BO selects fewer actions than Rand. We show 10
simulated trajectories for Rand and BO with |S̃| = 1000 in
Fig. 10.

From Fig. 8 (a), it is not hard to see that RTDP success-
fully controlled the number of visited states to be only a
small fraction of the whole sampled set of states. Interest-
ingly, BO was able to visit slightly more states with RTDP
and as a result, explored more possible states that it is likely
to encounter during the execution of the policy, which may
be a factor that contributed to its better performance in terms
of reward and success rate in Fig. 9. We did not compare
with pure value iteration because the high computational cost
of computing models for all the states made it infeasible.

BOIDP is able to compute models for only around 10%
of the sampled states and about 200 actions per state. If

200 300 400 500 600 700 800 900 1000

|S̃|

200

150

100

50

0

50

R
e
w

a
rd

Rand

BO

(a)

200 300 400 500 600 700 800 900 1000

|S̃|

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
u
c
c
e
ss

 R
a
te

Rand

BO

(b)

Fig. 9: (a) Reward. (b) Success rate. BO achieves better
reward and success rate, with many fewer actions and slightly
more visited states.

−20 −10 0 10 20

−20

−10

0

10

20

Start

Obstacle

Goal

−20 −10 0 10 20

−20

−10

0

10

20

Start

Obstacle

Goal

(a) (b)

Fig. 10: (a) 10 samples of trajectories generated via Rand
with 1000 states. (b) 10 samples of trajectories generated
via BO with 1000 states.

we consider a naive grid discretization for both action (3
dimension) and state (2 dimension) with 100 cells for each
dimension, the number of models we would have to compute
is on the order of 1010, compared to our approach, which
requires only 104.

VII. CONCLUSION

An important class of robotics problems are intrinsically
continuous in both state and action space, and may demon-
strate non-Gaussian stochasticity in their dynamics. We have
provided a framework to plan and learn effectively for these
problems. We achieve efficiency by focusing on relevant
subsets of state and action spaces, while retaining guarantees
of asymptotic optimality.

REFERENCES

[1] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million
ways to be pushed: A high-fidelity experimental data set of planar
pushing,” in IROS, 2016.

[2] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using
real-time dynamic programming,” Artificial Intelligence, vol. 72, no. 1,
pp. 81–138, 1995.

[3] S. M. LaValle, “Rapidly-exploring random trees: a new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
TR 98-11, 1998.

[4] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-
based algorithm for stochastic optimal control,” IJRR, vol. 35, no. 4,
pp. 305–333, 2016.

[5] V. Gullapalli, J. A. Franklin, and H. Benbrahim, “Acquiring robot skills
via reinforcement learning,” IEEE Control Systems, vol. 14, no. 1, pp.
13–24, 1994.

[6] L. C. Baird, III and A. H. Klopf, “Reinforcement learning with high-
dimensional continuous actions,” Wright Laboratory, Wright Patterson
Air Force Base, Tech. Rep., 1993.

[7] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Networks, vol. 8, no. 5, pp. 997–1007, 1997.

[8] H. van Hasselt and M. A. Wiering, “Reinforcement learning in
continuous action spaces,” in ADPRL, 2007.

[9] B. D. Nichols, “Continuous action-space reinforcement learning meth-
ods applied to the minimum-time swing-up of the acrobot,” in ICSMC,
2015.

[10] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in ICML, 2011.

[11] H. S. Jakab and L. Csató, “Reinforcement learning with guided policy
search using Gaussian processes,” in IJCNN, 2012.

[12] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Model-based
reinforcement learning with continuous states and actions.” in ESANN,
2008.

[13] A. Rottmann and W. Burgard, “Adaptive autonomous control using
online value iteration with Gaussian processes,” in ICRA, 2009.

[14] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A
survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[15] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Gaussian process
dynamic programming,” Neurocomputing, vol. 72, no. 7, pp. 1508–
1524, 2009.

[16] M. Ghavamzadeh, S. Mannor, J. Pineau, A. Tamar et al., “Bayesian
reinforcement learning: A survey,” Foundations and Trends in Machine
Learning, vol. 8, no. 5–6, pp. 359–483, 2015.

[17] M. K. Titsias and M. Lázaro-Gredilla, “Variational heteroscedastic
Gaussian process regression,” in ICML, 2011.

[18] C. Yuan and C. Neubauer, “Variational mixture of Gaussian process
experts,” in NIPS, 2009.

[19] T. M. Moldovan, S. Levine, M. I. Jordan, and P. Abbeel, “Optimism-
driven exploration for nonlinear systems,” in ICRA, 2015.

[20] M. Kopicki, J. Wyatt, and R. Stolkin, “Prediction learning in robotic
pushing manipulation,” in ICAR, 2009.

[21] M. Kopicki, “Prediction learning in robotic manipulation,” Ph.D.
dissertation, University of Birmingham, 2010.

[22] M. Kopicki, S. Zurek, R. Stolkin, T. Mörwald, and J. Wyatt, “Learning
to predict how rigid objects behave under simple manipulation,” in
ICRA, 2011.

[23] T. Yee, V. Lisy, and M. Bowling, “Monte Carlo tree search in
continuous action spaces with execution uncertainty,” in IJCAI, 2016.

[24] M. Frean and P. Boyle, “Using Gaussian processes to optimize
expensive functions,” in Australasian Joint Conference on Artificial
Intelligence, 2008.

[25] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” University of
British Columbia, Tech. Rep. TR-2009-023, 2009.

[26] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in
finite Markov decision processes with Gaussian processes,” in NIPS,
2016.

[27] D. Wied and R. Weißbach, “Consistency of the kernel density estima-
tor: a survey,” Statistical Papers, vol. 53, no. 1, pp. 1–21, 2012.

[28] A. Moitra and G. Valiant, “Settling the polynomial learnability of
mixtures of Gaussians,” in FOCS, 2010.

[29] Z. Wang, B. Zhou, and S. Jegelka, “Optimization as estimation with
Gaussian processes in bandit settings,” in AISTATS, 2016.

[30] C. E. Rasmussen and C. K. Williams, “Gaussian processes for machine
learning,” The MIT Press, 2006.

[31] A. L. Cauchy, Cours d’analyse de l’Ecole Royale Polytechnique.
Imprimerie royale, 1821, vol. 1.

[32] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experimental
design,” in ICML, 2010.

[33] Z. Wang, S. Jegelka, L. P. Kaelbling, and T. Lozano-Pérez, “Focused
model-learning and planning for non-Gaussian continuous state-action
systems,” arXiv preprint arXiv:1607.07762, 2016.

[34] GPy, “GPy: a Gaussian process framework in python,” http://github.
com/SheffieldML/GPy, since 2012.

[35] E. Catto, “Box2D, a 2D physics engine for games,” http://box2d.org,
2011.

