
Active model learning and diverse action sampling
for task and motion planning

Zi Wang Caelan Reed Garrett Leslie Pack Kaelbling Tomás Lozano-Pérez

Abstract— The objective of this work is to augment the
basic abilities of a robot by learning to use new sensorimotor
primitives to enable the solution of complex long-horizon
problems. Solving long-horizon problems in complex domains
requires flexible generative planning that can combine primitive
abilities in novel combinations to solve problems as they arise
in the world. In order to plan to combine primitive actions,
we must have models of the preconditions and effects of those
actions: under what circumstances will executing this primitive
achieve some particular effect in the world?

We use, and develop novel improvements on, state-of-the-art
methods for active learning and sampling. We use Gaussian
process methods for learning the conditions of operator effec-
tiveness from small numbers of expensive training examples
collected by experimentation on a robot. We develop adaptive
sampling methods for generating diverse elements of continuous
sets (such as robot configurations and object poses) during
planning for solving a new task, so that planning is as
efficient as possible. We demonstrate these methods in an
integrated system, combining newly learned models with an
efficient continuous-space robot task and motion planner to
learn to solve long horizon problems more efficiently than was
previously possible.

I. INTRODUCTION

For a robot to be effective in a domain that combines novel
sensorimotor primitives, such as pouring or stirring, with
long-horizon, high-level task objectives, such as cooking a
meal or making a cup of coffee, it is necessary to acquire
models of these primitives to use in planning robot motions
and manipulations. These models characterize (a) conditions
under which the primitive is likely to succeed and (b) the
effects of the primitive on the state of the world.

Figure 1 illustrates several instances of a parameterized
motor primitive for pouring in a simple two-dimensional
domain. The primitive action has control parameters θ that
govern the rate at which the cup is tipped and target velocity
of the poured material. In addition, several properties of
the situation in which the pouring occurs are very relevant
for its success: robot configuration cR, pouring cup pose
and size pA, sA, and target cup pose and size pB , sB . To
model the effects of the action we need to specify c′R
and p′A, the resulting robot configuration and pose of the
pouring cup A. Only for some settings of the parameters

* MIT CSAIL. {ziw,caelan,lpk,tlp}@csail.mit.edu. We
gratefully acknowledge support from NSF grants 1420316, 1523767 and
1723381, from AFOSR grant FA9550-17-1-0165, from Honda Research
and Draper Laboratory. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of our sponsors.

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain.

GRIPPER

Fig. 1: Several examples of executing a pouring primitive
with different settings, including control parameters, cup
sizes, and relative placements.

(cR, pA, sA, pB , sB , θ, c
′
R, p

′
A) ∈ χ is the action feasible:

one key objective of our work is to efficiently learn a
representation of the feasible region χ.

For learning this model, each training example requires
running the primitive, which is expensive on real robot
hardware and even in high-fidelity simulation. To minimize
the amount of training data required, we actively select each
setting in which the primitive is executed, with the goal of
obtaining as much information as possible about how to use
the primitive. This results in a dramatic reduction in required
examples over our preliminary work [1] on this problem.

Given a model of a primitive, embodied in χ, we uti-
lize existing sample-based algorithms for task and motion
planning (TAMP) to find plans. To use the model within
the planner, it is necessary to select candidate instances of
the primitives for expansion during the search for a plan.
The objective here is not to gain information, but to select
primitive instances that are likely to be successful. It is not
enough to select a single instance, however, because there
may be other circumstances that make a particular instance
infeasible within a planning context: for example, although
the most reliable way to grasp a particular object might be
from the top, the robot might encounter the object situated
in a cupboard in a way that makes the top grasp infeasible.
Thus, our action-sampling mechanism must select instances
that are both likely to succeed and are diverse from one
another, so that the planner has coverage of the space of
possible actions.

One difficulty in sampling χ is that it inhabits a lower-
dimensional submanifold of the space it is defined in, be-
cause some relations among robot configurations and object
poses, for example, are functional. The STRIPStream plan-
ner [2], [3] introduced a strategy for sampling from such
dimensionality-reducing constraints by constructing condi-

tional samplers that, given values of some variables, generate
values of the other variables that satisfy the constraint. Our
goal in this paper is to learn and use conditional samplers
within the STRIPStream planner.

Our technical strategy for addressing the problems of
(a) learning success constraints and (b) generating diverse
samples is based on an explicit representation of uncertainty
about an underlying scoring function that measures the qual-
ity or likelihood of success of a parameter vector, and uses
Gaussian process (GP) techniques to sample for information-
gathering during learning and for success probability and
diversity during planning. We begin by describing some basic
background, discuss related work, describe our methods in
technical detail, and then present experimental results of
learning and planning with several motor primitives in a two-
dimensional dynamic simulator.

II. PROBLEM FORMULATION AND BACKGROUND

We will focus on the formal problem of learning and using
a conditional sampler of the form φ(θ | α), where α ∈ Rdα
is a vector of contextual parameters and θ ∈ B is a vector of
parameters that are to be generated, conditioned on α. We
assume in the following that the domain of θ is a hyper-
rectangular space B = [0, 1]dθ ⊂ Rdθ , but generalization to
other topologies is possible. The conditional sampler gener-
ates samples of θ such that (θ, α) ∈ χ where χ ⊂ Rdα+dθ

characterizes the set of world states and parameters for which
the skill is feasible. We assume that χ can be expressed in
the form of an inequality constraint χ(θ, α) = (g(θ, α) > 0),
where g(·) is a scoring function with arguments θ and α. We
denote the super level-set of the scoring function given α by
Aα = {θ ∈ B | g(θ, α) > 0}. For example, the scoring
function g(·) for pouring might be the proportion of poured
liquid that actually ends up in the target cup, minus some
target proportion. We assume the availability of values of
such a score function during training rather than just binary
labels of success or failure. In the following, we give basic
background on two important components of our method:
Gaussian processes and STRIPStream.

Gaussian processes (GPs) are distributions over func-
tions, and popular priors for Bayesian non-parametric re-
gression. In a GP, any finite set of function values has
a multivariate Gaussian distribution. In this paper, we use
the Gaussian process GP(0, k) which has mean zero and
covariance (kernel) function k(x,x′). Let f be a true
underlying function sampled from GP(0, k). Given a set
of observations D = {(xt, yt)}|D|t=1, where yt is an evalua-
tion of f at xt corrupted by i.i.d additive Gaussian noise
N (0, ζ2), we obtain a posterior GP, with mean µ(x) =
kD(x)T(KD + ζ2I)−1yD and covariance σ2(x,x′) =
k(x,x′) − kD(x)T(KD + ζ2I)−1kt(x

′) where the ker-
nel matrix KD = [k(xi,xj)]xi,xj∈D and kD(x) =

[k(xi,x)]xi∈D [4]. With slight abuse of notation, we de-
note the posterior variance by σ2(x) = σ2(x,x), and the
posterior GP by GP(µ, σ).

STRIPStream [3] is a framework for incorporating black-
box sampling procedures in a planning language. It extends

the STRIPS planning language [5] by adding streams, declar-
ative specifications of conditional generators. Streams have
previously been used to model off-the-shelf motion planners,
collision checkers, inverse kinematic solvers. In this work,
we learn new conditional generators, such as samplers for
pouring, and incorporate them using streams.

III. RELATED WORK

Our work draws ideas from model learning, probabilistic
modeling of functions, and task and motion planning (TAMP).

There is a large amount of work on learning individual
motor primitives such pushing [6], [7], scooping [8], and
pouring [9], [10], [11], [12], [13]. We focus on the task of
learning models of these primitives suitable for multi-step
planning. We extend a particular formulation of planning
model learning [1], where constraint-based pre-image models
are learned for parameterized action primitives, by giving
a probabilistic characterization of the pre-image and using
these models during planning.

Other approaches exist to learning models of the precondi-
tions and effects of sensorimotor skills suitable for planning.
One [14] constructs a completely symbolic model of skills
that enable purely symbolic task planning. Our method, on
the other hand, learns hybrid models, involving continuous
parameters. Another [15] learns image classifiers for pre-
conditions but does not support general-purpose planning.

We use GP-based level set estimation [16], [17], [4], [18]
to model the feasible regions (super level set of the scoring
function) of action parameters. We use the straddle algo-
rithm [16] to actively sample from the function threshold, in
order to estimate the super level set that satisfy the constraint
with high probability. Our methods can be extended to other
function approximators that gives uncertainty estimates, such
as Bayesian neural networks and their variants [19], [20].

Determinantal point processes (DPPs) [21] are typically
used for diversity-aware sampling. However, both sampling
from a continuous DPP [22] and learning the kernel of a
DPP [23] are challenging.

Several approaches to TAMP utilize generators to enumer-
ate infinite sequences of values [24], [25], [2]. Our learned
samplers can be incorporated in any of these approaches.
Additionally, some recent papers have investigated learning
effective samplers within the context of TAMP. Chitnis et
al. [26] frame learning plan parameters as a reinforcement
learning problem and learn a randomized policy that samples
from a discrete set of robot base and object poses. Kim et
al. [27] proposed a method for selecting from a discrete set
of samples by scoring new samples based on their correlation
with previously attempted samples. In subsequent work, they
instead train a Generative Adversarial Network to directly
produce a distribution of satisfactory samples [28].

IV. ACTIVE SAMPLING FOR LEARNING AND PLANNING

Our objective in the learning phase is to efficiently gather
data to characterize the conditional super-level-sets Aα with
high confidence. We use a GP on the score function g to select
informative queries using a level-set estimation approach.

Our objective in the planning phase is to select a diverse
set of samples {θi} for which it is likely that θ ∈ Aα.
We do this in two steps: first, we use a novel risk-aware
sampler to generate θ values that satisfy the constraint with
high probability; second, we integrate this sampler with
STRIPStream, where we generate samples from this set that
represent its diversity, in order to expose the full variety of
choices to the planner.

A. Actively learning the constraint with a GP

Our goal is to be able to sample from the super level set
Aα = {θ ∈ B | g(θ, α) > 0} for any given context α, which
requires learning the decision boundary g(θ, α) = 0. During
training, we select α values from a distribution reflecting
naturally occurring contexts in the underlying domain. Note
that learning the level-set is a different objective from
learning all of the function values well, and so it must be
handled differently from typical GP-based active learning.

For each α value in the training set, we apply the straddle
algorithm [16] to actively select samples of θ for evaluation
by running the motor primitive. After each new evaluation
of g(θ, α) is obtained, the data-set D is augmented with pair
〈(θ, α), g(θ, α)〉, and used to update the GP. The straddle
algorithm selects θ that maximizes the acquisition function
ψ(θ;α, µ, σ) = −|µ(θ, α)|+1.96σ(θ, α). It has a high value
for values of θ that are near the boundary for the given
α or for which the score function is highly uncertain. The
parameter 1.96 is selected such that if ψ(θ) is negative, θ
has less than 5 percent chance of being in the level set. In
practice, this heuristic has been observed to deliver state-of-
the-art learning performance for level set estimation [18],
[17]. After each new evaluation, we retrain the Gaussian
process by maximizing its marginal data-likelihood with re-
spect to its hyper-parameters. Alg. 1 specifies the algorithm;
GP-predict(·) computes the posterior mean and variance as
explained in Sec. II.

Algorithm 1 Active Bayesian Level Set Estimation
1: Given initial data set D, context α, desired number of samples T
2: for t = 1→ T do
3: µ, σ ← GP-predict(D)
4: θ ← arg maxθ ψ(θ;α, µ, σ)
5: y ← g(θ, α)
6: D ← D ∪ {((θ, α), y)}
7: return D

B. Risk-aware adaptive sampling for constraint satisfaction

Now we can use this Bayesian estimate of the scoring
function g to select action instances for planning. Given a
new context α, which need not have occured in the training
set—the GP will provide generalization over contexts—we
would like to sample a sequence of θ ∈ B such that with high
probability, g(θ, α) ≥ 0. In order to guarantee this, we adopt
a concentration bound and a union bound on the predictive
scores of the samples. Notice that by construction of the
GP, the predictive scores are Gaussian random variables. The
following is a direct corollary of Lemma 3.2 of [29].

Fig. 2: High-probability super-level-set in black.

Corollary 1. Let g(θ) ∼ GP(µ, σ), δ ∈ (0, 1) and set β∗i =
(2 log(πi/2δ))

1
2 , where

∑T
i=1 π

−1
i ≤ 1, πi > 0. If µ(θi) >

β∗i σ(θi),∀i = 1, · · · , T , then Pr[g(θi) > 0,∀i] ≥ 1− δ.

Define the high-probability super-level-set of θ given
context α as Âα = {θ | µ(θ, α) > β∗ σ(θ, α)} where β∗

is picked according to Corollary 1. If we draw T samples
from Âα, then with probability at least 1 − δ, all of the
samples will satisfy the constraint g(θ, α) > 0.

In practice, however, for any given α, using the definition
of β∗ from Corollary 1, the set Âα may be empty. In that
case, we can relax our criterion to include the set of θ values
whose score is within 5% of the θ value that is currently
estimated to have the highest likelihood of satisfying the con-
straint: β = Φ−1(0.95Φ(maxθ∈B µ(θ, α)/σ(θ, α))) where Φ
is the cumulative density function of a normal distribution.

Figure 2 illustrates the computation of Âα. The green line
is the true hidden g(θ); the blue × symbols are the training
data, gathered using the straddle algorithm in [0, 1]; the red
line is the posterior mean function µ(θ); the pink regions
show the two-standard-deviation bounds on g(θ) based on
σ(θ); and the black line segments are the high-probability
super-level-set Âα for β = 2.0. We can see that sampling
has concentrated near the boundary, that Âα is a subset
of the true super-level-set, and that as σ decreases through
experience, Âα will approach the true super-level set.

To sample from Âα, one simple strategy is to do rejection
sampling with a proposal distribution that is uniform on
the search bounding-box B. However, in many cases, the
feasible region of a constraint is typically much smaller than
B, which means that uniform sampling will have a very
low chance of drawing samples within Âα, and so rejection
sampling will be very inefficient. We address this problem
using a novel adaptive sampler, which draws new samples
from the neighborhood of the samples that are already known
to be feasible with high probability and then re-weights these
new samples using importance weights.

The algorithm ADAPTIVESAMPLER takes as input the
posterior GP parameters µ and σ and context vector α, and
yields a stream of samples. It begins by computing β and
sets Θinit to contain the θ that is most likely to satisfy
the constraint. It then maintains a buffer Θ of at least m/2
samples, and yields the first one each time it is required to
do so; it technically never actually returns, but generates a

sample each time it is called. The main work is done by
SAMPLEBUFFER, which constructs a mixture of truncated
Gaussian distributions (TGMM), specified by mixture weights
p, means Θ, circular variance with parameter v, and bounds
B. Parameter v indicates how far from known good θ values
it is reasonable to search; it is increased if a large portion
of the samples from the TGMM are accepted and decreased
otherwise. The algorithm iterates until it has constructed a
set of at least m samples from Âα. It samples n elements
from the TGMM and retains those that are in Âα as Θa.
Then, it computes “importance weights” pa that are inversely
related to the probability of drawing each θa ∈ Θa from
the current TGMM. This will tend to spread the mass of the
sampling distribution away from the current samples, but
still concentrated in the target region. A set of n uniform
samples is drawn and filtered, again to maintain the chance of
dispersing to good regions that are far from the initialization.
The p values associated with the old Θ as well as the newly
sampled ones are concatenated and then normalized into
a distribution, the new samples added to Θ, and the loop
continues. When at least m samples have been obtained, m
elements are sampled from Θ according to distribution p,
without replacement.

Algorithm 2 Super Level Set Adaptive Sampling
1: function ADAPTIVESAMPLER(µ, σ, α)
2: β ← Φ−1(0.95Φ(maxθ∈B µ(θ, α)/σ(θ, α)))

3: Θinit ← {arg maxθ∈B
µ(θ)
σ(θ)
}; Θ← ∅

4: while True do
5: if |Θ| < m/2 then
6: Θ← SAMPLEBUFFER(µ, σ, α, β,Θinit, n,m)

7: θ ← Θ[0]
8: yield θ
9: Θ← Θ \ {θ}

10: function SAMPLEBUFFER(µ, σ, α, β,Θinit)
11: v ← [1]

dθ
d=1; Θ← Θinit; p← [1]

|Θ|
i=1

12: while True do
13: Θ′ ← SampleTGMM(n; p,Θ, v, B)
14: Θa ← {θ ∈ Θ′ | µ(θ) > βσ(θ)}
15: pa ← 1/pTGMM(Θa; p,Θ, v, B)
16: v ← v/2 if |Θa| < |Θ′|/2 else v × 2
17: Θ′′ ← SampleUniform(n;B)
18: Θr ← {θ ∈ Θ′′ | µ(θ) > βσ(θ)}
19: pr ← [V ol(B)]

|Θr|
i=1

20: p← Normalize([p, pr, pa])
21: Θ← [Θ,Θr,Θa]
22: if |Θ| > m then
23: return Sample(m; Θ, p)

It is easy to see that as n goes to infinity, by sampling
from the discrete set according to the re-weighted probability,
we are essentially sampling uniformly at random from Âα.
This is because ∀θ ∈ Θ, p(θ) ∝ 1

psample(θ)
psample(θ) = 1.

For uniform sampling, psample(θ) = 1
V ol(B) , where V ol(B)

is the volume of B; and for sampling from the truncated
mixture of Gaussians, psample(θ) is the probability density
of θ. In practice, n is finite, but this method is much more
efficient than rejection sampling.

C. Diversity-aware sampling for planning
Now that we have a sampler that can generate approxi-

mately uniformly random samples within the region of values

that satisfy the constraints with high probability, we can use
it inside a planning algorithm for continuous action spaces.
Such planners perform backtracking search, potentially need-
ing to consider multiple different parameterized instances of
a particular action before finding one that will work well in
the overall context of the planning problem. The efficiency of
this process depends on the order in which samples of action
instances are generated. Intuitively, when previous samples
of this action for this context have failed to contribute to
a successful plan, it would be wise to try new samples
that, while still having high probability of satisfying the
constraint, are as different from those that were previously
tried as possible. We need, therefore, to consider diversity
when generating samples; but the precise characterization of
useful diversity depends on the domain in which the method
is operating. We address this problem by adapting a kernel
that is used in the sampling process, based on experience in
previous planning problems.

Diversity-aware sampling has been studied extensively
with determinantal point processes (DPPs) [21]. We begin
with similar ideas and adapt them to the planning domain,
quantifying diversity of a set of samples S using the determi-
nant of a Gram matrix: D(S) = log det(ΞSζ−2 + I), where
ΞSij = ξ(θi, θj),∀θi, θj ∈ S, ξ is a covariance function,
and ζ is a free parameter (we use ζ = 0.1). In DPPs, the
quantity D(S) can be interpreted as the volume spanned by
the feature space of the kernel ξ(θi, θj)ζ−2+1θi≡θj assuming
that θi = θj ⇐⇒ i = j. Alternatively, one can interpret the
quantity D(S) as the information gain of a GP when the func-
tion values on S are observed [30]. This GP has kernel ξ and
observation noise N (0, ζ2). Because of the submodularity
and monotonicity of D(·), we can maximize D(S) greedily
with the promise that D([θi]

N
i=1) ≥ (1− 1

e) max|S|≤N D(S)
∀N = 1, 2, · · · , where θi = arg maxθD(θ ∪ {θj}i−1j=1). In
fact, maximizing D(θ ∪ S) is equivalent to maximizing

ηS(θ) = ξ(θ, θ)− ξS(θ)T(ΞS + ζ2I)−1ξS(θ)

which is exactly the same as the posterior variance for a GP.

Algorithm 3 Super Level Set Diverse Sampling
1: function DIVERSESAMPLER(µ, σ, α, η)
2: β ← λ(maxθ∈B

µ(θ)
σ(θ)

); Θ← ∅
3: θ ← arg maxθ∈B

µ(θ)
σ(θ)

; S ← ∅
4: while planner requires samples do
5: yield θ, S
6: if |Θ| < m/2 then
7: Θ← SAMPLEBUFFER(µ, σ, α, β,Θinit)

8: S ← S ∪ {θ} . S contains samples before θ
9: θ ← arg maxθ∈Θ ηS(θ)

10: Θ← Θ \ {θ}

The DIVERSESAMPLER procedure is very similar in struc-
ture to the ADAPTIVESAMPLER procedure, but rather than
selecting an arbitrary element of Θ, the buffer of good
samples, to return, we track the set S of samples that have
already been returned and select the element of Θ that is most
diverse from S as the sample to yield on each iteration. In
addition, we yield S to enable kernel learning as described
in Alg 4, to yield a kernel η.

It is typical to learn the kernel parameters of a GP or
DPP given supervised training examples of function values
or diverse sets, but those are not available in our setting; we
can only observe which samples are accepted by the planner
and which are not. We derive our notion of similarity by
assuming that all samples that are rejected by the planner
are similar. Under this assumption, we develop an online
learning approach that adapts the kernel parameters to learn
a good diversity metric for a sequence of planning tasks.

We use the squared exponential kernel of the form
ξ(θ, γ; l) = exp(−

∑
d r

2
d), where rd = |ld(θd − γd)| is the

rescaled “distance” between θ and γ on the d-th feature and
l is the inverse lengthscale. Let θ be the sample that failed
and the set of samples sampled before θ be S. We define the
importance of the d-th feature as

τθS(d) = ξ(θd, θd; ld)−ξS(θd; ld)
T(ΞS + ζ2I)−1ξS(θd; ld) ,

which is the conditional variance if we ignore the distance
contribution of all other features except the d-th; that is, ∀k 6=
d, lk = 0. Note that we keep Ξi + ζ2I the same for all the
features so that the inverse only needs to be computed once.

The diverse sampling procedure is analogous to the
weighted majority algorithm [31] in that each feature d is
seen as an expert that contributes to the conditional variance
term, which measures how diverse θ is with respect to S.
The contribution of feature d is measured by τθS(d). If θ was
rejected by the planner, we decrease the inverse lengthscale
ld of feature d = arg maxd∈[dθ] τ

θ
S(d) to be (1−ε)ld, because

feature d contributed the most to the decision that θ was most
different from S.

Algorithm 4 Task-level Kernel Learning
1: for task in T do
2: α← current context
3: µ, σ ← GP-predict(α); S ← ∅
4: while plan not found do
5: if |S| > 0 then
6: d← arg maxd∈[dθ] τ

θ
S(d)

7: ld ← (1− ε)ld
8: θ, S ← DIVERSESAMPLER(µ, σ, α, ξ(·, ·; l))
9: Check if a plan exist using θ

Alg. 4 depicts a scenario in which the kernel is updated
during interactions with a planner; it is simplified in that it
uses a single sampler, but in our experimental applications
there are many instances of action samplers in play during
a single execution of the planner. Given a sequence of tasks
presented to the planner, we can continue to apply this kernel
update, molding our diversity measure to the demands of
the distribution of tasks in the domain. This simple strategy
for kernel learning may lead to a significant reduction in
planning time, as we demonstrate in the next section.

V. EXPERIMENTS

We show the effectiveness and efficiency of each compo-
nent of our method independently, and then demonstrate their
collective performance in the context of planning for long-
horizon tasks in a high-dimensional continuous domain.

To test our algorithms, we implemented a simulated 2D
kitchen based on the physics engine Box2D [32]. Fig. 3
shows several scenes indicating the variability of arrange-
ments of objects in the domain. We use bi-directional
RRT [33] to implement motion planning. The parameterized
primitive motor actions are: moving the robot (a simple
“free-flying” hand), picking up an object, placing an object,
pushing an object, filling a cup from a faucet, pouring a
material out of a cup, scooping material into a spoon, and
dumping material from a spoon. The gripper has 3 degrees
of freedom (2D position and rotation). The material to be
poured or scooped is simulated as small circular particles.

We learn models and samplers for three of these ac-
tion primitives: pouring (4 context parameters, 4 predicted
parameters, scooping (2 context parameters, 7 predicted
parameters), and pushing (2 context parameters, 6 predicted
parameters). The actions are represented by a trajectory
of way points for the gripper, relative to the object it is
interacting with. For pouring, we use the scoring function
gpour (x) = exp(2 ∗ (x ∗ 10 − 9.5)) − 1, where x is the
proportion of the liquid particles that are poured into the
target cup. The constraint gpour (x) > 0 means at least 95%
of the particles are poured correctly to the target cup. The
context of pouring includes the sizes of the cups, with widths
ranging from 3 to 8 (units in Box2D), and heights ranging
from 3 to 5. For scooping, we use the proportion of the
capacity of the scoop that is filled with liquid particles,
and the scoring function is gscoop(x) = x − 0.5, where x
is the proportion of the spoon filled with particles. We fix
the size of the spoon and learn the action parameters for
different cup sizes, with width ranging from 5 to 10 and
height ranging from 4 to 8. For pushing, the scoring function
is gpush(x) = 2 − ‖x − xgoal‖ where x is the position
of the pushed object after the pushing action and xgoal is
the goal position; here the goal position is the context. The
pushing action learned in Sec. V-A has the same setting
as [1], viewing the gripper/object with a bird-eye view. We
will make the code for the simulation and learning methods
public at https://github.com/zi-w/Kitchen2D.

A. Active learning for conditional samplers

We demonstrate the performance of using a GP with
the straddle algorithm (GP-LSE) to estimate the level set
of the constraints on parameters for pushing, pouring and
scooping. For comparison, we also implemented a simple
method [1], which uses a neural network to map (θ, α)
pairs to predict the probability of success using a logistic
output. Given a partially trained network and a context α, the
θ∗ = arg maxθ NN(α, θ) which has the highest probability
of success with α is chosen for execution. Its success or
failure is observed, and then the network is retrained with this
added data point. This method is called NNc in the results. In
addition, we implemented a regression-based variation that
predicts g(θ, α) with a linear output layer, but given an α
value still chooses the maximizing θ. This method is called
NNr. We also compare to random sampling of θ values,
without any training.

https://github.com/zi-w/Kitchen2D

SUGARCREAM

GRIPPER
MUG

STIRRER SPOON

COFFEE FAUCET

COASTER

Fig. 3: Four arrangements of objects in 2D kitchen, including: green coaster, coffee faucet, yellow robot grippers, sugar
scoop, stirrer, coffee mug, small cup with cream, larger container with pink sugar.

Fig. 5: Comparing the first 5 samples generated by DIVERSE
(left) and ADAPTIVE (right) on one of the experiments for
pouring. The more transparent the pose, the later it gets
sampled.

GP-LSE is able to learn much more efficiently than the
other methods. Fig. 4 shows the accuracy of the first action
parameter vector θ (value 1 if the action with parameters θ is
actually successful and 0 otherwise) recommended by each
of these methods as a function of the number of actively
gathered training examples. GP-LSE recommends its first θ
by maximizing the probability that g(θ, α) > 0. The neural-
network methods recommend their first θ by maximizing
the output value, while RANDOM always selects uniformly
randomly from the domain of θ. In every case, the GP-based
method achieves perfect or high accuracy well before the
others, demonstrating the effectiveness of uncertainty-driven
active sampling methods.

B. Adaptive sampling and diverse sampling

Given a probabilistic estimate of a desirable set of θ
values, obtained by a method such as GP-LSE, the next step
is to sample values from that set to use in planning. We
compare simple rejection sampling using a uniform proposal
distribution (REJECTION), the basic adaptive sampler from
Sec. IV-B, and the diversity-aware sampler from Sec. IV-C
with a fixed kernel: the results are shown in Table. I.

We report the false positive rate (proportion of samples
that do not satisfy the true constraint) on 50 samples (FP),
the time to sample these 50 samples (T50), the total number
of samples required to find 5 positive samples (N5), and

TABLE I: Effectiveness of adaptive and diverse sampling.

REJECTION ADAPTIVE DIVERSE

Po
ur

FP (%) 6.45± 8.06* 4.04± 6.57 5.12± 6.94
T50 (s) 3.10± 1.70* 0.49± 0.10 0.53± 0.09
N5 5.51± 1.18* 5.30± 0.92 5.44± 0.67
Diversity 17.01± 2.90* 16.24± 3.49 18.80± 3.38

Sc
oo

p

FP (%) 0.00† 2.64± 6.24 3.52± 6.53
T50 (s) 9.89± 0.88† 0.74± 0.10 0.81± 0.11
N5 5.00† 5.00± 0.00 5.10± 0.41
Diversity 21.1† 20.89± 1.19 21.90± 1.04

Pu
sh

FP (%) 68.63± 46.27‡ 21.36± 34.18 38.56± 37.60
T50 (s) 7.50± 3.98‡ 3.58± 0.99 3.49± 0.81
N5 5.00± 0.00‡ 5.56± 1.514 6.44± 2.11♣

Diversity 23.06± 0.02‡ 10.74± 4.924 13.89± 5.39♣

*1 out of 50 experiments failed (to generate 50 samples within 10 seconds);
†49 out of 50 failed; ‡34 out of 50 failed; 5 out of 16 experiments failed
(to generate 5 positive samples within 100 samples); 47 out of 50 failed;
♣11 out of 50 failed.

the diversity of those 5 samples. We limit cpu time for
gathering 50 samples to 10 seconds (running with Python
2.7.13 and Ubuntu 14.04 on Intel(R) Xeon(R) CPU E5-2680
v3 @ 2.50GHz with 64GB memory.) If no sample is returned
within 10 seconds, we do not include that experiment in
the reported results except the sampling time. Hence the
reported sampling time may be a lower bound on the actual
sampling time. The diversity term is measured by D(S) =
log det(ΞSζ−2 +I) using a squared exponential kernel with
inverse lengthscale l = [1, 1, · · · , 1] and ζ = 0.1. We run
the sampling algorithm for an additional 50 iterations (a
maximum of 100 samples in total) until we have 5 positive
examples and use these samples to report D(S). We also
report the total number of samples needed to achieve 5
positive ones (Np). If the method is not able to get 5 positive
samples within 100 samples, we report failure and do not
include them in the diversity metric or the Np metric.

DIVERSE uses slightly more samples than ADAPTIVE to
achieve 5 positive ones, and its false positive rate is slightly
higher than ADAPTIVE, but the diversity of the samples is
notably higher. The FP rate of diverse can be decreased
by increasing the confidence bound on the level set. We

50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

Random NNc NNr GP-LSE

10 20 30 40 50
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
A
cc

Random NNc NNr GP-LSE

10 20 30 40 50
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

Random NNc NNr GP-LSE

(b) (c)(a)

Fig. 4: Mean accuracy (with 1/2 stdev on mean shaded) of the first action recommended by each method.

TABLE II: Effect of distance metric learning on sampling.

Task I Runtime (ms) 0.2s SR (%) 0.02s SR (%)

ADAPTIVE 8.16± 12.16 100.0± 0.0 87.1± 0.8
DIVERSE-GK 9.63± 9.69 100.0± 0.0 82.2± 1.2
DIVERSE-LK 5.87± 4.63 100.0± 0.0 99.9± 0.1

Task II Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 3.22± 6.51 91.0± 2.7 82.4± 5.6
DIVERSE-GK 2.06± 1.76 95.0± 1.8 93.6± 2.2
DIVERSE-LK 1.71± 1.23 95.0± 1.8 94.0± 1.5

Task III Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 5.79± 11.04 51.4± 3.3 40.9± 4.1
DIVERSE-GK 3.90± 5.02 56.3± 2.0 46.3± 2.0
DIVERSE-LK 4.30± 6.89 59.1± 2.6 49.1± 2.6

illustrate the ending poses of the 5 pouring actions gener-
ated by adaptive sampling with DIVERSE and ADAPTIVE
in Fig. 5illustrating that DIVERSE is able to generate more
diverse action parameters, which may facilitate planning.

C. Learning kernels for diverse sampling in planning

In the final set of experiments, we explore the effectiveness
of the diverse sampling algorithm with task-level kernel
learning We compare ADAPTIVE, DIVERSE-GK with a fixed
kernel, and diverse sampling with learned kernel (DIVERSE-
LK), in every case using a high-probability super-level-set
estimated by a GP. In DIVERSE-LK, we use ε = 0.3. We
define the planning reward of a sampler to be Jk(φ) =∑∞
n=1 s(φ, n)γn, where s(φ, n) is the indicator variable that

the n-th sample from φ helped the planner to generate the
final plan for a particular task instance k. The reward is
discounted by γn with 0 < γ < 1, so that earlier samples
get higher rewards (we use γ = 0.6). We average the rewards
on tasks drawn from a predefined distribution, and effectively
report a lower bound on J(φ), by setting a time limit on the
planner.

The first set of tasks (Task I) we consider is a simple
controlled example where the goal is to push an object off a
2D table with the presence of an obstacle on either one side
of the table or the other (both possible situations are equally
likely). The presence of these obstacles is not represented
in the context of the sampler, but the planner will reject
sample action instances that generate a collision with an
object in the world and request a new sample. We use a fixed

range of feasible actions sampled from two rectangles in 2D
of unequal sizes. The optimal strategy is to first randomly
sample from one side of the table and if no plan is found,
sample from the other side.

We show the learning curve of DIVERSE-LK with respect
to the planning reward metric J(φ) in Fig. 6 (a). 1000 initial
arrangements of obstacles were drawn randomly for testing.
We also repeat the experiments 5 times to obtain the 95%
confidence interval. For DIVERSE-GK, the kernel inverse is
initialized as [1, 1] and if, for example, it sampled on the left
side of the object (pushing to the right) and the obstacle is
on the right, it may not choose to sample on the right side
because the kernel indicates that the other feature is has more
diversity. However, after a few planning instances, DIVERSE-
LK is able to figure out the right configuration of the kernel
and its sampling strategy becomes the optimal one.

We also tested these three sampling algorithms on two
more complicated tasks. We select a fixed test set with 50
task specifications and repeat the evaluation 5 times. The first
one (Task II) involves picking up cup A, getting water from
a faucet, move to a pouring position, pour water into cup B,
and finally placing cup A back in its initial position. Cup
B is placed randomly either next to the wall on the left or
right. The second task is a harder version of Task II, with the
additional constraint that cup A has a holder and the sampler
also has to figure out that the grasp location must be close
to the top of the cup (Task III).

We show the learning results in Fig. 6 (b) and (c) and
timing results in Tab. II (after training). We conjecture that
the sharp turning points in the learning curves of Tasks II
and III are a result of high penalty on the kernel lengthscales
and the limited size (50) of the test tasks, and we plan to
investigate more in the future work. Nevertheless, DIVERSE-
LK is still able to find a better solution than the alternatives in
Tasks II and III. Moreover, the two diverse sampling methods
achieve lower variance on the success rate and perform more
stably after training.

D. Integrated system

Finally, we integrate the learned action sampling models
for pour and scoop with 7 pre-existing robot operations
(move, push, pick, place, fill, dump, stir) in a domain
specification for STRIPStream. The robot’s goal is to “serve”

0 10 20 30 40 50
Number of Training Tasks

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
P
la

n
n
in

g
 R

e
w

a
rd

Adaptive Diverse-GK Diverse-LK

(a) (b) (c)
0 10 20 30 40 50

Number of Training Tasks

0.40

0.42

0.44

0.46

0.48

P
la

n
n
in

g
 R

e
w

a
rd

Adaptive Diverse-GK Diverse-LK

0 10 20 30 40 50
Number of Training Tasks

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

P
la

n
n
in

g
 R

e
w

a
rd

Adaptive Diverse-GK Diverse-LK

Fig. 6: The mean learning curve of reward J(φ) (with 1.96 standard deviation) as a function of the number of training tasks
in three domains: (a) Task I: pushing an object off the table (b) Task II: pouring into a cup next to a wall (c) Task III:
picking up a cup in a holder and pour into a cup next to a wall.

a cup of coffee with cream and sugar by placing it on the
green coaster near the edge of the table. Accomplishing this
requires general-purpose planning, including picking where
to grasp the objects, where to place them back down on
the table, and what the pre-operation poses of the cups and
spoon should be before initiating the sensorimotor primitives
for pouring and scooping should be. Significant perturbations
of the object arrangements are handled without difficulty1. A
resulting plan and execution sequence is shown in the accom-
panying video at https://youtu.be/QWjLYjN8axg.

This work illustrates a critical ability: to augment the ex-
isting competences of a robotic system (such as picking and
placing objects) with new sensorimotor primitives by learn-
ing probabilistic models of their preconditions and effects
and using a state-of-the-art domain-independent continuous-
space planning algorithm to combine them fluidly and effec-
tively to achieve complex goals.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Perez, “Learning composable models
of parameterized skills,” in ICRA, 2017.

[2] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Sample-based
methods for factored task and motion planning,” in RSS, 2017.

[3] ——, “Strips planning in infinite domains,” arXiv:1701.00287, 2017.
[4] C. E. Rasmussen and C. K. Williams, “Gaussian processes for machine

learning,” The MIT Press, 2006.
[5] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-

cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, pp. 189–208, 1971.

[6] O. Kroemer and G. Sukhatme, “Meta-level priors for learning manip-
ulation skills with sparse features,” in ISER, 2016.

[7] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning contact
locations for pushing and orienting unknown objects,” in Humanoids,
2013.

[8] C. Schenck, J. Tompson, D. Fox, and S. Levine, “Learning robotic
manipulation of granular media,” in CORL, 2017.

[9] Z. Pan, C. Park, and D. Manocha, “Robot motion planning for pouring
liquids.” in ICAPS, 2016.

[10] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning to
pour with a robot arm combining goal and shape learning for dynamic
movement primitives,” Robotics and Autonomous Systems, vol. 59,
no. 11, 2011.

[11] S. Brandi, O. Kroemer, and J. Peters, “Generalizing pouring actions
between objects using warped parameters,” in Humanoids, 2014.

1We use the focused algorithm within STRIPStream, and it solves the
task in 20-40 seconds for a range of different arrangements of objects.

[12] A. Yamaguchi and C. G. Atkeson, “Differential dynamic programming
for graph-structured dynamical systems: Generalization of pouring
behavior with different skills,” in Humanoids, 2016.

[13] C. Schenck and D. Fox, “Visual closed-loop control for pouring
liquids,” in ICRA, 2017.

[14] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” JAIR, vol. 61, 2018.

[15] O. Kroemer and G. S. Sukhatme, “Learning spatial preconditions of
manipulation skills using random forests,” in Humanoids, 2016.

[16] B. Bryan, R. C. Nichol, C. R. Genovese, J. Schneider, C. J. Miller,
and L. Wasserman, “Active learning for identifying function threshold
boundaries,” in NIPS, 2006.

[17] A. Gotovos, N. Casati, G. Hitz, and A. Krause, “Active learning for
level set estimation,” in IJCAI, 2013.

[18] I. Bogunovic, J. Scarlett, A. Krause, and V. Cevher, “Truncated
variance reduction: A unified approach to bayesian optimization and
level-set estimation,” in NIPS, 2016.

[19] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in ICML, 2016.

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,” in
NIPS, 2017.

[21] A. Kulesza, B. Taskar, et al., “Determinantal point processes for
machine learning,” Foundations and Trends in Machine Learning,
vol. 5, no. 2–3, 2012.

[22] R. Hafiz Affandi, E. B. Fox, and B. Taskar, “Approximate inference
in continuous determinantal point processes,” in NIPS, 2013.

[23] R. H. Affandi, E. Fox, R. Adams, and B. Taskar, “Learning the
parameters of determinantal point process kernels,” in ICML, 2014.

[24] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011.

[25] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in ICRA, 2014.

[26] R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev,
C. Lin, and P. Abbeel, “Guided search for task and motion plans using
learned heuristics,” in ICRA, 2016.

[27] B. Kim, L. P. Kaelbling, and T. Lozano-Perez, “Learning to guide
task and motion planning using score-space representation,” in ICRA,
2017.

[28] ——, “Guiding search in continuous state-action spaces by learning
an action sampler from off-target search experience,” in AAAI, 2018.

[29] Z. Wang, B. Zhou, and S. Jegelka, “Optimization as estimation with
Gaussian processes in bandit settings,” in AISTATS, 2016.

[30] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian
process optimization in the bandit setting: No regret and experimental
design,” in ICML, 2010.

[31] D. P. Foster and R. Vohra, “Regret in the on-line decision problem,”
Games and Economic Behavior, vol. 29, no. 1-2, 1999.

[32] E. Catto, “Box2D, a 2D physics engine for games,” http://box2d.org,
2011.

[33] J. J. Kuffner, Jr. and S. M. LaValle, “RRT-Connect: An efficient
approach to single-query path planning,” in ICRA, 2000.

https://youtu.be/QWjLYjN8axg
http://box2d.org

	Introduction
	Problem formulation and background
	Related Work
	Active sampling for learning and planning
	Actively learning the constraint with a GP
	Risk-aware adaptive sampling for constraint satisfaction
	Diversity-aware sampling for planning

	Experiments
	Active learning for conditional samplers
	Adaptive sampling and diverse sampling
	Learning kernels for diverse sampling in planning
	Integrated system

	References

